• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "core.h"
52 #include "card.h"
53 #include "host.h"
54 #include "bus.h"
55 #include "mmc_ops.h"
56 #include "quirks.h"
57 #include "sd_ops.h"
58 #include "block.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 #define MMC_LOCK_STATE_RESULT_ONE 1
66 #define MMC_LOCK_STATE_RESULT_TWO 2
67 #define MMC_MMC_BLK_HEADERS 4
68 #define MMC_MMC_BLK_SECTORS 16
69 #define MMC_CARD_BUSY_DETECT_RETRY_COUNT 5
70 #define MMC_MS_TO_NS_MUL 1000000
71 #define MMC_WRITE_FLAG_BIT 31
72 #define MMC_CARD_RCA_SHIFT 16
73 #define MMC_WRITE_BLK_SIZE 4
74 #define MMC_CLK_DIV 1000
75 #define MMC_CLK_DIV_FACTOR 2
76 #define MMC_MIN_CLK 100
77 #define MMC_REQUEST_BLK_SIZE 512
78 #define MMC_REQUEST_SHIFT_VALUE 9
79 #define MMC_ONE_BYTE_SHIFT_VALUE 8
80 #define MMC_TWO_BYTES_SHIFT_VALUE 16
81 #define MMC_THREE_BYTES_SHIFT_VALUE 24
82 #define MMC_BLK_REQUEST_ARG_SHIFT_VALUE 9
83 #define MMC_BLK_REL_WR_SHIFT_VALUE 31
84 #define MMC_BLK_DATA_TAG_SHIFT_VALUE 29
85 #define MMC_SINGLE_SECTOR_SIZE 512
86 #define MMC_S_IRUSR 0400
87 #define MMC_AUTO_SUSPEND_DELAY_COUNT 3000
88 
89 /*
90  * Set a 10 second timeout for polling write request busy state. Note, mmc core
91  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
92  * second software timer to timeout the whole request, so 10 seconds should be
93  * ample.
94  */
95 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
96 #define MMC_EXTRACT_INDEX_FROM_ARG(x) (((x)&0x00FF0000) >> 16)
97 #define MMC_EXTRACT_VALUE_FROM_ARG(x) (((x)&0x0000FF00) >> 8)
98 
99 #define mmc_req_rel_wr(req) (((req)->cmd_flags & REQ_FUA) && (rq_data_dir(req) == WRITE))
100 static DEFINE_MUTEX(block_mutex);
101 
102 /*
103  * The defaults come from config options but can be overriden by module
104  * or bootarg options.
105  */
106 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
107 
108 /*
109  * We've only got one major, so number of mmcblk devices is
110  * limited to (1 << 20) / number of minors per device.  It is also
111  * limited by the MAX_DEVICES below.
112  */
113 static int max_devices;
114 
115 #define MAX_DEVICES 256
116 
117 static DEFINE_IDA(mmc_blk_ida);
118 static DEFINE_IDA(mmc_rpmb_ida);
119 
120 /*
121  * There is one mmc_blk_data per slot.
122  */
123 struct mmc_blk_data {
124     struct device *parent;
125     struct gendisk *disk;
126     struct mmc_queue queue;
127     struct list_head part;
128     struct list_head rpmbs;
129 
130     unsigned int flags;
131 #define MMC_BLK_CMD23 (1 << 0)  /* Can do SET_BLOCK_COUNT for multiblock */
132 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
133 
134     unsigned int usage;
135     unsigned int read_only;
136     unsigned int part_type;
137     unsigned int reset_done;
138 #define MMC_BLK_READ BIT(0)
139 #define MMC_BLK_WRITE BIT(1)
140 #define MMC_BLK_DISCARD BIT(2)
141 #define MMC_BLK_SECDISCARD BIT(3)
142 #define MMC_BLK_CQE_RECOVERY BIT(4)
143 
144     /*
145      * Only set in main mmc_blk_data associated
146      * with mmc_card with dev_set_drvdata, and keeps
147      * track of the current selected device partition.
148      */
149     unsigned int part_curr;
150     struct device_attribute force_ro;
151     struct device_attribute power_ro_lock;
152     int area_type;
153 
154     /* debugfs files (only in main mmc_blk_data) */
155     struct dentry *status_dentry;
156     struct dentry *ext_csd_dentry;
157 };
158 
159 /* Device type for RPMB character devices */
160 static dev_t mmc_rpmb_devt;
161 
162 /* Bus type for RPMB character devices */
163 static struct bus_type mmc_rpmb_bus_type = {
164     .name = "mmc_rpmb",
165 };
166 
167 /**
168  * struct mmc_rpmb_data - special RPMB device type for these areas
169  * @dev: the device for the RPMB area
170  * @chrdev: character device for the RPMB area
171  * @id: unique device ID number
172  * @part_index: partition index (0 on first)
173  * @md: parent MMC block device
174  * @node: list item, so we can put this device on a list
175  */
176 struct mmc_rpmb_data {
177     struct device dev;
178     struct cdev chrdev;
179     int id;
180     unsigned int part_index;
181     struct mmc_blk_data *md;
182     struct list_head node;
183 };
184 
185 static DEFINE_MUTEX(open_lock);
186 
187 module_param(perdev_minors, int, 0444);
188 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
189 
190 static inline int mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type);
191 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int recovery_mode,
192                                struct mmc_queue *mq);
193 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
194 
mmc_blk_get(struct gendisk * disk)195 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
196 {
197     struct mmc_blk_data *md;
198 
199     mutex_lock(&open_lock);
200     md = disk->private_data;
201     if (md && md->usage == 0) {
202         md = NULL;
203     }
204     if (md) {
205         md->usage++;
206     }
207     mutex_unlock(&open_lock);
208 
209     return md;
210 }
211 
mmc_get_devidx(struct gendisk * disk)212 static inline int mmc_get_devidx(struct gendisk *disk)
213 {
214     int devidx = disk->first_minor / perdev_minors;
215     return devidx;
216 }
217 
mmc_blk_put(struct mmc_blk_data * md)218 static void mmc_blk_put(struct mmc_blk_data *md)
219 {
220     mutex_lock(&open_lock);
221     md->usage--;
222     if (md->usage == 0) {
223         int devidx = mmc_get_devidx(md->disk);
224         blk_put_queue(md->queue.queue);
225         ida_simple_remove(&mmc_blk_ida, devidx);
226         put_disk(md->disk);
227         kfree(md);
228     }
229     mutex_unlock(&open_lock);
230 }
231 
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)232 static ssize_t power_ro_lock_show(struct device *dev, struct device_attribute *attr, char *buf)
233 {
234     int ret;
235     struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
236     struct mmc_card *card = md->queue.card;
237     int locked = 0;
238 
239     if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) {
240         locked = MMC_LOCK_STATE_RESULT_TWO;
241     } else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) {
242         locked = MMC_LOCK_STATE_RESULT_ONE;
243     }
244 
245     ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
246 
247     mmc_blk_put(md);
248 
249     return ret;
250 }
251 
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)252 static ssize_t power_ro_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
253 {
254     int ret;
255     struct mmc_blk_data *md, *part_md;
256     struct mmc_queue *mq;
257     struct request *req;
258     unsigned long set;
259 
260     if (kstrtoul(buf, 0, &set)) {
261         return -EINVAL;
262     }
263 
264     if (set != 1) {
265         return count;
266     }
267 
268     md = mmc_blk_get(dev_to_disk(dev));
269     mq = &md->queue;
270 
271     /* Dispatch locking to the block layer */
272     req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
273     if (IS_ERR(req)) {
274         count = PTR_ERR(req);
275         goto out_put;
276     }
277     req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
278     blk_execute_rq(mq->queue, NULL, req, 0);
279     ret = req_to_mmc_queue_req(req)->drv_op_result;
280     blk_put_request(req);
281 
282     if (!ret) {
283         pr_info("%s: Locking boot partition ro until next power on\n", md->disk->disk_name);
284         set_disk_ro(md->disk, 1);
285 
286         list_for_each_entry(part_md, &md->part, part) {
287             if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
288                 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
289                 set_disk_ro(part_md->disk, 1);
290             }
291         }
292     }
293 out_put:
294     mmc_blk_put(md);
295     return count;
296 }
297 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)298 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, char *buf)
299 {
300     int ret;
301     struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
302 
303     ret = snprintf(buf, PAGE_SIZE, "%d\n", get_disk_ro(dev_to_disk(dev)) ^ md->read_only);
304     mmc_blk_put(md);
305     return ret;
306 }
307 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)308 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
309 {
310     int ret;
311     char *end;
312     struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
313     unsigned long set = simple_strtoul(buf, &end, 0);
314     if (end == buf) {
315         ret = -EINVAL;
316         goto out;
317     }
318 
319     set_disk_ro(dev_to_disk(dev), set || md->read_only);
320     ret = count;
321 out:
322     mmc_blk_put(md);
323     return ret;
324 }
325 
mmc_blk_open(struct block_device * bdev,fmode_t mode)326 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
327 {
328     struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
329     int ret = -ENXIO;
330 
331     mutex_lock(&block_mutex);
332     if (md) {
333         ret = 0;
334         if ((mode & FMODE_WRITE) && md->read_only) {
335             mmc_blk_put(md);
336             ret = -EROFS;
337         }
338     }
339     mutex_unlock(&block_mutex);
340 
341     return ret;
342 }
343 
mmc_blk_release(struct gendisk * disk,fmode_t mode)344 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
345 {
346     struct mmc_blk_data *md = disk->private_data;
347 
348     mutex_lock(&block_mutex);
349     mmc_blk_put(md);
350     mutex_unlock(&block_mutex);
351 }
352 
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)353 static int mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
354 {
355     geo->cylinders = get_capacity(bdev->bd_disk) / (MMC_MMC_BLK_HEADERS * MMC_MMC_BLK_SECTORS);
356     geo->heads = MMC_MMC_BLK_HEADERS;
357     geo->sectors = MMC_MMC_BLK_SECTORS;
358     return 0;
359 }
360 
361 struct mmc_blk_ioc_data {
362     struct mmc_ioc_cmd ic;
363     unsigned char *buf;
364     u64 buf_bytes;
365     struct mmc_rpmb_data *rpmb;
366 };
367 
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)368 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user *user)
369 {
370     struct mmc_blk_ioc_data *idata;
371     int err;
372 
373     idata = kmalloc(sizeof(*idata), GFP_KERNEL);
374     if (!idata) {
375         err = -ENOMEM;
376         goto out;
377     }
378 
379     if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
380         err = -EFAULT;
381         goto idata_err;
382     }
383 
384     idata->buf_bytes = (u64)idata->ic.blksz * idata->ic.blocks;
385     if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
386         err = -EOVERFLOW;
387         goto idata_err;
388     }
389 
390     if (!idata->buf_bytes) {
391         idata->buf = NULL;
392         return idata;
393     }
394 
395     idata->buf = memdup_user((void __user *)(unsigned long)idata->ic.data_ptr, idata->buf_bytes);
396     if (IS_ERR(idata->buf)) {
397         err = PTR_ERR(idata->buf);
398         goto idata_err;
399     }
400 
401     return idata;
402 
403 idata_err:
404     kfree(idata);
405 out:
406     return ERR_PTR(err);
407 }
408 
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)409 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, struct mmc_blk_ioc_data *idata)
410 {
411     struct mmc_ioc_cmd *ic = &idata->ic;
412 
413     if (copy_to_user(&(ic_ptr->response), ic->response, sizeof(ic->response))) {
414         return -EFAULT;
415     }
416 
417     if (!idata->ic.write_flag) {
418         if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, idata->buf, idata->buf_bytes)) {
419             return -EFAULT;
420         }
421     }
422 
423     return 0;
424 }
425 
card_busy_detect(struct mmc_card * card,unsigned int timeout_ms,u32 * resp_errs)426 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, u32 *resp_errs)
427 {
428     unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
429     int err = 0;
430     u32 status;
431 
432     do {
433         bool done = time_after(jiffies, timeout);
434 
435         err = __mmc_send_status(card, &status, MMC_CARD_BUSY_DETECT_RETRY_COUNT);
436         if (err) {
437             dev_err(mmc_dev(card->host), "error %d requesting status\n", err);
438             return err;
439         }
440 
441         /* Accumulate any response error bits seen */
442         if (resp_errs) {
443             *resp_errs |= status;
444         }
445 
446         /*
447          * Timeout if the device never becomes ready for data and never
448          * leaves the program state.
449          */
450         if (done) {
451             dev_err(mmc_dev(card->host), "Card stuck in wrong state! %s status: %#x\n", __func__, status);
452             return -ETIMEDOUT;
453         }
454     } while (!mmc_ready_for_data(status));
455 
456     return err;
457 }
458 
mmc_blk_ioctl_cmd_ext(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)459 static int mmc_blk_ioctl_cmd_ext(struct mmc_card *card, struct mmc_blk_data *md, struct mmc_blk_ioc_data *idata)
460 {
461     struct mmc_command cmd = {}, sbc = {};
462     struct mmc_data data = {};
463     struct mmc_request mrq = {};
464     struct scatterlist sg;
465     int err;
466     unsigned int target_part;
467 
468     if (!card || !md || !idata) {
469         return -EINVAL;
470     }
471 
472     /*
473      * The RPMB accesses comes in from the character device, so we
474      * need to target these explicitly. Else we just target the
475      * partition type for the block device the ioctl() was issued
476      * on.
477      */
478     if (idata->rpmb) {
479         /* Support multiple RPMB partitions */
480         target_part = idata->rpmb->part_index;
481         target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
482     } else {
483         target_part = md->part_type;
484     }
485 
486     cmd.opcode = idata->ic.opcode;
487     cmd.arg = idata->ic.arg;
488     cmd.flags = idata->ic.flags;
489 
490     if (idata->buf_bytes) {
491         data.sg = &sg;
492         data.sg_len = 1;
493         data.blksz = idata->ic.blksz;
494         data.blocks = idata->ic.blocks;
495 
496         sg_init_one(data.sg, idata->buf, idata->buf_bytes);
497 
498         if (idata->ic.write_flag) {
499             data.flags = MMC_DATA_WRITE;
500         } else {
501             data.flags = MMC_DATA_READ;
502         }
503 
504         /* data.flags must already be set before doing this. */
505         mmc_set_data_timeout(&data, card);
506 
507         /* Allow overriding the timeout_ns for empirical tuning. */
508         if (idata->ic.data_timeout_ns) {
509             data.timeout_ns = idata->ic.data_timeout_ns;
510         }
511 
512         if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
513             /*
514              * Pretend this is a data transfer and rely on the
515              * host driver to compute timeout.  When all host
516              * drivers support cmd.cmd_timeout for R1B, this
517              * can be changed to:
518              *
519              *     mrq.data = NULL;
520              *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
521              */
522             data.timeout_ns = idata->ic.cmd_timeout_ms * MMC_MS_TO_NS_MUL;
523         }
524 
525         mrq.data = &data;
526     }
527 
528     mrq.cmd = &cmd;
529 
530     err = mmc_blk_part_switch(card, target_part);
531     if (err) {
532         return err;
533     }
534 
535     if (idata->ic.is_acmd) {
536         err = mmc_app_cmd(card->host, card);
537         if (err) {
538             return err;
539         }
540     }
541 
542     if (idata->rpmb) {
543         sbc.opcode = MMC_SET_BLOCK_COUNT;
544         /*
545          * We don't do any blockcount validation because the max size
546          * may be increased by a future standard. We just copy the
547          * 'Reliable Write' bit here.
548          */
549         sbc.arg = data.blocks | (idata->ic.write_flag & BIT(MMC_WRITE_FLAG_BIT));
550         sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
551         mrq.sbc = &sbc;
552     }
553 
554     if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && (cmd.opcode == MMC_SWITCH)) {
555         return mmc_sanitize(card);
556     }
557 
558     mmc_wait_for_req(card->host, &mrq);
559     memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
560 
561     if (cmd.error) {
562         dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error);
563         return cmd.error;
564     }
565     if (data.error) {
566         dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error);
567         return data.error;
568     }
569 
570     /*
571      * Make sure the cache of the PARTITION_CONFIG register and
572      * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
573      * changed it successfully.
574      */
575     if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && (cmd.opcode == MMC_SWITCH)) {
576         struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
577         u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
578 
579         /*
580          * Update cache so the next mmc_blk_part_switch call operates
581          * on up-to-date data.
582          */
583         card->ext_csd.part_config = value;
584         main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
585     }
586 
587     /*
588      * Make sure to update CACHE_CTRL in case it was changed. The cache
589      * will get turned back on if the card is re-initialized, e.g.
590      * suspend/resume or hw reset in recovery.
591      */
592     if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && (cmd.opcode == MMC_SWITCH)) {
593         u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
594 
595         card->ext_csd.cache_ctrl = value;
596     }
597 
598     /*
599      * According to the SD specs, some commands require a delay after
600      * issuing the command.
601      */
602     if (idata->ic.postsleep_min_us) {
603         usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
604     }
605 
606     if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
607         /*
608          * Ensure RPMB/R1B command has completed by polling CMD13
609          * "Send Status".
610          */
611         err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
612     }
613 
614     return err;
615 }
616 
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)617 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, struct mmc_ioc_cmd __user *ic_ptr, struct mmc_rpmb_data *rpmb)
618 {
619     struct mmc_blk_ioc_data *idata;
620     struct mmc_blk_ioc_data *idatas[1];
621     struct mmc_queue *mq;
622     struct mmc_card *card;
623     int err = 0, ioc_err = 0;
624     struct request *req;
625 
626     idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
627     if (IS_ERR(idata)) {
628         return PTR_ERR(idata);
629     }
630     /* This will be NULL on non-RPMB ioctl():s */
631     idata->rpmb = rpmb;
632 
633     card = md->queue.card;
634     if (IS_ERR(card)) {
635         err = PTR_ERR(card);
636         goto cmd_done;
637     }
638 
639     /*
640      * Dispatch the ioctl() into the block request queue.
641      */
642     mq = &md->queue;
643     req = blk_get_request(mq->queue, idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
644     if (IS_ERR(req)) {
645         err = PTR_ERR(req);
646         goto cmd_done;
647     }
648     idatas[0] = idata;
649     req_to_mmc_queue_req(req)->drv_op = rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
650     req_to_mmc_queue_req(req)->drv_op_data = idatas;
651     req_to_mmc_queue_req(req)->ioc_count = 1;
652     blk_execute_rq(mq->queue, NULL, req, 0);
653     ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
654     err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
655     blk_put_request(req);
656 
657 cmd_done:
658     kfree(idata->buf);
659     kfree(idata);
660     return ioc_err ? ioc_err : err;
661 }
662 
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)663 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, struct mmc_ioc_multi_cmd __user *user,
664                                    struct mmc_rpmb_data *rpmb)
665 {
666     struct mmc_blk_ioc_data **idata = NULL;
667     struct mmc_ioc_cmd __user *cmds = user->cmds;
668     struct mmc_card *card;
669     struct mmc_queue *mq;
670     int i, err = 0, ioc_err = 0;
671     __u64 num_of_cmds;
672     struct request *req;
673 
674     if (copy_from_user(&num_of_cmds, &user->num_of_cmds, sizeof(num_of_cmds))) {
675         return -EFAULT;
676     }
677 
678     if (!num_of_cmds) {
679         return 0;
680     }
681 
682     if (num_of_cmds > MMC_IOC_MAX_CMDS) {
683         return -EINVAL;
684     }
685 
686     idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
687     if (!idata) {
688         return -ENOMEM;
689     }
690 
691     for (i = 0; i < num_of_cmds; i++) {
692         idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
693         if (IS_ERR(idata[i])) {
694             err = PTR_ERR(idata[i]);
695             num_of_cmds = i;
696             goto cmd_err;
697         }
698         /* This will be NULL on non-RPMB ioctl():s */
699         idata[i]->rpmb = rpmb;
700     }
701 
702     card = md->queue.card;
703     if (IS_ERR(card)) {
704         err = PTR_ERR(card);
705         goto cmd_err;
706     }
707 
708     /*
709      * Dispatch the ioctl()s into the block request queue.
710      */
711     mq = &md->queue;
712     req = blk_get_request(mq->queue, idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
713     if (IS_ERR(req)) {
714         err = PTR_ERR(req);
715         goto cmd_err;
716     }
717     req_to_mmc_queue_req(req)->drv_op = rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
718     req_to_mmc_queue_req(req)->drv_op_data = idata;
719     req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
720     blk_execute_rq(mq->queue, NULL, req, 0);
721     ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
722 
723     /* copy to user if data and response */
724     for (i = 0; i < num_of_cmds && !err; i++) {
725         err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
726     }
727 
728     blk_put_request(req);
729 
730 cmd_err:
731     for (i = 0; i < num_of_cmds; i++) {
732         kfree(idata[i]->buf);
733         kfree(idata[i]);
734     }
735     kfree(idata);
736     return ioc_err ? ioc_err : err;
737 }
738 
mmc_blk_check_blkdev(struct block_device * bdev)739 static int mmc_blk_check_blkdev(struct block_device *bdev)
740 {
741     /*
742      * The caller must have CAP_SYS_RAWIO, and must be calling this on the
743      * whole block device, not on a partition.  This prevents overspray
744      * between sibling partitions.
745      */
746     if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) {
747         return -EPERM;
748     }
749     return 0;
750 }
751 
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)752 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
753 {
754     struct mmc_blk_data *md;
755     int ret;
756 
757     switch (cmd) {
758         case MMC_IOC_CMD:
759             ret = mmc_blk_check_blkdev(bdev);
760             if (ret) {
761                 return ret;
762             }
763             md = mmc_blk_get(bdev->bd_disk);
764             if (!md) {
765                 return -EINVAL;
766             }
767             ret = mmc_blk_ioctl_cmd(md, (struct mmc_ioc_cmd __user *)arg, NULL);
768             mmc_blk_put(md);
769             return ret;
770         case MMC_IOC_MULTI_CMD:
771             ret = mmc_blk_check_blkdev(bdev);
772             if (ret) {
773                 return ret;
774             }
775             md = mmc_blk_get(bdev->bd_disk);
776             if (!md) {
777                 return -EINVAL;
778             }
779             ret = mmc_blk_ioctl_multi_cmd(md, (struct mmc_ioc_multi_cmd __user *)arg, NULL);
780             mmc_blk_put(md);
781             return ret;
782         default:
783             return -EINVAL;
784     }
785 }
786 
787 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)788 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
789 {
790     return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long)compat_ptr(arg));
791 }
792 #endif
793 
794 static const struct block_device_operations mmc_bdops = {
795     .open = mmc_blk_open,
796     .release = mmc_blk_release,
797     .getgeo = mmc_blk_getgeo,
798     .owner = THIS_MODULE,
799     .ioctl = mmc_blk_ioctl,
800 #ifdef CONFIG_COMPAT
801     .compat_ioctl = mmc_blk_compat_ioctl,
802 #endif
803 };
804 
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)805 static int mmc_blk_part_switch_pre(struct mmc_card *card, unsigned int part_type)
806 {
807     int ret = 0;
808 
809     if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
810         if (card->ext_csd.cmdq_en) {
811             ret = mmc_cmdq_disable(card);
812             if (ret) {
813                 return ret;
814             }
815         }
816         mmc_retune_pause(card->host);
817     }
818 
819     return ret;
820 }
821 
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)822 static int mmc_blk_part_switch_post(struct mmc_card *card, unsigned int part_type)
823 {
824     int ret = 0;
825 
826     if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
827         mmc_retune_unpause(card->host);
828         if (card->reenable_cmdq && !card->ext_csd.cmdq_en) {
829             ret = mmc_cmdq_enable(card);
830         }
831     }
832 
833     return ret;
834 }
835 
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)836 static inline int mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type)
837 {
838     int ret = 0;
839     struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
840 
841     if (main_md->part_curr == part_type) {
842         return 0;
843     }
844 
845     if (mmc_card_mmc(card)) {
846         u8 part_config = card->ext_csd.part_config;
847 
848         ret = mmc_blk_part_switch_pre(card, part_type);
849         if (ret) {
850             return ret;
851         }
852 
853         part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
854         part_config |= part_type;
855 
856         ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time);
857         if (ret) {
858             mmc_blk_part_switch_post(card, part_type);
859             return ret;
860         }
861 
862         card->ext_csd.part_config = part_config;
863 
864         ret = mmc_blk_part_switch_post(card, main_md->part_curr);
865     }
866 
867     main_md->part_curr = part_type;
868     return ret;
869 }
870 
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)871 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
872 {
873     int err;
874     u32 result;
875     __be32 *blocks;
876 
877     struct mmc_request mrq = {};
878     struct mmc_command cmd = {};
879     struct mmc_data data = {};
880 
881     struct scatterlist sg;
882 
883     cmd.opcode = MMC_APP_CMD;
884     cmd.arg = card->rca << MMC_CARD_RCA_SHIFT;
885     cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
886 
887     err = mmc_wait_for_cmd(card->host, &cmd, 0);
888     if (err) {
889         return err;
890     }
891     if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) {
892         return -EIO;
893     }
894 
895     memset(&cmd, 0, sizeof(struct mmc_command));
896 
897     cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
898     cmd.arg = 0;
899     cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
900 
901     data.blksz = MMC_WRITE_BLK_SIZE;
902     data.blocks = 1;
903     data.flags = MMC_DATA_READ;
904     data.sg = &sg;
905     data.sg_len = 1;
906     mmc_set_data_timeout(&data, card);
907 
908     mrq.cmd = &cmd;
909     mrq.data = &data;
910 
911     blocks = kmalloc(MMC_WRITE_BLK_SIZE, GFP_KERNEL);
912     if (!blocks) {
913         return -ENOMEM;
914     }
915 
916     sg_init_one(&sg, blocks, MMC_WRITE_BLK_SIZE);
917 
918     mmc_wait_for_req(card->host, &mrq);
919 
920     result = ntohl(*blocks);
921     kfree(blocks);
922 
923     if (cmd.error || data.error) {
924         return -EIO;
925     }
926 
927     *written_blocks = result;
928 
929     return 0;
930 }
931 
mmc_blk_clock_khz(struct mmc_host * host)932 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
933 {
934     if (host->actual_clock) {
935         return host->actual_clock / MMC_CLK_DIV;
936     }
937 
938     /* Clock may be subject to a divisor, fudge it by a factor of 2. */
939     if (host->ios.clock) {
940         return host->ios.clock / (MMC_CLK_DIV * MMC_CLK_DIV_FACTOR);
941     }
942 
943     /* How can there be no clock */
944     WARN_ON_ONCE(1);
945     return MMC_MIN_CLK; /* 100 kHz is minimum possible value */
946 }
947 
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)948 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, struct mmc_data *data)
949 {
950     unsigned int ms = DIV_ROUND_UP(data->timeout_ns, MMC_MS_TO_NS_MUL);
951     unsigned int khz;
952 
953     if (data->timeout_clks) {
954         khz = mmc_blk_clock_khz(host);
955         ms += DIV_ROUND_UP(data->timeout_clks, khz);
956     }
957 
958     return ms;
959 }
960 
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)961 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, int type)
962 {
963     int err;
964 
965     if (md->reset_done & type) {
966         return -EEXIST;
967     }
968 
969     md->reset_done |= type;
970     err = mmc_hw_reset(host);
971     /* Ensure we switch back to the correct partition */
972     if (err != -EOPNOTSUPP) {
973         struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
974         int part_err;
975 
976         main_md->part_curr = main_md->part_type;
977         part_err = mmc_blk_part_switch(host->card, md->part_type);
978         if (part_err) {
979             /*
980              * We have failed to get back into the correct
981              * partition, so we need to abort the whole request.
982              */
983             return -ENODEV;
984         }
985     }
986     return err;
987 }
988 
mmc_blk_reset_success(struct mmc_blk_data * md,int type)989 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
990 {
991     md->reset_done &= ~type;
992 }
993 
994 /*
995  * The non-block commands come back from the block layer after it queued it and
996  * processed it with all other requests and then they get issued in this
997  * function.
998  */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)999 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1000 {
1001     struct mmc_queue_req *mq_rq;
1002     struct mmc_card *card = mq->card;
1003     struct mmc_blk_data *md = mq->blkdata;
1004     struct mmc_blk_ioc_data **idata;
1005     bool rpmb_ioctl;
1006     u8 **ext_csd;
1007     u32 status;
1008     int ret;
1009     int i;
1010 
1011     mq_rq = req_to_mmc_queue_req(req);
1012     rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1013 
1014     switch (mq_rq->drv_op) {
1015         case MMC_DRV_OP_IOCTL:
1016             if (card->ext_csd.cmdq_en) {
1017                 ret = mmc_cmdq_disable(card);
1018                 if (ret) {
1019                     break;
1020                 }
1021             }
1022             fallthrough;
1023         case MMC_DRV_OP_IOCTL_RPMB:
1024             idata = mq_rq->drv_op_data;
1025             for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1026                 ret = mmc_blk_ioctl_cmd_ext(card, md, idata[i]);
1027                 if (ret) {
1028                     break;
1029                 }
1030             }
1031             /* Always switch back to main area after RPMB access */
1032             if (rpmb_ioctl) {
1033                 mmc_blk_part_switch(card, 0);
1034             } else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) {
1035                 mmc_cmdq_enable(card);
1036             }
1037             break;
1038         case MMC_DRV_OP_BOOT_WP:
1039             ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1040                              card->ext_csd.boot_ro_lock | EXT_CSD_BOOT_WP_B_PWR_WP_EN, card->ext_csd.part_time);
1041             if (ret) {
1042                 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
1043             } else {
1044                 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1045             }
1046             break;
1047         case MMC_DRV_OP_GET_CARD_STATUS:
1048             ret = mmc_send_status(card, &status);
1049             if (!ret) {
1050                 ret = status;
1051             }
1052             break;
1053         case MMC_DRV_OP_GET_EXT_CSD:
1054             ext_csd = mq_rq->drv_op_data;
1055             ret = mmc_get_ext_csd(card, ext_csd);
1056             break;
1057         default:
1058             pr_err("%s: unknown driver specific operation\n", md->disk->disk_name);
1059             ret = -EINVAL;
1060             break;
1061     }
1062     mq_rq->drv_op_result = ret;
1063     blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1064 }
1065 
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1066 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1067 {
1068     struct mmc_blk_data *md = mq->blkdata;
1069     struct mmc_card *card = md->queue.card;
1070     unsigned int from, nr;
1071     int err = 0, type = MMC_BLK_DISCARD;
1072     blk_status_t status = BLK_STS_OK;
1073 
1074     if (!mmc_can_erase(card)) {
1075         status = BLK_STS_NOTSUPP;
1076         goto fail;
1077     }
1078 
1079     from = blk_rq_pos(req);
1080     nr = blk_rq_sectors(req);
1081     do {
1082         err = 0;
1083         if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1084             err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD,
1085                              card->erase_arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE,
1086                              card->ext_csd.generic_cmd6_time);
1087         }
1088         if (!err) {
1089             err = mmc_erase(card, from, nr, card->erase_arg);
1090         }
1091     } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1092     if (err) {
1093         status = BLK_STS_IOERR;
1094     } else {
1095         mmc_blk_reset_success(md, type);
1096     }
1097 fail:
1098     blk_mq_end_request(req, status);
1099 }
1100 
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1101 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req)
1102 {
1103     struct mmc_blk_data *md = mq->blkdata;
1104     struct mmc_card *card = md->queue.card;
1105     unsigned int from, nr, arg;
1106     int err = 0, type = MMC_BLK_SECDISCARD;
1107     blk_status_t status = BLK_STS_OK;
1108 
1109     if (!(mmc_can_secure_erase_trim(card))) {
1110         status = BLK_STS_NOTSUPP;
1111         goto out;
1112     }
1113 
1114     from = blk_rq_pos(req);
1115     nr = blk_rq_sectors(req);
1116     if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) {
1117         arg = MMC_SECURE_TRIM1_ARG;
1118     } else {
1119         arg = MMC_SECURE_ERASE_ARG;
1120     }
1121 
1122     while (1) {
1123         if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1124             err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD,
1125                              arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE,
1126                              card->ext_csd.generic_cmd6_time);
1127             if (err) {
1128                 goto out_retry;
1129             }
1130         }
1131 
1132         err = mmc_erase(card, from, nr, arg);
1133         if (err == -EIO) {
1134             goto out_retry;
1135         }
1136         if (err) {
1137             status = BLK_STS_IOERR;
1138             goto out;
1139         }
1140 
1141         if (arg == MMC_SECURE_TRIM1_ARG) {
1142             if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1143                 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2,
1144                                  card->ext_csd.generic_cmd6_time);
1145                 if (err) {
1146                     goto out_retry;
1147                 }
1148             }
1149 
1150             err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1151             if (err == -EIO) {
1152                 goto out_retry;
1153             }
1154             if (err) {
1155                 status = BLK_STS_IOERR;
1156                 goto out;
1157             }
1158         }
1159 
1160     out_retry:
1161         if (err && !mmc_blk_reset(md, card->host, type)) {
1162             continue;
1163         }
1164         if (!err) {
1165             mmc_blk_reset_success(md, type);
1166         }
1167     out:
1168         blk_mq_end_request(req, status);
1169         break;
1170     }
1171 }
1172 
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1173 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1174 {
1175     struct mmc_blk_data *md = mq->blkdata;
1176     struct mmc_card *card = md->queue.card;
1177     int ret = 0;
1178 
1179     ret = mmc_flush_cache(card);
1180     blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1181 }
1182 
1183 /*
1184  * Reformat current write as a reliable write, supporting
1185  * both legacy and the enhanced reliable write MMC cards.
1186  * In each transfer we'll handle only as much as a single
1187  * reliable write can handle, thus finish the request in
1188  * partial completions.
1189  */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1190 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, struct mmc_card *card, struct request *req)
1191 {
1192     if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1193         /* Legacy mode imposes restrictions on transfers. */
1194         if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) {
1195             brq->data.blocks = 1;
1196         }
1197 
1198         if (brq->data.blocks > card->ext_csd.rel_sectors) {
1199             brq->data.blocks = card->ext_csd.rel_sectors;
1200         } else if (brq->data.blocks < card->ext_csd.rel_sectors) {
1201             brq->data.blocks = 1;
1202         }
1203     }
1204 }
1205 
1206 #define CMD_ERRORS_EXCL_OOR                                                                                            \
1207     (R1_ADDRESS_ERROR |   /* Misaligned address */                                                                     \
1208      R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */                                                     \
1209      R1_WP_VIOLATION |    /* Tried to write to protected block */                                                      \
1210      R1_CARD_ECC_FAILED | /* Card ECC failed */                                                                        \
1211      R1_CC_ERROR |        /* Card controller error */                                                                  \
1212      R1_ERROR)            /* General/unknown error */
1213 
1214 #define CMD_ERRORS (CMD_ERRORS_EXCL_OOR | R1_OUT_OF_RANGE) /* Command argument out of range */
1215 
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1216 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1217 {
1218     u32 val;
1219 
1220     /*
1221      * Per the SD specification(physical layer version 4.10)[1],
1222      * section 4.3.3, it explicitly states that "When the last
1223      * block of user area is read using CMD18, the host should
1224      * ignore OUT_OF_RANGE error that may occur even the sequence
1225      * is correct". And JESD84-B51 for eMMC also has a similar
1226      * statement on section 6.8.3.
1227      *
1228      * Multiple block read/write could be done by either predefined
1229      * method, namely CMD23, or open-ending mode. For open-ending mode,
1230      * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1231      *
1232      * However the spec[1] doesn't tell us whether we should also
1233      * ignore that for predefined method. But per the spec[1], section
1234      * 4.15 Set Block Count Command, it says"If illegal block count
1235      * is set, out of range error will be indicated during read/write
1236      * operation (For example, data transfer is stopped at user area
1237      * boundary)." In another word, we could expect a out of range error
1238      * in the response for the following CMD18/25. And if argument of
1239      * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1240      * we could also expect to get a -ETIMEDOUT or any error number from
1241      * the host drivers due to missing data response(for write)/data(for
1242      * read), as the cards will stop the data transfer by itself per the
1243      * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1244      */
1245 
1246     if (!brq->stop.error) {
1247         bool oor_with_open_end;
1248         /* If there is no error yet, check R1 response */
1249 
1250         val = brq->stop.resp[0] & CMD_ERRORS;
1251         (oor_with_open_end = val & R1_OUT_OF_RANGE) && !brq->mrq.sbc;
1252 
1253         if (val && !oor_with_open_end) {
1254             brq->stop.error = -EIO;
1255         }
1256     }
1257 }
1258 
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1259 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, int recovery_mode, bool *do_rel_wr_p,
1260                               bool *do_data_tag_p)
1261 {
1262     struct mmc_blk_data *md = mq->blkdata;
1263     struct mmc_card *card = md->queue.card;
1264     struct mmc_blk_request *brq = &mqrq->brq;
1265     struct request *req = mmc_queue_req_to_req(mqrq);
1266     bool do_rel_wr, do_data_tag;
1267 
1268     /*
1269      * Reliable writes are used to implement Forced Unit Access and
1270      * are supported only on MMCs.
1271      */
1272     do_rel_wr = (req->cmd_flags & REQ_FUA) && rq_data_dir(req) == WRITE && (md->flags & MMC_BLK_REL_WR);
1273 
1274     memset(brq, 0, sizeof(struct mmc_blk_request));
1275 
1276     brq->mrq.data = &brq->data;
1277     brq->mrq.tag = req->tag;
1278 
1279     brq->stop.opcode = MMC_STOP_TRANSMISSION;
1280     brq->stop.arg = 0;
1281 
1282     if (rq_data_dir(req) == READ) {
1283         brq->data.flags = MMC_DATA_READ;
1284         brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1285     } else {
1286         brq->data.flags = MMC_DATA_WRITE;
1287         brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1288     }
1289 
1290     brq->data.blksz = MMC_REQUEST_BLK_SIZE;
1291     brq->data.blocks = blk_rq_sectors(req);
1292     brq->data.blk_addr = blk_rq_pos(req);
1293 
1294     /*
1295      * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1296      * The eMMC will give "high" priority tasks priority over "simple"
1297      * priority tasks. Here we always set "simple" priority by not setting
1298      * MMC_DATA_PRIO.
1299      */
1300 
1301     /*
1302      * The block layer doesn't support all sector count
1303      * restrictions, so we need to be prepared for too big
1304      * requests.
1305      */
1306     if (brq->data.blocks > card->host->max_blk_count) {
1307         brq->data.blocks = card->host->max_blk_count;
1308     }
1309 
1310     if (brq->data.blocks > 1) {
1311         /*
1312          * Some SD cards in SPI mode return a CRC error or even lock up
1313          * completely when trying to read the last block using a
1314          * multiblock read command.
1315          */
1316         if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1317             (blk_rq_pos(req) + blk_rq_sectors(req) == get_capacity(md->disk))) {
1318             brq->data.blocks--;
1319         }
1320 
1321         /*
1322          * After a read error, we redo the request one sector
1323          * at a time in order to accurately determine which
1324          * sectors can be read successfully.
1325          */
1326         if (recovery_mode) {
1327             brq->data.blocks = queue_physical_block_size(mq->queue) >> MMC_BLK_REQUEST_ARG_SHIFT_VALUE;
1328         }
1329 
1330         /*
1331          * Some controllers have HW issues while operating
1332          * in multiple I/O mode
1333          */
1334         if (card->host->ops->multi_io_quirk) {
1335             brq->data.blocks = card->host->ops->multi_io_quirk(
1336                 card, (rq_data_dir(req) == READ) ? MMC_DATA_READ : MMC_DATA_WRITE, brq->data.blocks);
1337         }
1338     }
1339 
1340     if (do_rel_wr) {
1341         mmc_apply_rel_rw(brq, card, req);
1342         brq->data.flags |= MMC_DATA_REL_WR;
1343     }
1344 
1345     /*
1346      * Data tag is used only during writing meta data to speed
1347      * up write and any subsequent read of this meta data
1348      */
1349     do_data_tag = card->ext_csd.data_tag_unit_size && (req->cmd_flags & REQ_META) && (rq_data_dir(req) == WRITE) &&
1350                   ((brq->data.blocks * brq->data.blksz) >= card->ext_csd.data_tag_unit_size);
1351     if (do_data_tag) {
1352         brq->data.flags |= MMC_DATA_DAT_TAG;
1353     }
1354 
1355     mmc_set_data_timeout(&brq->data, card);
1356 
1357     brq->data.sg = mqrq->sg;
1358     brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1359 
1360     /*
1361      * Adjust the sg list so it is the same size as the
1362      * request.
1363      */
1364     if (brq->data.blocks != blk_rq_sectors(req)) {
1365         int i, data_size = brq->data.blocks << MMC_REQUEST_SHIFT_VALUE;
1366         struct scatterlist *sg;
1367 
1368         for_each_sg(brq->data.sg, sg, brq->data.sg_len, i)
1369         {
1370             data_size -= sg->length;
1371             if (data_size <= 0) {
1372                 sg->length += data_size;
1373                 i++;
1374                 break;
1375             }
1376         }
1377         brq->data.sg_len = i;
1378     }
1379 
1380     if (do_rel_wr_p) {
1381         *do_rel_wr_p = do_rel_wr;
1382     }
1383 
1384     if (do_data_tag_p) {
1385         *do_data_tag_p = do_data_tag;
1386     }
1387 }
1388 
1389 #define MMC_CQE_RETRIES 2
1390 
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1391 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1392 {
1393     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1394     struct mmc_request *mrq = &mqrq->brq.mrq;
1395     struct request_queue *q = req->q;
1396     struct mmc_host *host = mq->card->host;
1397     enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1398     unsigned long flags;
1399     bool put_card;
1400     int err;
1401 
1402     mmc_cqe_post_req(host, mrq);
1403 
1404     if (mrq->cmd && mrq->cmd->error) {
1405         err = mrq->cmd->error;
1406     } else if (mrq->data && mrq->data->error) {
1407         err = mrq->data->error;
1408     } else {
1409         err = 0;
1410     }
1411 
1412     if (err) {
1413         if (mqrq->retries++ < MMC_CQE_RETRIES) {
1414             blk_mq_requeue_request(req, true);
1415         } else {
1416             blk_mq_end_request(req, BLK_STS_IOERR);
1417         }
1418     } else if (mrq->data) {
1419         if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) {
1420             blk_mq_requeue_request(req, true);
1421         } else {
1422             __blk_mq_end_request(req, BLK_STS_OK);
1423         }
1424     } else {
1425         blk_mq_end_request(req, BLK_STS_OK);
1426     }
1427 
1428     spin_lock_irqsave(&mq->lock, flags);
1429 
1430     mq->in_flight[issue_type] -= 1;
1431 
1432     put_card = (mmc_tot_in_flight(mq) == 0);
1433 
1434     mmc_cqe_check_busy(mq);
1435 
1436     spin_unlock_irqrestore(&mq->lock, flags);
1437 
1438     if (!mq->cqe_busy) {
1439         blk_mq_run_hw_queues(q, true);
1440     }
1441 
1442     if (put_card) {
1443         mmc_put_card(mq->card, &mq->ctx);
1444     }
1445 }
1446 
mmc_blk_cqe_recovery(struct mmc_queue * mq)1447 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1448 {
1449     struct mmc_card *card = mq->card;
1450     struct mmc_host *host = card->host;
1451     int err;
1452 
1453     pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1454 
1455     err = mmc_cqe_recovery(host);
1456     if (err) {
1457         mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1458         mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1459     }
1460 
1461     pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1462 }
1463 
mmc_blk_cqe_req_done(struct mmc_request * mrq)1464 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1465 {
1466     struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq);
1467     struct request *req = mmc_queue_req_to_req(mqrq);
1468     struct request_queue *q = req->q;
1469     struct mmc_queue *mq = q->queuedata;
1470 
1471     /*
1472      * Block layer timeouts race with completions which means the normal
1473      * completion path cannot be used during recovery.
1474      */
1475     if (mq->in_recovery) {
1476         mmc_blk_cqe_complete_rq(mq, req);
1477     } else if (likely(!blk_should_fake_timeout(req->q))) {
1478         blk_mq_complete_request(req);
1479     }
1480 }
1481 
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1482 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1483 {
1484     mrq->done = mmc_blk_cqe_req_done;
1485     mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1486 
1487     return mmc_cqe_start_req(host, mrq);
1488 }
1489 
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1490 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, struct request *req)
1491 {
1492     struct mmc_blk_request *brq = &mqrq->brq;
1493 
1494     memset(brq, 0, sizeof(*brq));
1495 
1496     brq->mrq.cmd = &brq->cmd;
1497     brq->mrq.tag = req->tag;
1498 
1499     return &brq->mrq;
1500 }
1501 
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1502 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1503 {
1504     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1505     struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1506 
1507     mrq->cmd->opcode = MMC_SWITCH;
1508     mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << MMC_THREE_BYTES_SHIFT_VALUE) |
1509                     (EXT_CSD_FLUSH_CACHE << MMC_TWO_BYTES_SHIFT_VALUE) | (1 << MMC_ONE_BYTE_SHIFT_VALUE) |
1510                     EXT_CSD_CMD_SET_NORMAL;
1511     mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1512 
1513     return mmc_blk_cqe_start_req(mq->card->host, mrq);
1514 }
1515 
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1516 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1517 {
1518     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1519     struct mmc_host *host = mq->card->host;
1520     int err;
1521 
1522     mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1523     mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1524     mmc_pre_req(host, &mqrq->brq.mrq);
1525 
1526     err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1527     if (err) {
1528         mmc_post_req(host, &mqrq->brq.mrq, err);
1529     }
1530 
1531     return err;
1532 }
1533 
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1534 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1535 {
1536     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1537     struct mmc_host *host = mq->card->host;
1538 
1539     if (host->hsq_enabled) {
1540         return mmc_blk_hsq_issue_rw_rq(mq, req);
1541     }
1542 
1543     mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1544 
1545     return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1546 }
1547 
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1548 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int recovery_mode,
1549                                struct mmc_queue *mq)
1550 {
1551     u32 readcmd, writecmd;
1552     struct mmc_blk_request *brq = &mqrq->brq;
1553     struct request *req = mmc_queue_req_to_req(mqrq);
1554     struct mmc_blk_data *md = mq->blkdata;
1555     bool do_rel_wr, do_data_tag;
1556 
1557     mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1558 
1559     brq->mrq.cmd = &brq->cmd;
1560 
1561     brq->cmd.arg = blk_rq_pos(req);
1562     if (!mmc_card_blockaddr(card)) {
1563         brq->cmd.arg <<= MMC_BLK_REQUEST_ARG_SHIFT_VALUE;
1564     }
1565     brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1566 
1567     if (brq->data.blocks > 1 || do_rel_wr) {
1568         /* SPI multiblock writes terminate using a special
1569          * token, not a STOP_TRANSMISSION request.
1570          */
1571         if (!mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) {
1572             brq->mrq.stop = &brq->stop;
1573         }
1574         readcmd = MMC_READ_MULTIPLE_BLOCK;
1575         writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1576     } else {
1577         brq->mrq.stop = NULL;
1578         readcmd = MMC_READ_SINGLE_BLOCK;
1579         writecmd = MMC_WRITE_BLOCK;
1580     }
1581     brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1582 
1583     /*
1584      * Pre-defined multi-block transfers are preferable to
1585      * open ended-ones (and necessary for reliable writes).
1586      * However, it is not sufficient to just send CMD23,
1587      * and avoid the final CMD12, as on an error condition
1588      * CMD12 (stop) needs to be sent anyway. This, coupled
1589      * with Auto-CMD23 enhancements provided by some
1590      * hosts, means that the complexity of dealing
1591      * with this is best left to the host. If CMD23 is
1592      * supported by card and host, we'll fill sbc in and let
1593      * the host deal with handling it correctly. This means
1594      * that for hosts that don't expose MMC_CAP_CMD23, no
1595      * change of behavior will be observed.
1596      *
1597      * N.B: Some MMC cards experience perf degradation.
1598      * We'll avoid using CMD23-bounded multiblock writes for
1599      * these, while retaining features like reliable writes.
1600      */
1601     if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1602         (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || do_data_tag)) {
1603         brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1604         brq->sbc.arg = brq->data.blocks | (do_rel_wr ? (1 << MMC_BLK_REL_WR_SHIFT_VALUE) : 0) |
1605                        (do_data_tag ? (1 << MMC_BLK_DATA_TAG_SHIFT_VALUE) : 0);
1606         brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1607         brq->mrq.sbc = &brq->sbc;
1608     }
1609 }
1610 
1611 #define MMC_MAX_RETRIES 5
1612 #define MMC_DATA_RETRIES 2
1613 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1614 
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1615 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1616 {
1617     struct mmc_command cmd = {
1618         .opcode = MMC_STOP_TRANSMISSION,
1619         .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1620         /* Some hosts wait for busy anyway, so provide a busy timeout */
1621         .busy_timeout = timeout,
1622     };
1623 
1624     return mmc_wait_for_cmd(card->host, &cmd, MMC_MAX_RETRIES);
1625 }
1626 
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1627 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1628 {
1629     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1630     struct mmc_blk_request *brq = &mqrq->brq;
1631     unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1632     int err;
1633 
1634     mmc_retune_hold_now(card->host);
1635 
1636     mmc_blk_send_stop(card, timeout);
1637 
1638     err = card_busy_detect(card, timeout, NULL);
1639 
1640     mmc_retune_release(card->host);
1641 
1642     return err;
1643 }
1644 
1645 #define MMC_READ_SINGLE_RETRIES 2
1646 
1647 /* Single sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1648 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1649 {
1650     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1651     struct mmc_request *mrq = &mqrq->brq.mrq;
1652     struct mmc_card *card = mq->card;
1653     struct mmc_host *host = card->host;
1654     blk_status_t error = BLK_STS_OK;
1655     size_t bytes_per_read = queue_physical_block_size(mq->queue);
1656 
1657     do {
1658         u32 status;
1659         int err;
1660         int retries = 0;
1661 
1662         while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1663             mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1664 
1665             mmc_wait_for_req(host, mrq);
1666 
1667             err = mmc_send_status(card, &status);
1668             if (err) {
1669                 goto error_exit;
1670             }
1671 
1672             if (!mmc_host_is_spi(host) && !mmc_ready_for_data(status)) {
1673                 err = mmc_blk_fix_state(card, req);
1674                 if (err) {
1675                     goto error_exit;
1676                 }
1677             }
1678 
1679             if (!mrq->cmd->error) {
1680                 break;
1681             }
1682         }
1683 
1684         if (mrq->cmd->error || mrq->data->error ||
1685             (!mmc_host_is_spi(host) && ((mrq->cmd->resp[0] & CMD_ERRORS) || (status & CMD_ERRORS)))) {
1686             error = BLK_STS_IOERR;
1687         } else {
1688             error = BLK_STS_OK;
1689         }
1690     } while (blk_update_request(req, error, MMC_SINGLE_SECTOR_SIZE));
1691     return;
1692 
1693 error_exit:
1694     mrq->data->bytes_xfered = 0;
1695     blk_update_request(req, BLK_STS_IOERR, MMC_SINGLE_SECTOR_SIZE);
1696     /* Let it try the remaining request again */
1697     if (mqrq->retries > MMC_MAX_RETRIES - 1) {
1698         mqrq->retries = MMC_MAX_RETRIES - 1;
1699     }
1700 }
1701 
mmc_blk_oor_valid(struct mmc_blk_request * brq)1702 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1703 {
1704     return !!brq->mrq.sbc;
1705 }
1706 
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1707 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1708 {
1709     return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1710 }
1711 
1712 /*
1713  * Check for errors the host controller driver might not have seen such as
1714  * response mode errors or invalid card state.
1715  */
mmc_blk_status_error(struct request * req,u32 status)1716 static bool mmc_blk_status_error(struct request *req, u32 status)
1717 {
1718     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1719     struct mmc_blk_request *brq = &mqrq->brq;
1720     struct mmc_queue *mq = req->q->queuedata;
1721     u32 stop_err_bits;
1722 
1723     if (mmc_host_is_spi(mq->card->host)) {
1724         return false;
1725     }
1726 
1727     stop_err_bits = mmc_blk_stop_err_bits(brq);
1728 
1729     return (brq->cmd.resp[0] & CMD_ERRORS) || (brq->stop.resp[0] & stop_err_bits) || (status & stop_err_bits) ||
1730            (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1731 }
1732 
mmc_blk_cmd_started(struct mmc_blk_request * brq)1733 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1734 {
1735     return !brq->sbc.error && !brq->cmd.error && !(brq->cmd.resp[0] & CMD_ERRORS);
1736 }
1737 
1738 /*
1739  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1740  * policy:
1741  * 1. A request that has transferred at least some data is considered
1742  * successful and will be requeued if there is remaining data to
1743  * transfer.
1744  * 2. Otherwise the number of retries is incremented and the request
1745  * will be requeued if there are remaining retries.
1746  * 3. Otherwise the request will be errored out.
1747  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1748  * mqrq->retries. So there are only 4 possible actions here:
1749  *    1. do not accept the bytes_xfered value i.e. set it to zero
1750  *    2. change mqrq->retries to determine the number of retries
1751  *    3. try to reset the card
1752  *    4. read one sector at a time
1753  */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1754 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1755 {
1756     int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1757     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1758     struct mmc_blk_request *brq = &mqrq->brq;
1759     struct mmc_blk_data *md = mq->blkdata;
1760     struct mmc_card *card = mq->card;
1761     u32 status;
1762     u32 blocks;
1763     int err;
1764 
1765     /*
1766      * Some errors the host driver might not have seen. Set the number of
1767      * bytes transferred to zero in that case.
1768      */
1769     err = __mmc_send_status(card, &status, 0);
1770     if (err || mmc_blk_status_error(req, status)) {
1771         brq->data.bytes_xfered = 0;
1772     }
1773 
1774     mmc_retune_release(card->host);
1775 
1776     /*
1777      * Try again to get the status. This also provides an opportunity for
1778      * re-tuning.
1779      */
1780     if (err) {
1781         err = __mmc_send_status(card, &status, 0);
1782     }
1783 
1784     /*
1785      * Nothing more to do after the number of bytes transferred has been
1786      * updated and there is no card.
1787      */
1788     if (err && mmc_detect_card_removed(card->host)) {
1789         return;
1790     }
1791 
1792     /* Try to get back to "tran" state */
1793     if (!mmc_host_is_spi(mq->card->host) && (err || !mmc_ready_for_data(status))) {
1794         err = mmc_blk_fix_state(mq->card, req);
1795     }
1796 
1797     /*
1798      * Special case for SD cards where the card might record the number of
1799      * blocks written.
1800      */
1801     if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && rq_data_dir(req) == WRITE) {
1802         if (mmc_sd_num_wr_blocks(card, &blocks)) {
1803             brq->data.bytes_xfered = 0;
1804         } else {
1805             brq->data.bytes_xfered = blocks * MMC_SINGLE_SECTOR_SIZE;
1806         }
1807     }
1808 
1809     /* Reset if the card is in a bad state */
1810     if (!mmc_host_is_spi(mq->card->host) && err && mmc_blk_reset(md, card->host, type)) {
1811         pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1812         mqrq->retries = MMC_NO_RETRIES;
1813         return;
1814     }
1815 
1816     /*
1817      * If anything was done, just return and if there is anything remaining
1818      * on the request it will get requeued.
1819      */
1820     if (brq->data.bytes_xfered) {
1821         return;
1822     }
1823 
1824     /* Reset before last retry */
1825     if (mqrq->retries + 1 == MMC_MAX_RETRIES) {
1826         mmc_blk_reset(md, card->host, type);
1827     }
1828 
1829     /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1830     if (brq->sbc.error || brq->cmd.error) {
1831         return;
1832     }
1833 
1834     /* Reduce the remaining retries for data errors */
1835     if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1836         mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1837         return;
1838     }
1839 
1840     /* Missing single sector read for large sector size */
1841         if (rq_data_dir(req) == READ && (brq->data.blocks >
1842             (queue_physical_block_size(mq->queue) >> MMC_BLK_REQUEST_ARG_SHIFT_VALUE))) {
1843         /* Read one sector at a time */
1844         mmc_blk_read_single(mq, req);
1845         return;
1846     }
1847 }
1848 
mmc_blk_rq_error(struct mmc_blk_request * brq)1849 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1850 {
1851     mmc_blk_eval_resp_error(brq);
1852 
1853     return brq->sbc.error || brq->cmd.error || brq->stop.error || brq->data.error || (brq->cmd.resp[0] & CMD_ERRORS);
1854 }
1855 
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1856 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1857 {
1858     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1859     u32 status = 0;
1860     int err;
1861 
1862     if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) {
1863         return 0;
1864     }
1865 
1866     err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1867 
1868     /*
1869      * Do not assume data transferred correctly if there are any error bits
1870      * set.
1871      */
1872     if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1873         mqrq->brq.data.bytes_xfered = 0;
1874         err = err ? err : -EIO;
1875     }
1876 
1877     /* Copy the exception bit so it will be seen later on */
1878     if (mmc_card_mmc(card) && (status & R1_EXCEPTION_EVENT)) {
1879         mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1880     }
1881 
1882     return err;
1883 }
1884 
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1885 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, struct request *req)
1886 {
1887     int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1888 
1889     mmc_blk_reset_success(mq->blkdata, type);
1890 }
1891 
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1892 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1893 {
1894     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1895     unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1896 
1897     if (nr_bytes) {
1898         if (blk_update_request(req, BLK_STS_OK, nr_bytes)) {
1899             blk_mq_requeue_request(req, true);
1900         } else {
1901             __blk_mq_end_request(req, BLK_STS_OK);
1902         }
1903     } else if (!blk_rq_bytes(req)) {
1904         __blk_mq_end_request(req, BLK_STS_IOERR);
1905     } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1906         blk_mq_requeue_request(req, true);
1907     } else {
1908         if (mmc_card_removed(mq->card)) {
1909             req->rq_flags |= RQF_QUIET;
1910         }
1911         blk_mq_end_request(req, BLK_STS_IOERR);
1912     }
1913 }
1914 
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1915 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
1916 {
1917     return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1918            ((mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT) || (mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT));
1919 }
1920 
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1921 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
1922 {
1923     if (mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1924         mmc_run_bkops(mq->card);
1925     }
1926 }
1927 
mmc_blk_hsq_req_done(struct mmc_request * mrq)1928 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1929 {
1930     struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq);
1931     struct request *req = mmc_queue_req_to_req(mqrq);
1932     struct request_queue *q = req->q;
1933     struct mmc_queue *mq = q->queuedata;
1934     struct mmc_host *host = mq->card->host;
1935     unsigned long flags;
1936 
1937     if (mmc_blk_rq_error(&mqrq->brq) || mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1938         spin_lock_irqsave(&mq->lock, flags);
1939         mq->recovery_needed = true;
1940         mq->recovery_req = req;
1941         spin_unlock_irqrestore(&mq->lock, flags);
1942 
1943         host->cqe_ops->cqe_recovery_start(host);
1944 
1945         schedule_work(&mq->recovery_work);
1946         return;
1947     }
1948 
1949     mmc_blk_rw_reset_success(mq, req);
1950 
1951     /*
1952      * Block layer timeouts race with completions which means the normal
1953      * completion path cannot be used during recovery.
1954      */
1955     if (mq->in_recovery) {
1956         mmc_blk_cqe_complete_rq(mq, req);
1957     } else if (likely(!blk_should_fake_timeout(req->q))) {
1958         blk_mq_complete_request(req);
1959     }
1960 }
1961 
mmc_blk_mq_complete(struct request * req)1962 void mmc_blk_mq_complete(struct request *req)
1963 {
1964     struct mmc_queue *mq = req->q->queuedata;
1965 
1966     if (mq->use_cqe) {
1967         mmc_blk_cqe_complete_rq(mq, req);
1968     } else if (likely(!blk_should_fake_timeout(req->q))) {
1969         mmc_blk_mq_complete_rq(mq, req);
1970     }
1971 }
1972 
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)1973 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, struct request *req)
1974 {
1975     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1976     struct mmc_host *host = mq->card->host;
1977 
1978     if (mmc_blk_rq_error(&mqrq->brq) || mmc_blk_card_busy(mq->card, req)) {
1979         mmc_blk_mq_rw_recovery(mq, req);
1980     } else {
1981         mmc_blk_rw_reset_success(mq, req);
1982         mmc_retune_release(host);
1983     }
1984 
1985     mmc_blk_urgent_bkops(mq, mqrq);
1986 }
1987 
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)1988 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1989 {
1990     unsigned long flags;
1991     bool put_card;
1992 
1993     spin_lock_irqsave(&mq->lock, flags);
1994 
1995     mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1996 
1997     put_card = (mmc_tot_in_flight(mq) == 0);
1998 
1999     spin_unlock_irqrestore(&mq->lock, flags);
2000 
2001     if (put_card) {
2002         mmc_put_card(mq->card, &mq->ctx);
2003     }
2004 }
2005 
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req)2006 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2007 {
2008     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2009     struct mmc_request *mrq = &mqrq->brq.mrq;
2010     struct mmc_host *host = mq->card->host;
2011 
2012     mmc_post_req(host, mrq, 0);
2013 
2014     /*
2015      * Block layer timeouts race with completions which means the normal
2016      * completion path cannot be used during recovery.
2017      */
2018     if (mq->in_recovery) {
2019         mmc_blk_mq_complete_rq(mq, req);
2020     } else if (likely(!blk_should_fake_timeout(req->q))) {
2021         blk_mq_complete_request(req);
2022     }
2023 
2024     mmc_blk_mq_dec_in_flight(mq, req);
2025 }
2026 
mmc_blk_mq_recovery(struct mmc_queue * mq)2027 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2028 {
2029     struct request *req = mq->recovery_req;
2030     struct mmc_host *host = mq->card->host;
2031     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2032 
2033     mq->recovery_req = NULL;
2034     mq->rw_wait = false;
2035 
2036     if (mmc_blk_rq_error(&mqrq->brq)) {
2037         mmc_retune_hold_now(host);
2038         mmc_blk_mq_rw_recovery(mq, req);
2039     }
2040 
2041     mmc_blk_urgent_bkops(mq, mqrq);
2042 
2043     mmc_blk_mq_post_req(mq, req);
2044 }
2045 
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2046 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, struct request **prev_req)
2047 {
2048     if (mmc_host_done_complete(mq->card->host)) {
2049         return;
2050     }
2051 
2052     mutex_lock(&mq->complete_lock);
2053 
2054     if (!mq->complete_req) {
2055         goto out_unlock;
2056     }
2057 
2058     mmc_blk_mq_poll_completion(mq, mq->complete_req);
2059 
2060     if (prev_req) {
2061         *prev_req = mq->complete_req;
2062     } else {
2063         mmc_blk_mq_post_req(mq, mq->complete_req);
2064     }
2065 
2066     mq->complete_req = NULL;
2067 
2068 out_unlock:
2069     mutex_unlock(&mq->complete_lock);
2070 }
2071 
mmc_blk_mq_complete_work(struct work_struct * work)2072 void mmc_blk_mq_complete_work(struct work_struct *work)
2073 {
2074     struct mmc_queue *mq = container_of(work, struct mmc_queue, complete_work);
2075 
2076     mmc_blk_mq_complete_prev_req(mq, NULL);
2077 }
2078 
mmc_blk_mq_req_done(struct mmc_request * mrq)2079 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2080 {
2081     struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, brq.mrq);
2082     struct request *req = mmc_queue_req_to_req(mqrq);
2083     struct request_queue *q = req->q;
2084     struct mmc_queue *mq = q->queuedata;
2085     struct mmc_host *host = mq->card->host;
2086     unsigned long flags;
2087 
2088     if (!mmc_host_done_complete(host)) {
2089         bool waiting;
2090 
2091         /*
2092          * We cannot complete the request in this context, so record
2093          * that there is a request to complete, and that a following
2094          * request does not need to wait (although it does need to
2095          * complete complete_req first).
2096          */
2097         spin_lock_irqsave(&mq->lock, flags);
2098         mq->complete_req = req;
2099         mq->rw_wait = false;
2100         waiting = mq->waiting;
2101         spin_unlock_irqrestore(&mq->lock, flags);
2102 
2103         /*
2104          * If 'waiting' then the waiting task will complete this
2105          * request, otherwise queue a work to do it. Note that
2106          * complete_work may still race with the dispatch of a following
2107          * request.
2108          */
2109         if (waiting) {
2110             wake_up(&mq->wait);
2111         } else {
2112             queue_work(mq->card->complete_wq, &mq->complete_work);
2113         }
2114 
2115         return;
2116     }
2117 
2118     /* Take the recovery path for errors or urgent background operations */
2119     if (mmc_blk_rq_error(&mqrq->brq) || mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2120         spin_lock_irqsave(&mq->lock, flags);
2121         mq->recovery_needed = true;
2122         mq->recovery_req = req;
2123         spin_unlock_irqrestore(&mq->lock, flags);
2124         wake_up(&mq->wait);
2125         schedule_work(&mq->recovery_work);
2126         return;
2127     }
2128 
2129     mmc_blk_rw_reset_success(mq, req);
2130 
2131     mq->rw_wait = false;
2132     wake_up(&mq->wait);
2133 
2134     mmc_blk_mq_post_req(mq, req);
2135 }
2136 
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2137 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2138 {
2139     unsigned long flags;
2140     bool done;
2141 
2142     /*
2143      * Wait while there is another request in progress, but not if recovery
2144      * is needed. Also indicate whether there is a request waiting to start.
2145      */
2146     spin_lock_irqsave(&mq->lock, flags);
2147     if (mq->recovery_needed) {
2148         *err = -EBUSY;
2149         done = true;
2150     } else {
2151         done = !mq->rw_wait;
2152     }
2153     mq->waiting = !done;
2154     spin_unlock_irqrestore(&mq->lock, flags);
2155 
2156     return done;
2157 }
2158 
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2159 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2160 {
2161     int err = 0;
2162 
2163     wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2164 
2165     /* Always complete the previous request if there is one */
2166     mmc_blk_mq_complete_prev_req(mq, prev_req);
2167 
2168     return err;
2169 }
2170 
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2171 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
2172 {
2173     struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2174     struct mmc_host *host = mq->card->host;
2175     struct request *prev_req = NULL;
2176     int err = 0;
2177 
2178     mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2179 
2180     mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2181 
2182     mmc_pre_req(host, &mqrq->brq.mrq);
2183 
2184     err = mmc_blk_rw_wait(mq, &prev_req);
2185     if (err) {
2186         goto out_post_req;
2187     }
2188 
2189     mq->rw_wait = true;
2190 
2191     err = mmc_start_request(host, &mqrq->brq.mrq);
2192 
2193     if (prev_req) {
2194         mmc_blk_mq_post_req(mq, prev_req);
2195     }
2196 
2197     if (err) {
2198         mq->rw_wait = false;
2199     }
2200 
2201     /* Release re-tuning here where there is no synchronization required */
2202     if (err || mmc_host_done_complete(host)) {
2203         mmc_retune_release(host);
2204     }
2205 
2206 out_post_req:
2207     if (err) {
2208         mmc_post_req(host, &mqrq->brq.mrq, err);
2209     }
2210 
2211     return err;
2212 }
2213 
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2214 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2215 {
2216     if (mq->use_cqe) {
2217         return host->cqe_ops->cqe_wait_for_idle(host);
2218     }
2219 
2220     return mmc_blk_rw_wait(mq, NULL);
2221 }
2222 
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2223 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2224 {
2225     struct mmc_blk_data *md = mq->blkdata;
2226     struct mmc_card *card = md->queue.card;
2227     struct mmc_host *host = card->host;
2228     int ret;
2229 
2230     ret = mmc_blk_part_switch(card, md->part_type);
2231     if (ret) {
2232         return MMC_REQ_FAILED_TO_START;
2233     }
2234 
2235     switch (mmc_issue_type(mq, req)) {
2236         case MMC_ISSUE_SYNC:
2237             ret = mmc_blk_wait_for_idle(mq, host);
2238             if (ret) {
2239                 return MMC_REQ_BUSY;
2240             }
2241             switch (req_op(req)) {
2242                 case REQ_OP_DRV_IN:
2243                 case REQ_OP_DRV_OUT:
2244                     mmc_blk_issue_drv_op(mq, req);
2245                     break;
2246                 case REQ_OP_DISCARD:
2247                     mmc_blk_issue_discard_rq(mq, req);
2248                     break;
2249                 case REQ_OP_SECURE_ERASE:
2250                     mmc_blk_issue_secdiscard_rq(mq, req);
2251                     break;
2252                 case REQ_OP_FLUSH:
2253                     mmc_blk_issue_flush(mq, req);
2254                     break;
2255                 default:
2256                     WARN_ON_ONCE(1);
2257                     return MMC_REQ_FAILED_TO_START;
2258             }
2259             return MMC_REQ_FINISHED;
2260         case MMC_ISSUE_DCMD:
2261         case MMC_ISSUE_ASYNC:
2262             switch (req_op(req)) {
2263                 case REQ_OP_FLUSH:
2264                     if (!mmc_cache_enabled(host)) {
2265                         blk_mq_end_request(req, BLK_STS_OK);
2266                         return MMC_REQ_FINISHED;
2267                     }
2268                     ret = mmc_blk_cqe_issue_flush(mq, req);
2269                     break;
2270                 case REQ_OP_READ:
2271                 case REQ_OP_WRITE:
2272                     if (mq->use_cqe) {
2273                         ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2274                     } else {
2275                         ret = mmc_blk_mq_issue_rw_rq(mq, req);
2276                     }
2277                     break;
2278                 default:
2279                     WARN_ON_ONCE(1);
2280                     ret = -EINVAL;
2281             }
2282             if (!ret) {
2283                 return MMC_REQ_STARTED;
2284             }
2285             return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2286         default:
2287             WARN_ON_ONCE(1);
2288             return MMC_REQ_FAILED_TO_START;
2289     }
2290 }
2291 
mmc_blk_readonly(struct mmc_card * card)2292 static inline int mmc_blk_readonly(struct mmc_card *card)
2293 {
2294     return mmc_card_readonly(card) || !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2295 }
2296 
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type)2297 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, struct device *parent, sector_t size,
2298                                               bool default_ro, const char *subname, int area_type)
2299 {
2300     struct mmc_blk_data *md;
2301     int devidx, ret;
2302 
2303     devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2304     if (devidx < 0) {
2305         /*
2306          * We get -ENOSPC because there are no more any available
2307          * devidx. The reason may be that, either userspace haven't yet
2308          * unmounted the partitions, which postpones mmc_blk_release()
2309          * from being called, or the device has more partitions than
2310          * what we support.
2311          */
2312         if (devidx == -ENOSPC) {
2313             dev_err(mmc_dev(card->host), "no more device IDs available\n");
2314         }
2315 
2316         return ERR_PTR(devidx);
2317     }
2318 
2319     md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2320     if (!md) {
2321         ret = -ENOMEM;
2322         goto out;
2323     }
2324 
2325     md->area_type = area_type;
2326 
2327     /*
2328      * Set the read-only status based on the supported commands
2329      * and the write protect switch.
2330      */
2331     md->read_only = mmc_blk_readonly(card);
2332 
2333     md->disk = alloc_disk(perdev_minors);
2334     if (md->disk == NULL) {
2335         ret = -ENOMEM;
2336         goto err_kfree;
2337     }
2338 
2339     INIT_LIST_HEAD(&md->part);
2340     INIT_LIST_HEAD(&md->rpmbs);
2341     md->usage = 1;
2342 
2343     ret = mmc_init_queue(&md->queue, card);
2344     if (ret) {
2345         goto err_putdisk;
2346     }
2347 
2348     md->queue.blkdata = md;
2349 
2350     /*
2351      * Keep an extra reference to the queue so that we can shutdown the
2352      * queue (i.e. call blk_cleanup_queue()) while there are still
2353      * references to the 'md'. The corresponding blk_put_queue() is in
2354      * mmc_blk_put().
2355      */
2356     if (!blk_get_queue(md->queue.queue)) {
2357         mmc_cleanup_queue(&md->queue);
2358         ret = -ENODEV;
2359         goto err_putdisk;
2360     }
2361 
2362     md->disk->major = MMC_BLOCK_MAJOR;
2363     md->disk->first_minor = devidx * perdev_minors;
2364     md->disk->fops = &mmc_bdops;
2365     md->disk->private_data = md;
2366     md->disk->queue = md->queue.queue;
2367     md->parent = parent;
2368     set_disk_ro(md->disk, md->read_only || default_ro);
2369     md->disk->flags = GENHD_FL_EXT_DEVT;
2370     if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) {
2371         md->disk->flags |= GENHD_FL_NO_PART_SCAN | GENHD_FL_SUPPRESS_PARTITION_INFO;
2372     }
2373 
2374     /*
2375      * As discussed on lkml, GENHD_FL_REMOVABLE should:
2376      *
2377      * - be set for removable media with permanent block devices
2378      * - be unset for removable block devices with permanent media
2379      *
2380      * Since MMC block devices clearly fall under the second
2381      * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2382      * should use the block device creation/destruction hotplug
2383      * messages to tell when the card is present.
2384      */
2385 
2386     ret = snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), \
2387                    "mmcblk%u%s", card->host->index, subname ? subname : "");
2388 
2389     set_capacity(md->disk, size);
2390 
2391     if (mmc_host_cmd23(card->host)) {
2392         if ((mmc_card_mmc(card) && (card->csd.mmca_vsn >= CSD_SPEC_VER_3)) ||
2393             (mmc_card_sd(card) && (card->scr.cmds & SD_SCR_CMD23_SUPPORT))) {
2394             md->flags |= MMC_BLK_CMD23;
2395         }
2396     }
2397 
2398     if (mmc_card_mmc(card) && (md->flags & MMC_BLK_CMD23) &&
2399         ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || card->ext_csd.rel_sectors)) {
2400         md->flags |= MMC_BLK_REL_WR;
2401         blk_queue_write_cache(md->queue.queue, true, true);
2402     }
2403 
2404     return md;
2405 
2406 err_putdisk:
2407     put_disk(md->disk);
2408 err_kfree:
2409     kfree(md);
2410 out:
2411     ida_simple_remove(&mmc_blk_ida, devidx);
2412     return ERR_PTR(ret);
2413 }
2414 
mmc_blk_alloc(struct mmc_card * card)2415 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2416 {
2417     sector_t size;
2418 
2419     if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2420         /*
2421          * The EXT_CSD sector count is in number or 512 byte
2422          * sectors.
2423          */
2424         size = card->ext_csd.sectors;
2425     } else {
2426         /*
2427          * The CSD capacity field is in units of read_blkbits.
2428          * set_capacity takes units of 512 bytes.
2429          */
2430         size = (typeof(sector_t))card->csd.capacity << (card->csd.read_blkbits - 9);
2431     }
2432 
2433     return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, MMC_BLK_DATA_AREA_MAIN);
2434 }
2435 
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2436 static int mmc_blk_alloc_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_type, sector_t size,
2437                               bool default_ro, const char *subname, int area_type)
2438 {
2439     char cap_str[10];
2440     struct mmc_blk_data *part_md;
2441 
2442     part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, subname, area_type);
2443     if (IS_ERR(part_md)) {
2444         return PTR_ERR(part_md);
2445     }
2446     part_md->part_type = part_type;
2447     list_add(&part_md->part, &md->part);
2448 
2449     string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, cap_str, sizeof(cap_str));
2450     pr_info("%s: %s %s partition %u %s\n", part_md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2451             part_md->part_type, cap_str);
2452     return 0;
2453 }
2454 
2455 /**
2456  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2457  * @filp: the character device file
2458  * @cmd: the ioctl() command
2459  * @arg: the argument from userspace
2460  *
2461  * This will essentially just redirect the ioctl()s coming in over to
2462  * the main block device spawning the RPMB character device.
2463  */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2464 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2465 {
2466     struct mmc_rpmb_data *rpmb = filp->private_data;
2467     int ret;
2468 
2469     switch (cmd) {
2470         case MMC_IOC_CMD:
2471             ret = mmc_blk_ioctl_cmd(rpmb->md, (struct mmc_ioc_cmd __user *)arg, rpmb);
2472             break;
2473         case MMC_IOC_MULTI_CMD:
2474             ret = mmc_blk_ioctl_multi_cmd(rpmb->md, (struct mmc_ioc_multi_cmd __user *)arg, rpmb);
2475             break;
2476         default:
2477             ret = -EINVAL;
2478             break;
2479     }
2480 
2481     return ret;
2482 }
2483 
2484 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2485 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, unsigned long arg)
2486 {
2487     return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2488 }
2489 #endif
2490 
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2491 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2492 {
2493     struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, struct mmc_rpmb_data, chrdev);
2494 
2495     get_device(&rpmb->dev);
2496     filp->private_data = rpmb;
2497     mmc_blk_get(rpmb->md->disk);
2498 
2499     return nonseekable_open(inode, filp);
2500 }
2501 
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2502 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2503 {
2504     struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, struct mmc_rpmb_data, chrdev);
2505 
2506     mmc_blk_put(rpmb->md);
2507     put_device(&rpmb->dev);
2508 
2509     return 0;
2510 }
2511 
2512 static const struct file_operations mmc_rpmb_fileops = {
2513     .release = mmc_rpmb_chrdev_release,
2514     .open = mmc_rpmb_chrdev_open,
2515     .owner = THIS_MODULE,
2516     .llseek = no_llseek,
2517     .unlocked_ioctl = mmc_rpmb_ioctl,
2518 #ifdef CONFIG_COMPAT
2519     .compat_ioctl = mmc_rpmb_ioctl_compat,
2520 #endif
2521 };
2522 
mmc_blk_rpmb_device_release(struct device * dev)2523 static void mmc_blk_rpmb_device_release(struct device *dev)
2524 {
2525     struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2526 
2527     ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2528     kfree(rpmb);
2529 }
2530 
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2531 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_index,
2532                                    sector_t size, const char *subname)
2533 {
2534     int devidx, ret;
2535     char rpmb_name[DISK_NAME_LEN];
2536     char cap_str[10];
2537     struct mmc_rpmb_data *rpmb;
2538 
2539     /* This creates the minor number for the RPMB char device */
2540     devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2541     if (devidx < 0) {
2542         return devidx;
2543     }
2544 
2545     rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2546     if (!rpmb) {
2547         ida_simple_remove(&mmc_rpmb_ida, devidx);
2548         return -ENOMEM;
2549     }
2550 
2551     ret = snprintf(rpmb_name, sizeof(rpmb_name), "mmcblk%u%s", card->host->index, subname ? subname : "");
2552 
2553     rpmb->id = devidx;
2554     rpmb->part_index = part_index;
2555     rpmb->dev.init_name = rpmb_name;
2556     rpmb->dev.bus = &mmc_rpmb_bus_type;
2557     rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2558     rpmb->dev.parent = &card->dev;
2559     rpmb->dev.release = mmc_blk_rpmb_device_release;
2560     device_initialize(&rpmb->dev);
2561     dev_set_drvdata(&rpmb->dev, rpmb);
2562     rpmb->md = md;
2563 
2564     cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2565     rpmb->chrdev.owner = THIS_MODULE;
2566     ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2567     if (ret) {
2568         pr_err("%s: could not add character device\n", rpmb_name);
2569         goto out_put_device;
2570     }
2571 
2572     list_add(&rpmb->node, &md->rpmbs);
2573 
2574     string_get_size((u64)size, MMC_SINGLE_SECTOR_SIZE, STRING_UNITS_2, cap_str, sizeof(cap_str));
2575 
2576     pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", rpmb_name, mmc_card_id(card), mmc_card_name(card),
2577             EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, MAJOR(mmc_rpmb_devt), rpmb->id);
2578 
2579     return 0;
2580 
2581 out_put_device:
2582     put_device(&rpmb->dev);
2583     return ret;
2584 }
2585 
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2586 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2587 
2588 {
2589     cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2590     put_device(&rpmb->dev);
2591 }
2592 
2593 /* MMC Physical partitions consist of two boot partitions and
2594  * up to four general purpose partitions.
2595  * For each partition enabled in EXT_CSD a block device will be allocatedi
2596  * to provide access to the partition.
2597  */
2598 
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2599 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2600 {
2601     int idx, ret;
2602 
2603     if (!mmc_card_mmc(card)) {
2604         return 0;
2605     }
2606 
2607     for (idx = 0; idx < card->nr_parts; idx++) {
2608         if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2609             /*
2610              * RPMB partitions does not provide block access, they
2611              * are only accessed using ioctl():s. Thus create
2612              * special RPMB block devices that do not have a
2613              * backing block queue for these.
2614              */
2615             ret = mmc_blk_alloc_rpmb_part(card, md, card->part[idx].part_cfg,
2616                                           card->part[idx].size / MMC_SINGLE_SECTOR_SIZE, card->part[idx].name);
2617             if (ret) {
2618                 return ret;
2619             }
2620         } else if (card->part[idx].size) {
2621             ret = mmc_blk_alloc_part(card, md, card->part[idx].part_cfg, card->part[idx].size / MMC_SINGLE_SECTOR_SIZE,
2622                                      card->part[idx].force_ro, card->part[idx].name, card->part[idx].area_type);
2623             if (ret) {
2624                 return ret;
2625             }
2626         }
2627     }
2628 
2629     return 0;
2630 }
2631 
mmc_blk_remove_req(struct mmc_blk_data * md)2632 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2633 {
2634     struct mmc_card *card;
2635 
2636     if (md) {
2637         /*
2638          * Flush remaining requests and free queues. It
2639          * is freeing the queue that stops new requests
2640          * from being accepted.
2641          */
2642         card = md->queue.card;
2643         if (md->disk->flags & GENHD_FL_UP) {
2644             device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2645             if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && card->ext_csd.boot_ro_lockable) {
2646                 device_remove_file(disk_to_dev(md->disk), &md->power_ro_lock);
2647             }
2648 
2649             del_gendisk(md->disk);
2650         }
2651         mmc_cleanup_queue(&md->queue);
2652         mmc_blk_put(md);
2653     }
2654 }
2655 
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2656 static void mmc_blk_remove_parts(struct mmc_card *card, struct mmc_blk_data *md)
2657 {
2658     struct list_head *pos, *q;
2659     struct mmc_blk_data *part_md;
2660     struct mmc_rpmb_data *rpmb;
2661 
2662     /* Remove RPMB partitions */
2663     list_for_each_safe(pos, q, &md->rpmbs)
2664     {
2665         rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2666         list_del(pos);
2667         mmc_blk_remove_rpmb_part(rpmb);
2668     }
2669     /* Remove block partitions */
2670     list_for_each_safe(pos, q, &md->part)
2671     {
2672         part_md = list_entry(pos, struct mmc_blk_data, part);
2673         list_del(pos);
2674         mmc_blk_remove_req(part_md);
2675     }
2676 }
2677 
mmc_add_disk(struct mmc_blk_data * md)2678 static int mmc_add_disk(struct mmc_blk_data *md)
2679 {
2680     int ret;
2681     struct mmc_card *card = md->queue.card;
2682 
2683     device_add_disk(md->parent, md->disk, NULL);
2684     md->force_ro.show = force_ro_show;
2685     md->force_ro.store = force_ro_store;
2686     sysfs_attr_init(&md->force_ro.attr);
2687     md->force_ro.attr.name = "force_ro";
2688     md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2689     ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2690     if (ret) {
2691         goto force_ro_fail;
2692     }
2693 
2694     if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && card->ext_csd.boot_ro_lockable) {
2695         umode_t mode;
2696 
2697         if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) {
2698             mode = S_IRUGO;
2699         } else {
2700             mode = S_IRUGO | S_IWUSR;
2701         }
2702 
2703         md->power_ro_lock.show = power_ro_lock_show;
2704         md->power_ro_lock.store = power_ro_lock_store;
2705         sysfs_attr_init(&md->power_ro_lock.attr);
2706         md->power_ro_lock.attr.mode = mode;
2707         md->power_ro_lock.attr.name = "ro_lock_until_next_power_on";
2708         ret = device_create_file(disk_to_dev(md->disk), &md->power_ro_lock);
2709         if (ret) {
2710             goto power_ro_lock_fail;
2711         }
2712     }
2713     return ret;
2714 
2715 power_ro_lock_fail:
2716     device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2717 force_ro_fail:
2718     del_gendisk(md->disk);
2719 
2720     return ret;
2721 }
2722 
2723 #ifdef CONFIG_DEBUG_FS
2724 
mmc_dbg_card_status_get(void * data,u64 * val)2725 static int mmc_dbg_card_status_get(void *data, u64 *val)
2726 {
2727     struct mmc_card *card = data;
2728     struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2729     struct mmc_queue *mq = &md->queue;
2730     struct request *req;
2731     int ret;
2732 
2733     /* Ask the block layer about the card status */
2734     req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2735     if (IS_ERR(req)) {
2736         return PTR_ERR(req);
2737     }
2738     req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2739     blk_execute_rq(mq->queue, NULL, req, 0);
2740     ret = req_to_mmc_queue_req(req)->drv_op_result;
2741     if (ret >= 0) {
2742         *val = ret;
2743         ret = 0;
2744     }
2745     blk_put_request(req);
2746 
2747     return ret;
2748 }
2749 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, NULL, "%08llx\n");
2750 
2751 /* That is two digits * 512 + 1 for newline */
2752 #define EXT_CSD_STR_LEN 1025
2753 
mmc_ext_csd_open(struct inode * inode,struct file * filp)2754 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2755 {
2756     struct mmc_card *card = inode->i_private;
2757     struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2758     struct mmc_queue *mq = &md->queue;
2759     struct request *req;
2760     char *buf;
2761     ssize_t n = 0;
2762     u8 *ext_csd;
2763     int err, i;
2764 
2765     buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2766     if (!buf) {
2767         return -ENOMEM;
2768     }
2769 
2770     /* Ask the block layer for the EXT CSD */
2771     req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2772     if (IS_ERR(req)) {
2773         err = PTR_ERR(req);
2774         goto out_free;
2775     }
2776     req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2777     req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2778     blk_execute_rq(mq->queue, NULL, req, 0);
2779     err = req_to_mmc_queue_req(req)->drv_op_result;
2780     blk_put_request(req);
2781     if (err) {
2782         pr_err("FAILED %d\n", err);
2783         goto out_free;
2784     }
2785 
2786     for (i = 0; i < MMC_SINGLE_SECTOR_SIZE; i++) {
2787         n += sprintf(buf + n, "%02x", ext_csd[i]);
2788     }
2789     n += sprintf(buf + n, "\n");
2790     if (n != EXT_CSD_STR_LEN) {
2791         err = -EINVAL;
2792         kfree(ext_csd);
2793         goto out_free;
2794     }
2795 
2796     filp->private_data = buf;
2797     kfree(ext_csd);
2798     return 0;
2799 
2800 out_free:
2801     kfree(buf);
2802     return err;
2803 }
2804 
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2805 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos)
2806 {
2807     char *buf = filp->private_data;
2808 
2809     return simple_read_from_buffer(ubuf, cnt, ppos, buf, EXT_CSD_STR_LEN);
2810 }
2811 
mmc_ext_csd_release(struct inode * inode,struct file * file)2812 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2813 {
2814     kfree(file->private_data);
2815     return 0;
2816 }
2817 
2818 static const struct file_operations mmc_dbg_ext_csd_fops = {
2819     .open = mmc_ext_csd_open,
2820     .read = mmc_ext_csd_read,
2821     .release = mmc_ext_csd_release,
2822     .llseek = default_llseek,
2823 };
2824 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2825 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2826 {
2827     struct dentry *root;
2828 
2829     if (!card->debugfs_root) {
2830         return 0;
2831     }
2832 
2833     root = card->debugfs_root;
2834 
2835     if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2836         md->status_dentry = debugfs_create_file_unsafe("status", MMC_S_IRUSR, root, card, &mmc_dbg_card_status_fops);
2837         if (!md->status_dentry) {
2838             return -EIO;
2839         }
2840     }
2841 
2842     if (mmc_card_mmc(card)) {
2843         md->ext_csd_dentry = debugfs_create_file("ext_csd", S_IRUSR, root, card, &mmc_dbg_ext_csd_fops);
2844         if (!md->ext_csd_dentry) {
2845             return -EIO;
2846         }
2847     }
2848 
2849     return 0;
2850 }
2851 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2852 static void mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2853 {
2854     if (!card->debugfs_root) {
2855         return;
2856     }
2857 
2858     if (!IS_ERR_OR_NULL(md->status_dentry)) {
2859         debugfs_remove(md->status_dentry);
2860         md->status_dentry = NULL;
2861     }
2862 
2863     if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2864         debugfs_remove(md->ext_csd_dentry);
2865         md->ext_csd_dentry = NULL;
2866     }
2867 }
2868 
2869 #else
2870 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2871 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2872 {
2873     return 0;
2874 }
2875 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2876 static void mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2877 {
2878 }
2879 
2880 #endif /* CONFIG_DEBUG_FS */
2881 
2882 struct mmc_card *this_card;
2883 EXPORT_SYMBOL(this_card);
2884 
mmc_blk_probe(struct mmc_card * card)2885 static int mmc_blk_probe(struct mmc_card *card)
2886 {
2887     struct mmc_blk_data *md, *part_md;
2888     char cap_str[10];
2889 
2890     /*
2891      * Check that the card supports the command class(es) we need.
2892      */
2893     if (!(card->csd.cmdclass & CCC_BLOCK_READ)) {
2894         return -ENODEV;
2895     }
2896 
2897     mmc_fixup_device(card, mmc_blk_fixups);
2898 
2899     card->complete_wq = alloc_workqueue("mmc_complete", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2900     if (unlikely(!card->complete_wq)) {
2901         pr_err("Failed to create mmc completion workqueue");
2902         return -ENOMEM;
2903     }
2904 
2905     md = mmc_blk_alloc(card);
2906     if (IS_ERR(md)) {
2907         return PTR_ERR(md);
2908     }
2909 
2910     string_get_size((u64)get_capacity(md->disk), MMC_SINGLE_SECTOR_SIZE, STRING_UNITS_2, cap_str, sizeof(cap_str));
2911     pr_info("%s: %s %s %s %s\n", md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2912             md->read_only ? "(ro)" : "");
2913 
2914     if (mmc_blk_alloc_parts(card, md)) {
2915         goto out;
2916     }
2917 
2918     dev_set_drvdata(&card->dev, md);
2919 
2920     if (mmc_add_disk(md)) {
2921         goto out;
2922     }
2923 
2924     list_for_each_entry(part_md, &md->part, part)
2925     {
2926         if (mmc_add_disk(part_md)) {
2927             goto out;
2928         }
2929     }
2930 
2931     /* Add two debugfs entries */
2932     mmc_blk_add_debugfs(card, md);
2933 
2934     pm_runtime_set_autosuspend_delay(&card->dev, MMC_AUTO_SUSPEND_DELAY_COUNT);
2935     pm_runtime_use_autosuspend(&card->dev);
2936 
2937     /*
2938      * Don't enable runtime PM for SD-combo cards here. Leave that
2939      * decision to be taken during the SDIO init sequence instead.
2940      */
2941     if (card->type != MMC_TYPE_SD_COMBO) {
2942         pm_runtime_set_active(&card->dev);
2943         pm_runtime_enable(&card->dev);
2944     }
2945 
2946     return 0;
2947 
2948 out:
2949     mmc_blk_remove_parts(card, md);
2950     mmc_blk_remove_req(md);
2951     return 0;
2952 }
2953 
mmc_blk_remove(struct mmc_card * card)2954 static void mmc_blk_remove(struct mmc_card *card)
2955 {
2956     struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2957 
2958     mmc_blk_remove_debugfs(card, md);
2959     mmc_blk_remove_parts(card, md);
2960     pm_runtime_get_sync(&card->dev);
2961     if (md->part_curr != md->part_type) {
2962         mmc_claim_host(card->host);
2963         mmc_blk_part_switch(card, md->part_type);
2964         mmc_release_host(card->host);
2965     }
2966     if (card->type != MMC_TYPE_SD_COMBO) {
2967         pm_runtime_disable(&card->dev);
2968     }
2969     pm_runtime_put_noidle(&card->dev);
2970     mmc_blk_remove_req(md);
2971     dev_set_drvdata(&card->dev, NULL);
2972     destroy_workqueue(card->complete_wq);
2973 }
2974 
_mmc_blk_suspend(struct mmc_card * card)2975 static int _mmc_blk_suspend(struct mmc_card *card)
2976 {
2977     struct mmc_blk_data *part_md;
2978     struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2979 
2980     if (md) {
2981         mmc_queue_suspend(&md->queue);
2982         list_for_each_entry(part_md, &md->part, part)
2983         {
2984             mmc_queue_suspend(&part_md->queue);
2985         }
2986     }
2987     return 0;
2988 }
2989 
mmc_blk_shutdown(struct mmc_card * card)2990 static void mmc_blk_shutdown(struct mmc_card *card)
2991 {
2992     _mmc_blk_suspend(card);
2993 }
2994 
2995 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)2996 static int mmc_blk_suspend(struct device *dev)
2997 {
2998     struct mmc_card *card = mmc_dev_to_card(dev);
2999 
3000     return _mmc_blk_suspend(card);
3001 }
3002 
mmc_blk_resume(struct device * dev)3003 static int mmc_blk_resume(struct device *dev)
3004 {
3005     struct mmc_blk_data *part_md;
3006     struct mmc_blk_data *md = dev_get_drvdata(dev);
3007 
3008     if (md) {
3009         /*
3010          * Resume involves the card going into idle state,
3011          * so current partition is always the main one.
3012          */
3013         md->part_curr = md->part_type;
3014         mmc_queue_resume(&md->queue);
3015         list_for_each_entry(part_md, &md->part, part)
3016         {
3017             mmc_queue_resume(&part_md->queue);
3018         }
3019     }
3020     return 0;
3021 }
3022 #endif
3023 
3024 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3025 
3026 static struct mmc_driver mmc_driver = {
3027     .drv =
3028         {
3029             .name = "mmcblk",
3030             .pm = &mmc_blk_pm_ops,
3031         },
3032     .probe = mmc_blk_probe,
3033     .remove = mmc_blk_remove,
3034     .shutdown = mmc_blk_shutdown,
3035 };
3036 
mmc_blk_init(void)3037 static int __init mmc_blk_init(void)
3038 {
3039     int res;
3040 
3041     res = bus_register(&mmc_rpmb_bus_type);
3042     if (res < 0) {
3043         pr_err("mmcblk: could not register RPMB bus type\n");
3044         return res;
3045     }
3046     res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3047     if (res < 0) {
3048         pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3049         goto out_bus_unreg;
3050     }
3051 
3052     if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) {
3053         pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3054     }
3055 
3056     max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3057 
3058     res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3059     if (res) {
3060         goto out_chrdev_unreg;
3061     }
3062 
3063     res = mmc_register_driver(&mmc_driver);
3064     if (res) {
3065         goto out_blkdev_unreg;
3066     }
3067 
3068     return 0;
3069 
3070 out_blkdev_unreg:
3071     unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3072 out_chrdev_unreg:
3073     unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3074 out_bus_unreg:
3075     bus_unregister(&mmc_rpmb_bus_type);
3076     return res;
3077 }
3078 
mmc_blk_exit(void)3079 static void __exit mmc_blk_exit(void)
3080 {
3081     mmc_unregister_driver(&mmc_driver);
3082     unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3083     unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3084     bus_unregister(&mmc_rpmb_bus_type);
3085 }
3086 
3087 module_init(mmc_blk_init);
3088 module_exit(mmc_blk_exit);
3089 
3090 MODULE_LICENSE("GPL");
3091 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3092