1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <iterator>
51 #include <tuple>
52 #include <utility>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "statepoint-lowering"
57
58 STATISTIC(NumSlotsAllocatedForStatepoints,
59 "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired,
62 "Maximum number of stack slots required for a singe statepoint");
63
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65 SelectionDAGBuilder &Builder, uint64_t Value) {
66 SDLoc L = Builder.getCurSDLoc();
67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68 MVT::i64));
69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
70 }
71
startNewStatepoint(SelectionDAGBuilder & Builder)72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73 // Consistency check
74 assert(PendingGCRelocateCalls.empty() &&
75 "Trying to visit statepoint before finished processing previous one");
76 Locations.clear();
77 NextSlotToAllocate = 0;
78 // Need to resize this on each safepoint - we need the two to stay in sync and
79 // the clear patterns of a SelectionDAGBuilder have no relation to
80 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
81 AllocatedStackSlots.clear();
82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
83 }
84
clear()85 void StatepointLoweringState::clear() {
86 Locations.clear();
87 AllocatedStackSlots.clear();
88 assert(PendingGCRelocateCalls.empty() &&
89 "cleared before statepoint sequence completed");
90 }
91
92 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)93 StatepointLoweringState::allocateStackSlot(EVT ValueType,
94 SelectionDAGBuilder &Builder) {
95 NumSlotsAllocatedForStatepoints++;
96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
97
98 unsigned SpillSize = ValueType.getStoreSize();
99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
100
101 // First look for a previously created stack slot which is not in
102 // use (accounting for the fact arbitrary slots may already be
103 // reserved), or to create a new stack slot and use it.
104
105 const size_t NumSlots = AllocatedStackSlots.size();
106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
107
108 assert(AllocatedStackSlots.size() ==
109 Builder.FuncInfo.StatepointStackSlots.size() &&
110 "Broken invariant");
111
112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115 if (MFI.getObjectSize(FI) == SpillSize) {
116 AllocatedStackSlots.set(NextSlotToAllocate);
117 // TODO: Is ValueType the right thing to use here?
118 return Builder.DAG.getFrameIndex(FI, ValueType);
119 }
120 }
121 }
122
123 // Couldn't find a free slot, so create a new one:
124
125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127 MFI.markAsStatepointSpillSlotObjectIndex(FI);
128
129 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131 assert(AllocatedStackSlots.size() ==
132 Builder.FuncInfo.StatepointStackSlots.size() &&
133 "Broken invariant");
134
135 StatepointMaxSlotsRequired.updateMax(
136 Builder.FuncInfo.StatepointStackSlots.size());
137
138 return SpillSlot;
139 }
140
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)144 static Optional<int> findPreviousSpillSlot(const Value *Val,
145 SelectionDAGBuilder &Builder,
146 int LookUpDepth) {
147 // Can not look any further - give up now
148 if (LookUpDepth <= 0)
149 return None;
150
151 // Spill location is known for gc relocates
152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153 const auto &SpillMap =
154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
155
156 auto It = SpillMap.find(Relocate->getDerivedPtr());
157 if (It == SpillMap.end())
158 return None;
159
160 return It->second;
161 }
162
163 // Look through bitcast instructions.
164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
166
167 // Look through phi nodes
168 // All incoming values should have same known stack slot, otherwise result
169 // is unknown.
170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171 Optional<int> MergedResult = None;
172
173 for (auto &IncomingValue : Phi->incoming_values()) {
174 Optional<int> SpillSlot =
175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176 if (!SpillSlot.hasValue())
177 return None;
178
179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180 return None;
181
182 MergedResult = SpillSlot;
183 }
184 return MergedResult;
185 }
186
187 // TODO: We can do better for PHI nodes. In cases like this:
188 // ptr = phi(relocated_pointer, not_relocated_pointer)
189 // statepoint(ptr)
190 // We will return that stack slot for ptr is unknown. And later we might
191 // assign different stack slots for ptr and relocated_pointer. This limits
192 // llvm's ability to remove redundant stores.
193 // Unfortunately it's hard to accomplish in current infrastructure.
194 // We use this function to eliminate spill store completely, while
195 // in example we still need to emit store, but instead of any location
196 // we need to use special "preferred" location.
197
198 // TODO: handle simple updates. If a value is modified and the original
199 // value is no longer live, it would be nice to put the modified value in the
200 // same slot. This allows folding of the memory accesses for some
201 // instructions types (like an increment).
202 // statepoint (i)
203 // i1 = i+1
204 // statepoint (i1)
205 // However we need to be careful for cases like this:
206 // statepoint(i)
207 // i1 = i+1
208 // statepoint(i, i1)
209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210 // put handling of simple modifications in this function like it's done
211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212 // which we visit values is unspecified.
213
214 // Don't know any information about this instruction
215 return None;
216 }
217
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling. If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)223 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224 SelectionDAGBuilder &Builder) {
225 SDValue Incoming = Builder.getValue(IncomingValue);
226
227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228 // We won't need to spill this, so no need to check for previously
229 // allocated stack slots
230 return;
231 }
232
233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234 if (OldLocation.getNode())
235 // Duplicates in input
236 return;
237
238 const int LookUpDepth = 6;
239 Optional<int> Index =
240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241 if (!Index.hasValue())
242 return;
243
244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
245
246 auto SlotIt = find(StatepointSlots, *Index);
247 assert(SlotIt != StatepointSlots.end() &&
248 "Value spilled to the unknown stack slot");
249
250 // This is one of our dedicated lowering slots
251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253 // stack slot already assigned to someone else, can't use it!
254 // TODO: currently we reserve space for gc arguments after doing
255 // normal allocation for deopt arguments. We should reserve for
256 // _all_ deopt and gc arguments, then start allocating. This
257 // will prevent some moves being inserted when vm state changes,
258 // but gc state doesn't between two calls.
259 return;
260 }
261 // Reserve this stack slot
262 Builder.StatepointLowering.reserveStackSlot(Offset);
263
264 // Cache this slot so we find it when going through the normal
265 // assignment loop.
266 SDValue Loc =
267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268 Builder.StatepointLowering.setLocation(Incoming, Loc);
269 }
270
271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
272 /// is not required for correctness. It's purpose is to reduce the size of
273 /// StackMap section. It has no effect on the number of spill slots required
274 /// or the actual lowering.
275 static void
removeDuplicateGCPtrs(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const GCRelocateInst * > & Relocs,SelectionDAGBuilder & Builder,FunctionLoweringInfo::StatepointSpillMap & SSM)276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
277 SmallVectorImpl<const Value *> &Ptrs,
278 SmallVectorImpl<const GCRelocateInst *> &Relocs,
279 SelectionDAGBuilder &Builder,
280 FunctionLoweringInfo::StatepointSpillMap &SSM) {
281 DenseMap<SDValue, const Value *> Seen;
282
283 SmallVector<const Value *, 64> NewBases, NewPtrs;
284 SmallVector<const GCRelocateInst *, 64> NewRelocs;
285 for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
286 SDValue SD = Builder.getValue(Ptrs[i]);
287 auto SeenIt = Seen.find(SD);
288
289 if (SeenIt == Seen.end()) {
290 // Only add non-duplicates
291 NewBases.push_back(Bases[i]);
292 NewPtrs.push_back(Ptrs[i]);
293 NewRelocs.push_back(Relocs[i]);
294 Seen[SD] = Ptrs[i];
295 } else {
296 // Duplicate pointer found, note in SSM and move on:
297 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
298 }
299 }
300 assert(Bases.size() >= NewBases.size());
301 assert(Ptrs.size() >= NewPtrs.size());
302 assert(Relocs.size() >= NewRelocs.size());
303 Bases = NewBases;
304 Ptrs = NewPtrs;
305 Relocs = NewRelocs;
306 assert(Ptrs.size() == Bases.size());
307 assert(Ptrs.size() == Relocs.size());
308 }
309
310 /// Extract call from statepoint, lower it and return pointer to the
311 /// call node. Also update NodeMap so that getValue(statepoint) will
312 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
314 SelectionDAGBuilder::StatepointLoweringInfo &SI,
315 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
316 SDValue ReturnValue, CallEndVal;
317 std::tie(ReturnValue, CallEndVal) =
318 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
319 SDNode *CallEnd = CallEndVal.getNode();
320
321 // Get a call instruction from the call sequence chain. Tail calls are not
322 // allowed. The following code is essentially reverse engineering X86's
323 // LowerCallTo.
324 //
325 // We are expecting DAG to have the following form:
326 //
327 // ch = eh_label (only in case of invoke statepoint)
328 // ch, glue = callseq_start ch
329 // ch, glue = X86::Call ch, glue
330 // ch, glue = callseq_end ch, glue
331 // get_return_value ch, glue
332 //
333 // get_return_value can either be a sequence of CopyFromReg instructions
334 // to grab the return value from the return register(s), or it can be a LOAD
335 // to load a value returned by reference via a stack slot.
336
337 bool HasDef = !SI.CLI.RetTy->isVoidTy();
338 if (HasDef) {
339 if (CallEnd->getOpcode() == ISD::LOAD)
340 CallEnd = CallEnd->getOperand(0).getNode();
341 else
342 while (CallEnd->getOpcode() == ISD::CopyFromReg)
343 CallEnd = CallEnd->getOperand(0).getNode();
344 }
345
346 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
347 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
348 }
349
getMachineMemOperand(MachineFunction & MF,FrameIndexSDNode & FI)350 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
351 FrameIndexSDNode &FI) {
352 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
353 auto MMOFlags = MachineMemOperand::MOStore |
354 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
355 auto &MFI = MF.getFrameInfo();
356 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
357 MFI.getObjectSize(FI.getIndex()),
358 MFI.getObjectAlignment(FI.getIndex()));
359 }
360
361 /// Spill a value incoming to the statepoint. It might be either part of
362 /// vmstate
363 /// or gcstate. In both cases unconditionally spill it on the stack unless it
364 /// is a null constant. Return pair with first element being frame index
365 /// containing saved value and second element with outgoing chain from the
366 /// emitted store
367 static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)368 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
369 SelectionDAGBuilder &Builder) {
370 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
371 MachineMemOperand* MMO = nullptr;
372
373 // Emit new store if we didn't do it for this ptr before
374 if (!Loc.getNode()) {
375 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
376 Builder);
377 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
378 // We use TargetFrameIndex so that isel will not select it into LEA
379 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
380
381 // Right now we always allocate spill slots that are of the same
382 // size as the value we're about to spill (the size of spillee can
383 // vary since we spill vectors of pointers too). At some point we
384 // can consider allowing spills of smaller values to larger slots
385 // (i.e. change the '==' in the assert below to a '>=').
386 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
387 assert((MFI.getObjectSize(Index) * 8) ==
388 (int64_t)Incoming.getValueSizeInBits() &&
389 "Bad spill: stack slot does not match!");
390
391 // Note: Using the alignment of the spill slot (rather than the abi or
392 // preferred alignment) is required for correctness when dealing with spill
393 // slots with preferred alignments larger than frame alignment..
394 auto &MF = Builder.DAG.getMachineFunction();
395 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
396 auto *StoreMMO =
397 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
398 MFI.getObjectSize(Index),
399 MFI.getObjectAlignment(Index));
400 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
401 StoreMMO);
402
403 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
404
405 Builder.StatepointLowering.setLocation(Incoming, Loc);
406 }
407
408 assert(Loc.getNode());
409 return std::make_tuple(Loc, Chain, MMO);
410 }
411
412 /// Lower a single value incoming to a statepoint node. This value can be
413 /// either a deopt value or a gc value, the handling is the same. We special
414 /// case constants and allocas, then fall back to spilling if required.
lowerIncomingStatepointValue(SDValue Incoming,bool LiveInOnly,SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SelectionDAGBuilder & Builder)415 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
416 SmallVectorImpl<SDValue> &Ops,
417 SmallVectorImpl<MachineMemOperand*> &MemRefs,
418 SelectionDAGBuilder &Builder) {
419 // Note: We know all of these spills are independent, but don't bother to
420 // exploit that chain wise. DAGCombine will happily do so as needed, so
421 // doing it here would be a small compile time win at most.
422 SDValue Chain = Builder.getRoot();
423
424 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
425 // If the original value was a constant, make sure it gets recorded as
426 // such in the stackmap. This is required so that the consumer can
427 // parse any internal format to the deopt state. It also handles null
428 // pointers and other constant pointers in GC states. Note the constant
429 // vectors do not appear to actually hit this path and that anything larger
430 // than an i64 value (not type!) will fail asserts here.
431 pushStackMapConstant(Ops, Builder, C->getSExtValue());
432 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
433 // This handles allocas as arguments to the statepoint (this is only
434 // really meaningful for a deopt value. For GC, we'd be trying to
435 // relocate the address of the alloca itself?)
436 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
437 "Incoming value is a frame index!");
438 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
439 Builder.getFrameIndexTy()));
440
441 auto &MF = Builder.DAG.getMachineFunction();
442 auto *MMO = getMachineMemOperand(MF, *FI);
443 MemRefs.push_back(MMO);
444
445 } else if (LiveInOnly) {
446 // If this value is live in (not live-on-return, or live-through), we can
447 // treat it the same way patchpoint treats it's "live in" values. We'll
448 // end up folding some of these into stack references, but they'll be
449 // handled by the register allocator. Note that we do not have the notion
450 // of a late use so these values might be placed in registers which are
451 // clobbered by the call. This is fine for live-in.
452 Ops.push_back(Incoming);
453 } else {
454 // Otherwise, locate a spill slot and explicitly spill it so it
455 // can be found by the runtime later. We currently do not support
456 // tracking values through callee saved registers to their eventual
457 // spill location. This would be a useful optimization, but would
458 // need to be optional since it requires a lot of complexity on the
459 // runtime side which not all would support.
460 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
461 Ops.push_back(std::get<0>(Res));
462 if (auto *MMO = std::get<2>(Res))
463 MemRefs.push_back(MMO);
464 Chain = std::get<1>(Res);;
465 }
466
467 Builder.DAG.setRoot(Chain);
468 }
469
470 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
471 /// lowering is described in lowerIncomingStatepointValue. This function is
472 /// responsible for lowering everything in the right position and playing some
473 /// tricks to avoid redundant stack manipulation where possible. On
474 /// completion, 'Ops' will contain ready to use operands for machine code
475 /// statepoint. The chain nodes will have already been created and the DAG root
476 /// will be set to the last value spilled (if any were).
477 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)478 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
479 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI,
480 SelectionDAGBuilder &Builder) {
481 // Lower the deopt and gc arguments for this statepoint. Layout will be:
482 // deopt argument length, deopt arguments.., gc arguments...
483 #ifndef NDEBUG
484 if (auto *GFI = Builder.GFI) {
485 // Check that each of the gc pointer and bases we've gotten out of the
486 // safepoint is something the strategy thinks might be a pointer (or vector
487 // of pointers) into the GC heap. This is basically just here to help catch
488 // errors during statepoint insertion. TODO: This should actually be in the
489 // Verifier, but we can't get to the GCStrategy from there (yet).
490 GCStrategy &S = GFI->getStrategy();
491 for (const Value *V : SI.Bases) {
492 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
493 if (Opt.hasValue()) {
494 assert(Opt.getValue() &&
495 "non gc managed base pointer found in statepoint");
496 }
497 }
498 for (const Value *V : SI.Ptrs) {
499 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
500 if (Opt.hasValue()) {
501 assert(Opt.getValue() &&
502 "non gc managed derived pointer found in statepoint");
503 }
504 }
505 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
506 } else {
507 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
508 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
509 }
510 #endif
511
512 // Figure out what lowering strategy we're going to use for each part
513 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
514 // as "live-through". A "live-through" variable is one which is "live-in",
515 // "live-out", and live throughout the lifetime of the call (i.e. we can find
516 // it from any PC within the transitive callee of the statepoint). In
517 // particular, if the callee spills callee preserved registers we may not
518 // be able to find a value placed in that register during the call. This is
519 // fine for live-out, but not for live-through. If we were willing to make
520 // assumptions about the code generator producing the callee, we could
521 // potentially allow live-through values in callee saved registers.
522 const bool LiveInDeopt =
523 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
524
525 auto isGCValue =[&](const Value *V) {
526 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
527 };
528
529 // Before we actually start lowering (and allocating spill slots for values),
530 // reserve any stack slots which we judge to be profitable to reuse for a
531 // particular value. This is purely an optimization over the code below and
532 // doesn't change semantics at all. It is important for performance that we
533 // reserve slots for both deopt and gc values before lowering either.
534 for (const Value *V : SI.DeoptState) {
535 if (!LiveInDeopt || isGCValue(V))
536 reservePreviousStackSlotForValue(V, Builder);
537 }
538 for (unsigned i = 0; i < SI.Bases.size(); ++i) {
539 reservePreviousStackSlotForValue(SI.Bases[i], Builder);
540 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
541 }
542
543 // First, prefix the list with the number of unique values to be
544 // lowered. Note that this is the number of *Values* not the
545 // number of SDValues required to lower them.
546 const int NumVMSArgs = SI.DeoptState.size();
547 pushStackMapConstant(Ops, Builder, NumVMSArgs);
548
549 // The vm state arguments are lowered in an opaque manner. We do not know
550 // what type of values are contained within.
551 for (const Value *V : SI.DeoptState) {
552 SDValue Incoming;
553 // If this is a function argument at a static frame index, generate it as
554 // the frame index.
555 if (const Argument *Arg = dyn_cast<Argument>(V)) {
556 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
557 if (FI != INT_MAX)
558 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
559 }
560 if (!Incoming.getNode())
561 Incoming = Builder.getValue(V);
562 const bool LiveInValue = LiveInDeopt && !isGCValue(V);
563 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder);
564 }
565
566 // Finally, go ahead and lower all the gc arguments. There's no prefixed
567 // length for this one. After lowering, we'll have the base and pointer
568 // arrays interwoven with each (lowered) base pointer immediately followed by
569 // it's (lowered) derived pointer. i.e
570 // (base[0], ptr[0], base[1], ptr[1], ...)
571 for (unsigned i = 0; i < SI.Bases.size(); ++i) {
572 const Value *Base = SI.Bases[i];
573 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
574 Ops, MemRefs, Builder);
575
576 const Value *Ptr = SI.Ptrs[i];
577 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
578 Ops, MemRefs, Builder);
579 }
580
581 // If there are any explicit spill slots passed to the statepoint, record
582 // them, but otherwise do not do anything special. These are user provided
583 // allocas and give control over placement to the consumer. In this case,
584 // it is the contents of the slot which may get updated, not the pointer to
585 // the alloca
586 for (Value *V : SI.GCArgs) {
587 SDValue Incoming = Builder.getValue(V);
588 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
589 // This handles allocas as arguments to the statepoint
590 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
591 "Incoming value is a frame index!");
592 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
593 Builder.getFrameIndexTy()));
594
595 auto &MF = Builder.DAG.getMachineFunction();
596 auto *MMO = getMachineMemOperand(MF, *FI);
597 MemRefs.push_back(MMO);
598 }
599 }
600
601 // Record computed locations for all lowered values.
602 // This can not be embedded in lowering loops as we need to record *all*
603 // values, while previous loops account only values with unique SDValues.
604 const Instruction *StatepointInstr = SI.StatepointInstr;
605 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
606
607 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
608 const Value *V = Relocate->getDerivedPtr();
609 SDValue SDV = Builder.getValue(V);
610 SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
611
612 if (Loc.getNode()) {
613 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
614 } else {
615 // Record value as visited, but not spilled. This is case for allocas
616 // and constants. For this values we can avoid emitting spill load while
617 // visiting corresponding gc_relocate.
618 // Actually we do not need to record them in this map at all.
619 // We do this only to check that we are not relocating any unvisited
620 // value.
621 SpillMap.SlotMap[V] = None;
622
623 // Default llvm mechanisms for exporting values which are used in
624 // different basic blocks does not work for gc relocates.
625 // Note that it would be incorrect to teach llvm that all relocates are
626 // uses of the corresponding values so that it would automatically
627 // export them. Relocates of the spilled values does not use original
628 // value.
629 if (Relocate->getParent() != StatepointInstr->getParent())
630 Builder.ExportFromCurrentBlock(V);
631 }
632 }
633 }
634
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)635 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
636 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
637 // The basic scheme here is that information about both the original call and
638 // the safepoint is encoded in the CallInst. We create a temporary call and
639 // lower it, then reverse engineer the calling sequence.
640
641 NumOfStatepoints++;
642 // Clear state
643 StatepointLowering.startNewStatepoint(*this);
644
645 #ifndef NDEBUG
646 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
647 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
648 for (auto *Reloc : SI.GCRelocates)
649 if (Reloc->getParent() == SI.StatepointInstr->getParent())
650 StatepointLowering.scheduleRelocCall(*Reloc);
651 #endif
652
653 // Remove any redundant llvm::Values which map to the same SDValue as another
654 // input. Also has the effect of removing duplicates in the original
655 // llvm::Value input list as well. This is a useful optimization for
656 // reducing the size of the StackMap section. It has no other impact.
657 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
658 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
659 assert(SI.Bases.size() == SI.Ptrs.size() &&
660 SI.Ptrs.size() == SI.GCRelocates.size());
661
662 // Lower statepoint vmstate and gcstate arguments
663 SmallVector<SDValue, 10> LoweredMetaArgs;
664 SmallVector<MachineMemOperand*, 16> MemRefs;
665 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
666
667 // Now that we've emitted the spills, we need to update the root so that the
668 // call sequence is ordered correctly.
669 SI.CLI.setChain(getRoot());
670
671 // Get call node, we will replace it later with statepoint
672 SDValue ReturnVal;
673 SDNode *CallNode;
674 std::tie(ReturnVal, CallNode) =
675 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
676
677 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
678 // nodes with all the appropriate arguments and return values.
679
680 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
681 SDValue Chain = CallNode->getOperand(0);
682
683 SDValue Glue;
684 bool CallHasIncomingGlue = CallNode->getGluedNode();
685 if (CallHasIncomingGlue) {
686 // Glue is always last operand
687 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
688 }
689
690 // Build the GC_TRANSITION_START node if necessary.
691 //
692 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
693 // order in which they appear in the call to the statepoint intrinsic. If
694 // any of the operands is a pointer-typed, that operand is immediately
695 // followed by a SRCVALUE for the pointer that may be used during lowering
696 // (e.g. to form MachinePointerInfo values for loads/stores).
697 const bool IsGCTransition =
698 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
699 (uint64_t)StatepointFlags::GCTransition;
700 if (IsGCTransition) {
701 SmallVector<SDValue, 8> TSOps;
702
703 // Add chain
704 TSOps.push_back(Chain);
705
706 // Add GC transition arguments
707 for (const Value *V : SI.GCTransitionArgs) {
708 TSOps.push_back(getValue(V));
709 if (V->getType()->isPointerTy())
710 TSOps.push_back(DAG.getSrcValue(V));
711 }
712
713 // Add glue if necessary
714 if (CallHasIncomingGlue)
715 TSOps.push_back(Glue);
716
717 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
718
719 SDValue GCTransitionStart =
720 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
721
722 Chain = GCTransitionStart.getValue(0);
723 Glue = GCTransitionStart.getValue(1);
724 }
725
726 // TODO: Currently, all of these operands are being marked as read/write in
727 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
728 // and flags to be read-only.
729 SmallVector<SDValue, 40> Ops;
730
731 // Add the <id> and <numBytes> constants.
732 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
733 Ops.push_back(
734 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
735
736 // Calculate and push starting position of vmstate arguments
737 // Get number of arguments incoming directly into call node
738 unsigned NumCallRegArgs =
739 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
740 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
741
742 // Add call target
743 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
744 Ops.push_back(CallTarget);
745
746 // Add call arguments
747 // Get position of register mask in the call
748 SDNode::op_iterator RegMaskIt;
749 if (CallHasIncomingGlue)
750 RegMaskIt = CallNode->op_end() - 2;
751 else
752 RegMaskIt = CallNode->op_end() - 1;
753 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
754
755 // Add a constant argument for the calling convention
756 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
757
758 // Add a constant argument for the flags
759 uint64_t Flags = SI.StatepointFlags;
760 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
761 "Unknown flag used");
762 pushStackMapConstant(Ops, *this, Flags);
763
764 // Insert all vmstate and gcstate arguments
765 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
766
767 // Add register mask from call node
768 Ops.push_back(*RegMaskIt);
769
770 // Add chain
771 Ops.push_back(Chain);
772
773 // Same for the glue, but we add it only if original call had it
774 if (Glue.getNode())
775 Ops.push_back(Glue);
776
777 // Compute return values. Provide a glue output since we consume one as
778 // input. This allows someone else to chain off us as needed.
779 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
780
781 MachineSDNode *StatepointMCNode =
782 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
783 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
784
785 SDNode *SinkNode = StatepointMCNode;
786
787 // Build the GC_TRANSITION_END node if necessary.
788 //
789 // See the comment above regarding GC_TRANSITION_START for the layout of
790 // the operands to the GC_TRANSITION_END node.
791 if (IsGCTransition) {
792 SmallVector<SDValue, 8> TEOps;
793
794 // Add chain
795 TEOps.push_back(SDValue(StatepointMCNode, 0));
796
797 // Add GC transition arguments
798 for (const Value *V : SI.GCTransitionArgs) {
799 TEOps.push_back(getValue(V));
800 if (V->getType()->isPointerTy())
801 TEOps.push_back(DAG.getSrcValue(V));
802 }
803
804 // Add glue
805 TEOps.push_back(SDValue(StatepointMCNode, 1));
806
807 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
808
809 SDValue GCTransitionStart =
810 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
811
812 SinkNode = GCTransitionStart.getNode();
813 }
814
815 // Replace original call
816 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
817 // Remove original call node
818 DAG.DeleteNode(CallNode);
819
820 // DON'T set the root - under the assumption that it's already set past the
821 // inserted node we created.
822
823 // TODO: A better future implementation would be to emit a single variable
824 // argument, variable return value STATEPOINT node here and then hookup the
825 // return value of each gc.relocate to the respective output of the
826 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
827 // to actually be possible today.
828
829 return ReturnVal;
830 }
831
832 void
LowerStatepoint(ImmutableStatepoint ISP,const BasicBlock * EHPadBB)833 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
834 const BasicBlock *EHPadBB /*= nullptr*/) {
835 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
836 "anyregcc is not supported on statepoints!");
837
838 #ifndef NDEBUG
839 // If this is a malformed statepoint, report it early to simplify debugging.
840 // This should catch any IR level mistake that's made when constructing or
841 // transforming statepoints.
842 ISP.verify();
843
844 // Check that the associated GCStrategy expects to encounter statepoints.
845 assert(GFI->getStrategy().useStatepoints() &&
846 "GCStrategy does not expect to encounter statepoints");
847 #endif
848
849 SDValue ActualCallee;
850
851 if (ISP.getNumPatchBytes() > 0) {
852 // If we've been asked to emit a nop sequence instead of a call instruction
853 // for this statepoint then don't lower the call target, but use a constant
854 // `null` instead. Not lowering the call target lets statepoint clients get
855 // away without providing a physical address for the symbolic call target at
856 // link time.
857
858 const auto &TLI = DAG.getTargetLoweringInfo();
859 const auto &DL = DAG.getDataLayout();
860
861 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
862 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
863 } else {
864 ActualCallee = getValue(ISP.getCalledValue());
865 }
866
867 StatepointLoweringInfo SI(DAG);
868 populateCallLoweringInfo(SI.CLI, ISP.getCall(),
869 ImmutableStatepoint::CallArgsBeginPos,
870 ISP.getNumCallArgs(), ActualCallee,
871 ISP.getActualReturnType(), false /* IsPatchPoint */);
872
873 for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
874 SI.GCRelocates.push_back(Relocate);
875 SI.Bases.push_back(Relocate->getBasePtr());
876 SI.Ptrs.push_back(Relocate->getDerivedPtr());
877 }
878
879 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
880 SI.StatepointInstr = ISP.getInstruction();
881 SI.GCTransitionArgs =
882 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
883 SI.ID = ISP.getID();
884 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
885 SI.StatepointFlags = ISP.getFlags();
886 SI.NumPatchBytes = ISP.getNumPatchBytes();
887 SI.EHPadBB = EHPadBB;
888
889 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
890
891 // Export the result value if needed
892 const GCResultInst *GCResult = ISP.getGCResult();
893 Type *RetTy = ISP.getActualReturnType();
894 if (!RetTy->isVoidTy() && GCResult) {
895 if (GCResult->getParent() != ISP.getCall()->getParent()) {
896 // Result value will be used in a different basic block so we need to
897 // export it now. Default exporting mechanism will not work here because
898 // statepoint call has a different type than the actual call. It means
899 // that by default llvm will create export register of the wrong type
900 // (always i32 in our case). So instead we need to create export register
901 // with correct type manually.
902 // TODO: To eliminate this problem we can remove gc.result intrinsics
903 // completely and make statepoint call to return a tuple.
904 unsigned Reg = FuncInfo.CreateRegs(RetTy);
905 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
906 DAG.getDataLayout(), Reg, RetTy,
907 ISP.getCall()->getCallingConv());
908 SDValue Chain = DAG.getEntryNode();
909
910 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
911 PendingExports.push_back(Chain);
912 FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
913 } else {
914 // Result value will be used in a same basic block. Don't export it or
915 // perform any explicit register copies.
916 // We'll replace the actuall call node shortly. gc_result will grab
917 // this value.
918 setValue(ISP.getInstruction(), ReturnValue);
919 }
920 } else {
921 // The token value is never used from here on, just generate a poison value
922 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
923 }
924 }
925
LowerCallSiteWithDeoptBundleImpl(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)926 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
927 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
928 bool VarArgDisallowed, bool ForceVoidReturnTy) {
929 StatepointLoweringInfo SI(DAG);
930 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
931 populateCallLoweringInfo(
932 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
933 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
934 false);
935 if (!VarArgDisallowed)
936 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
937
938 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
939
940 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
941
942 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
943 SI.ID = SD.StatepointID.getValueOr(DefaultID);
944 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
945
946 SI.DeoptState =
947 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
948 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
949 SI.EHPadBB = EHPadBB;
950
951 // NB! The GC arguments are deliberately left empty.
952
953 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
954 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
955 setValue(Call, ReturnVal);
956 }
957 }
958
LowerCallSiteWithDeoptBundle(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB)959 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
960 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
961 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
962 /* VarArgDisallowed = */ false,
963 /* ForceVoidReturnTy = */ false);
964 }
965
visitGCResult(const GCResultInst & CI)966 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
967 // The result value of the gc_result is simply the result of the actual
968 // call. We've already emitted this, so just grab the value.
969 const Instruction *I = CI.getStatepoint();
970
971 if (I->getParent() != CI.getParent()) {
972 // Statepoint is in different basic block so we should have stored call
973 // result in a virtual register.
974 // We can not use default getValue() functionality to copy value from this
975 // register because statepoint and actual call return types can be
976 // different, and getValue() will use CopyFromReg of the wrong type,
977 // which is always i32 in our case.
978 PointerType *CalleeType = cast<PointerType>(
979 ImmutableStatepoint(I).getCalledValue()->getType());
980 Type *RetTy =
981 cast<FunctionType>(CalleeType->getElementType())->getReturnType();
982 SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
983
984 assert(CopyFromReg.getNode());
985 setValue(&CI, CopyFromReg);
986 } else {
987 setValue(&CI, getValue(I));
988 }
989 }
990
visitGCRelocate(const GCRelocateInst & Relocate)991 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
992 #ifndef NDEBUG
993 // Consistency check
994 // We skip this check for relocates not in the same basic block as their
995 // statepoint. It would be too expensive to preserve validation info through
996 // different basic blocks.
997 if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
998 StatepointLowering.relocCallVisited(Relocate);
999
1000 auto *Ty = Relocate.getType()->getScalarType();
1001 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1002 assert(*IsManaged && "Non gc managed pointer relocated!");
1003 #endif
1004
1005 const Value *DerivedPtr = Relocate.getDerivedPtr();
1006 SDValue SD = getValue(DerivedPtr);
1007
1008 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
1009 auto SlotIt = SpillMap.find(DerivedPtr);
1010 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
1011 Optional<int> DerivedPtrLocation = SlotIt->second;
1012
1013 // We didn't need to spill these special cases (constants and allocas).
1014 // See the handling in spillIncomingValueForStatepoint for detail.
1015 if (!DerivedPtrLocation) {
1016 setValue(&Relocate, SD);
1017 return;
1018 }
1019
1020 unsigned Index = *DerivedPtrLocation;
1021 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1022
1023 // Note: We know all of these reloads are independent, but don't bother to
1024 // exploit that chain wise. DAGCombine will happily do so as needed, so
1025 // doing it here would be a small compile time win at most.
1026 SDValue Chain = getRoot();
1027
1028 auto &MF = DAG.getMachineFunction();
1029 auto &MFI = MF.getFrameInfo();
1030 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1031 auto *LoadMMO =
1032 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1033 MFI.getObjectSize(Index),
1034 MFI.getObjectAlignment(Index));
1035
1036 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1037 Relocate.getType());
1038
1039 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1040 SpillSlot, LoadMMO);
1041
1042 DAG.setRoot(SpillLoad.getValue(1));
1043
1044 assert(SpillLoad.getNode());
1045 setValue(&Relocate, SpillLoad);
1046 }
1047
LowerDeoptimizeCall(const CallInst * CI)1048 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1049 const auto &TLI = DAG.getTargetLoweringInfo();
1050 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1051 TLI.getPointerTy(DAG.getDataLayout()));
1052
1053 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1054 // call. We also do not lower the return value to any virtual register, and
1055 // change the immediately following return to a trap instruction.
1056 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1057 /* VarArgDisallowed = */ true,
1058 /* ForceVoidReturnTy = */ true);
1059 }
1060
LowerDeoptimizingReturn()1061 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1062 // We do not lower the return value from llvm.deoptimize to any virtual
1063 // register, and change the immediately following return to a trap
1064 // instruction.
1065 if (DAG.getTarget().Options.TrapUnreachable)
1066 DAG.setRoot(
1067 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1068 }
1069