1 //! Note: tests specific to this file can be found in:
2 //!
3 //! - `ui/pattern/usefulness`
4 //! - `ui/or-patterns`
5 //! - `ui/consts/const_in_pattern`
6 //! - `ui/rfc-2008-non-exhaustive`
7 //! - `ui/half-open-range-patterns`
8 //! - probably many others
9 //!
10 //! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
11 //! reason not to, for example if they depend on a particular feature like `or_patterns`.
12 //!
13 //! -----
14 //!
15 //! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
16 //! Specifically, given a list of patterns for a type, we can tell whether:
17 //! (a) each pattern is reachable (reachability)
18 //! (b) the patterns cover every possible value for the type (exhaustiveness)
19 //!
20 //! The algorithm implemented here is a modified version of the one described in [this
21 //! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
22 //! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
23 //! without being as rigorous.
24 //!
25 //!
26 //! # Summary
27 //!
28 //! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
29 //! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
30 //! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
31 //! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
32 //! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
33 //! file is to compute it efficiently.
34 //!
35 //! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
36 //! is useful w.r.t. the patterns above it:
37 //! ```rust
38 //! # fn foo(x: Option<i32>) {
39 //! match x {
40 //! Some(_) => {},
41 //! None => {}, // reachable: `None` is matched by this but not the branch above
42 //! Some(0) => {}, // unreachable: all the values this matches are already matched by
43 //! // `Some(_)` above
44 //! }
45 //! # }
46 //! ```
47 //!
48 //! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
49 //! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
50 //! are used to tell the user which values are missing.
51 //! ```compile_fail,E0004
52 //! # fn foo(x: Option<i32>) {
53 //! match x {
54 //! Some(0) => {},
55 //! None => {},
56 //! // not exhaustive: `_` is useful because it matches `Some(1)`
57 //! }
58 //! # }
59 //! ```
60 //!
61 //! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
62 //! reachability for each match branch and exhaustiveness for the whole match.
63 //!
64 //!
65 //! # Constructors and fields
66 //!
67 //! Note: we will often abbreviate "constructor" as "ctor".
68 //!
69 //! The idea that powers everything that is done in this file is the following: a (matchable)
70 //! value is made from a constructor applied to a number of subvalues. Examples of constructors are
71 //! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
72 //! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
73 //! pattern-matching, and this is the basis for what follows.
74 //!
75 //! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
76 //! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
77 //! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
78 //! `enum`, with one variant for each number. This allows us to see any matchable value as made up
79 //! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
80 //! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
81 //!
82 //! This idea can be extended to patterns: they are also made from constructors applied to fields.
83 //! A pattern for a given type is allowed to use all the ctors for values of that type (which we
84 //! call "value constructors"), but there are also pattern-only ctors. The most important one is
85 //! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
86 //! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
87 //! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
88 //! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
89 //!
90 //! From this deconstruction we can compute whether a given value matches a given pattern; we
91 //! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
92 //! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
93 //! we compare their fields recursively. A few representative examples:
94 //!
95 //! - `matches!(v, _) := true`
96 //! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
97 //! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
98 //! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
99 //! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
100 //! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
101 //! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
102 //! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
103 //! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
104 //!
105 //! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
106 //!
107 //! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
108 //! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
109 //! infinitude of constructors. There are also subtleties with visibility of fields and
110 //! uninhabitedness and various other things. The constructors idea can be extended to handle most
111 //! of these subtleties though; caveats are documented where relevant throughout the code.
112 //!
113 //! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
114 //!
115 //!
116 //! # Specialization
117 //!
118 //! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
119 //! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
120 //! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
121 //! enumerate all possible values. From the discussion above we see that we can proceed
122 //! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
123 //! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
124 //! say from knowing only the first constructor of our candidate value.
125 //!
126 //! Let's take the following example:
127 //! ```compile_fail,E0004
128 //! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
129 //! # fn foo(x: Enum) {
130 //! match x {
131 //! Enum::Variant1(_) => {} // `p1`
132 //! Enum::Variant2(None, 0) => {} // `p2`
133 //! Enum::Variant2(Some(_), 0) => {} // `q`
134 //! }
135 //! # }
136 //! ```
137 //!
138 //! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
139 //! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
140 //! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
141 //! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
142 //!
143 //! ```compile_fail,E0004
144 //! # fn foo(x: (Option<bool>, u32)) {
145 //! match x {
146 //! (None, 0) => {} // `p2'`
147 //! (Some(_), 0) => {} // `q'`
148 //! }
149 //! # }
150 //! ```
151 //!
152 //! This motivates a new step in computing usefulness, that we call _specialization_.
153 //! Specialization consist of filtering a list of patterns for those that match a constructor, and
154 //! then looking into the constructor's fields. This enables usefulness to be computed recursively.
155 //!
156 //! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
157 //! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
158 //! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
159 //! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
160 //! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
161 //! happening:
162 //! ```ignore (illustrative)
163 //! [Enum::Variant1(_)]
164 //! [Enum::Variant2(None, 0)]
165 //! [Enum::Variant2(Some(_), 0)]
166 //! //==>> specialize with `Variant2`
167 //! [None, 0]
168 //! [Some(_), 0]
169 //! //==>> specialize with `Some`
170 //! [_, 0]
171 //! //==>> specialize with `true` (say the type was `bool`)
172 //! [0]
173 //! //==>> specialize with `0`
174 //! []
175 //! ```
176 //!
177 //! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
178 //! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
179 //! otherwise if returns the fields of the constructor. This only returns more than one
180 //! pattern-stack if `p` has a pattern-only constructor.
181 //!
182 //! - Specializing for the wrong constructor returns nothing
183 //!
184 //! `specialize(None, Some(p0)) := []`
185 //!
186 //! - Specializing for the correct constructor returns a single row with the fields
187 //!
188 //! `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
189 //!
190 //! `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
191 //!
192 //! - For or-patterns, we specialize each branch and concatenate the results
193 //!
194 //! `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
195 //!
196 //! - We treat the other pattern constructors as if they were a large or-pattern of all the
197 //! possibilities:
198 //!
199 //! `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
200 //!
201 //! `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
202 //!
203 //! `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
204 //!
205 //! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
206 //! the discussion about constructor splitting in [`super::deconstruct_pat`].
207 //!
208 //!
209 //! We then extend this function to work with pattern-stacks as input, by acting on the first
210 //! column and keeping the other columns untouched.
211 //!
212 //! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
213 //! or-patterns in the first column are expanded before being stored in the matrix. Specialization
214 //! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
215 //! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
216 //! [`Fields`] struct.
217 //!
218 //!
219 //! # Computing usefulness
220 //!
221 //! We now have all we need to compute usefulness. The inputs to usefulness are a list of
222 //! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
223 //! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
224 //! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
225 //! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
226 //!
227 //! - base case: `n_columns == 0`.
228 //! Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
229 //! unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
230 //!
231 //! - inductive case: `n_columns > 0`.
232 //! We need a way to list the constructors we want to try. We will be more clever in the next
233 //! section but for now assume we list all value constructors for the type of the first column.
234 //!
235 //! - for each such ctor `c`:
236 //!
237 //! - for each `q'` returned by `specialize(c, q)`:
238 //!
239 //! - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
240 //!
241 //! - for each witness found, we revert specialization by pushing the constructor `c` on top.
242 //!
243 //! - We return the concatenation of all the witnesses found, if any.
244 //!
245 //! Example:
246 //! ```ignore (illustrative)
247 //! [Some(true)] // p_1
248 //! [None] // p_2
249 //! [Some(_)] // q
250 //! //==>> try `None`: `specialize(None, q)` returns nothing
251 //! //==>> try `Some`: `specialize(Some, q)` returns a single row
252 //! [true] // p_1'
253 //! [_] // q'
254 //! //==>> try `true`: `specialize(true, q')` returns a single row
255 //! [] // p_1''
256 //! [] // q''
257 //! //==>> base case; `n != 0` so `q''` is not useful.
258 //! //==>> go back up a step
259 //! [true] // p_1'
260 //! [_] // q'
261 //! //==>> try `false`: `specialize(false, q')` returns a single row
262 //! [] // q''
263 //! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
264 //! witnesses:
265 //! []
266 //! //==>> undo the specialization with `false`
267 //! witnesses:
268 //! [false]
269 //! //==>> undo the specialization with `Some`
270 //! witnesses:
271 //! [Some(false)]
272 //! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
273 //! ```
274 //!
275 //! This computation is done in [`is_useful`]. In practice we don't care about the list of
276 //! witnesses when computing reachability; we only need to know whether any exist. We do keep the
277 //! witnesses when computing exhaustiveness to report them to the user.
278 //!
279 //!
280 //! # Making usefulness tractable: constructor splitting
281 //!
282 //! We're missing one last detail: which constructors do we list? Naively listing all value
283 //! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
284 //! first obvious insight is that we only want to list constructors that are covered by the head
285 //! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
286 //! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
287 //! group together constructors that behave the same.
288 //!
289 //! The details are not necessary to understand this file, so we explain them in
290 //! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
291 //!
292 //! # Constants in patterns
293 //!
294 //! There are two kinds of constants in patterns:
295 //!
296 //! * literals (`1`, `true`, `"foo"`)
297 //! * named or inline consts (`FOO`, `const { 5 + 6 }`)
298 //!
299 //! The latter are converted into other patterns with literals at the leaves. For example
300 //! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
301 //! pattern. This gets problematic when comparing the constant via `==` would behave differently
302 //! from matching on the constant converted to a pattern. Situations like that can occur, when
303 //! the user implements `PartialEq` manually, and thus could make `==` behave arbitrarily different.
304 //! In order to honor the `==` implementation, constants of types that implement `PartialEq` manually
305 //! stay as a full constant and become an `Opaque` pattern. These `Opaque` patterns do not participate
306 //! in exhaustiveness, specialization or overlap checking.
307
308 use self::ArmType::*;
309 use self::Usefulness::*;
310 use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard};
311 use crate::errors::{NonExhaustiveOmittedPattern, Uncovered};
312
313 use rustc_data_structures::captures::Captures;
314
315 use rustc_arena::TypedArena;
316 use rustc_data_structures::stack::ensure_sufficient_stack;
317 use rustc_hir::def_id::DefId;
318 use rustc_hir::HirId;
319 use rustc_middle::ty::{self, Ty, TyCtxt};
320 use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
321 use rustc_span::{Span, DUMMY_SP};
322
323 use smallvec::{smallvec, SmallVec};
324 use std::fmt;
325 use std::iter::once;
326
327 pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
328 pub(crate) tcx: TyCtxt<'tcx>,
329 /// The module in which the match occurs. This is necessary for
330 /// checking inhabited-ness of types because whether a type is (visibly)
331 /// inhabited can depend on whether it was defined in the current module or
332 /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
333 /// outside its module and should not be matchable with an empty match statement.
334 pub(crate) module: DefId,
335 pub(crate) param_env: ty::ParamEnv<'tcx>,
336 pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
337 /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
338 pub(crate) refutable: bool,
339 }
340
341 impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
is_uninhabited(&self, ty: Ty<'tcx>) -> bool342 pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
343 if self.tcx.features().exhaustive_patterns {
344 !ty.is_inhabited_from(self.tcx, self.module, self.param_env)
345 } else {
346 false
347 }
348 }
349
350 /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool351 pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
352 match ty.kind() {
353 ty::Adt(def, ..) => {
354 def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
355 }
356 _ => false,
357 }
358 }
359 }
360
361 #[derive(Copy, Clone)]
362 pub(super) struct PatCtxt<'a, 'p, 'tcx> {
363 pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
364 /// Type of the current column under investigation.
365 pub(super) ty: Ty<'tcx>,
366 /// Span of the current pattern under investigation.
367 pub(super) span: Span,
368 /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
369 /// subpattern.
370 pub(super) is_top_level: bool,
371 /// Whether the current pattern is from a `non_exhaustive` enum.
372 pub(super) is_non_exhaustive: bool,
373 }
374
375 impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result376 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
377 f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
378 }
379 }
380
381 /// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
382 /// works well.
383 #[derive(Clone)]
384 pub(crate) struct PatStack<'p, 'tcx> {
385 pub(crate) pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
386 }
387
388 impl<'p, 'tcx> PatStack<'p, 'tcx> {
from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self389 fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
390 Self::from_vec(smallvec![pat])
391 }
392
from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self393 fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self {
394 PatStack { pats: vec }
395 }
396
is_empty(&self) -> bool397 fn is_empty(&self) -> bool {
398 self.pats.is_empty()
399 }
400
len(&self) -> usize401 fn len(&self) -> usize {
402 self.pats.len()
403 }
404
head(&self) -> &'p DeconstructedPat<'p, 'tcx>405 fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
406 self.pats[0]
407 }
408
iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>>409 fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
410 self.pats.iter().copied()
411 }
412
413 // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
414 // or-pattern. Panics if `self` is empty.
expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a>415 fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
416 self.head().iter_fields().map(move |pat| {
417 let mut new_patstack = PatStack::from_pattern(pat);
418 new_patstack.pats.extend_from_slice(&self.pats[1..]);
419 new_patstack
420 })
421 }
422
423 // Recursively expand all patterns into their subpatterns and push each `PatStack` to matrix.
expand_and_extend<'a>(&'a self, matrix: &mut Matrix<'p, 'tcx>)424 fn expand_and_extend<'a>(&'a self, matrix: &mut Matrix<'p, 'tcx>) {
425 if !self.is_empty() && self.head().is_or_pat() {
426 for pat in self.head().iter_fields() {
427 let mut new_patstack = PatStack::from_pattern(pat);
428 new_patstack.pats.extend_from_slice(&self.pats[1..]);
429 if !new_patstack.is_empty() && new_patstack.head().is_or_pat() {
430 new_patstack.expand_and_extend(matrix);
431 } else if !new_patstack.is_empty() {
432 matrix.push(new_patstack);
433 }
434 }
435 }
436 }
437
438 /// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
439 ///
440 /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
441 /// fields filled with wild patterns.
442 ///
443 /// This is roughly the inverse of `Constructor::apply`.
pop_head_constructor( &self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>, ) -> PatStack<'p, 'tcx>444 fn pop_head_constructor(
445 &self,
446 pcx: &PatCtxt<'_, 'p, 'tcx>,
447 ctor: &Constructor<'tcx>,
448 ) -> PatStack<'p, 'tcx> {
449 // We pop the head pattern and push the new fields extracted from the arguments of
450 // `self.head()`.
451 let mut new_fields: SmallVec<[_; 2]> = self.head().specialize(pcx, ctor);
452 new_fields.extend_from_slice(&self.pats[1..]);
453 PatStack::from_vec(new_fields)
454 }
455 }
456
457 /// Pretty-printing for matrix row.
458 impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result459 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
460 write!(f, "+")?;
461 for pat in self.iter() {
462 write!(f, " {:?} +", pat)?;
463 }
464 Ok(())
465 }
466 }
467
468 /// A 2D matrix.
469 #[derive(Clone)]
470 pub(super) struct Matrix<'p, 'tcx> {
471 pub patterns: Vec<PatStack<'p, 'tcx>>,
472 }
473
474 impl<'p, 'tcx> Matrix<'p, 'tcx> {
empty() -> Self475 fn empty() -> Self {
476 Matrix { patterns: vec![] }
477 }
478
479 /// Number of columns of this matrix. `None` is the matrix is empty.
column_count(&self) -> Option<usize>480 pub(super) fn column_count(&self) -> Option<usize> {
481 self.patterns.get(0).map(|r| r.len())
482 }
483
484 /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
485 /// expands it.
push(&mut self, row: PatStack<'p, 'tcx>)486 fn push(&mut self, row: PatStack<'p, 'tcx>) {
487 if !row.is_empty() && row.head().is_or_pat() {
488 row.expand_and_extend(self);
489 } else {
490 self.patterns.push(row);
491 }
492 }
493
494 /// Iterate over the first component of each row
heads<'a>( &'a self, ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a>495 fn heads<'a>(
496 &'a self,
497 ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
498 self.patterns.iter().map(|r| r.head())
499 }
500
501 /// This computes `S(constructor, self)`. See top of the file for explanations.
specialize_constructor( &self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>, ) -> Matrix<'p, 'tcx>502 fn specialize_constructor(
503 &self,
504 pcx: &PatCtxt<'_, 'p, 'tcx>,
505 ctor: &Constructor<'tcx>,
506 ) -> Matrix<'p, 'tcx> {
507 let mut matrix = Matrix::empty();
508 for row in &self.patterns {
509 if ctor.is_covered_by(pcx, row.head().ctor()) {
510 let new_row = row.pop_head_constructor(pcx, ctor);
511 matrix.push(new_row);
512 }
513 }
514 matrix
515 }
516 }
517
518 /// Pretty-printer for matrices of patterns, example:
519 ///
520 /// ```text
521 /// + _ + [] +
522 /// + true + [First] +
523 /// + true + [Second(true)] +
524 /// + false + [_] +
525 /// + _ + [_, _, tail @ ..] +
526 /// ```
527 impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result528 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
529 write!(f, "\n")?;
530
531 let Matrix { patterns: m, .. } = self;
532 let pretty_printed_matrix: Vec<Vec<String>> =
533 m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect();
534
535 let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0);
536 assert!(m.iter().all(|row| row.len() == column_count));
537 let column_widths: Vec<usize> = (0..column_count)
538 .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
539 .collect();
540
541 for row in pretty_printed_matrix {
542 write!(f, "+")?;
543 for (column, pat_str) in row.into_iter().enumerate() {
544 write!(f, " ")?;
545 write!(f, "{:1$}", pat_str, column_widths[column])?;
546 write!(f, " +")?;
547 }
548 write!(f, "\n")?;
549 }
550 Ok(())
551 }
552 }
553
554 /// This carries the results of computing usefulness, as described at the top of the file. When
555 /// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
556 /// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
557 /// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
558 /// witnesses of non-exhaustiveness when there are any.
559 /// Which variant to use is dictated by `ArmType`.
560 #[derive(Debug)]
561 enum Usefulness<'p, 'tcx> {
562 /// If we don't care about witnesses, simply remember if the pattern was useful.
563 NoWitnesses { useful: bool },
564 /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
565 /// pattern is unreachable.
566 WithWitnesses(Vec<Witness<'p, 'tcx>>),
567 }
568
569 impl<'p, 'tcx> Usefulness<'p, 'tcx> {
new_useful(preference: ArmType) -> Self570 fn new_useful(preference: ArmType) -> Self {
571 match preference {
572 // A single (empty) witness of reachability.
573 FakeExtraWildcard => WithWitnesses(vec![Witness(vec![])]),
574 RealArm => NoWitnesses { useful: true },
575 }
576 }
577
new_not_useful(preference: ArmType) -> Self578 fn new_not_useful(preference: ArmType) -> Self {
579 match preference {
580 FakeExtraWildcard => WithWitnesses(vec![]),
581 RealArm => NoWitnesses { useful: false },
582 }
583 }
584
is_useful(&self) -> bool585 fn is_useful(&self) -> bool {
586 match self {
587 Usefulness::NoWitnesses { useful } => *useful,
588 Usefulness::WithWitnesses(witnesses) => !witnesses.is_empty(),
589 }
590 }
591
592 /// Combine usefulnesses from two branches. This is an associative operation.
extend(&mut self, other: Self)593 fn extend(&mut self, other: Self) {
594 match (&mut *self, other) {
595 (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
596 (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
597 (WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
598 (NoWitnesses { useful: s_useful }, NoWitnesses { useful: o_useful }) => {
599 *s_useful = *s_useful || o_useful
600 }
601 _ => unreachable!(),
602 }
603 }
604
605 /// After calculating usefulness after a specialization, call this to reconstruct a usefulness
606 /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
607 /// with the results of specializing with the other constructors.
apply_constructor( self, pcx: &PatCtxt<'_, 'p, 'tcx>, matrix: &Matrix<'p, 'tcx>, ctor: &Constructor<'tcx>, ) -> Self608 fn apply_constructor(
609 self,
610 pcx: &PatCtxt<'_, 'p, 'tcx>,
611 matrix: &Matrix<'p, 'tcx>, // used to compute missing ctors
612 ctor: &Constructor<'tcx>,
613 ) -> Self {
614 match self {
615 NoWitnesses { .. } => self,
616 WithWitnesses(ref witnesses) if witnesses.is_empty() => self,
617 WithWitnesses(witnesses) => {
618 let new_witnesses = if let Constructor::Missing { .. } = ctor {
619 // We got the special `Missing` constructor, so each of the missing constructors
620 // gives a new pattern that is not caught by the match. We list those patterns.
621 let new_patterns = if pcx.is_non_exhaustive {
622 // Here we don't want the user to try to list all variants, we want them to add
623 // a wildcard, so we only suggest that.
624 vec![DeconstructedPat::wildcard(pcx.ty, pcx.span)]
625 } else {
626 let mut split_wildcard = SplitWildcard::new(pcx);
627 split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
628
629 // This lets us know if we skipped any variants because they are marked
630 // `doc(hidden)` or they are unstable feature gate (only stdlib types).
631 let mut hide_variant_show_wild = false;
632 // Construct for each missing constructor a "wild" version of this
633 // constructor, that matches everything that can be built with
634 // it. For example, if `ctor` is a `Constructor::Variant` for
635 // `Option::Some`, we get the pattern `Some(_)`.
636 let mut new: Vec<DeconstructedPat<'_, '_>> = split_wildcard
637 .iter_missing(pcx)
638 .filter_map(|missing_ctor| {
639 // Check if this variant is marked `doc(hidden)`
640 if missing_ctor.is_doc_hidden_variant(pcx)
641 || missing_ctor.is_unstable_variant(pcx)
642 {
643 hide_variant_show_wild = true;
644 return None;
645 }
646 Some(DeconstructedPat::wild_from_ctor(pcx, missing_ctor.clone()))
647 })
648 .collect();
649
650 if hide_variant_show_wild {
651 new.push(DeconstructedPat::wildcard(pcx.ty, pcx.span));
652 }
653
654 new
655 };
656
657 witnesses
658 .into_iter()
659 .flat_map(|witness| {
660 new_patterns.iter().map(move |pat| {
661 Witness(
662 witness
663 .0
664 .iter()
665 .chain(once(pat))
666 .map(DeconstructedPat::clone_and_forget_reachability)
667 .collect(),
668 )
669 })
670 })
671 .collect()
672 } else {
673 witnesses
674 .into_iter()
675 .map(|witness| witness.apply_constructor(pcx, &ctor))
676 .collect()
677 };
678 WithWitnesses(new_witnesses)
679 }
680 }
681 }
682 }
683
684 #[derive(Copy, Clone, Debug)]
685 enum ArmType {
686 FakeExtraWildcard,
687 RealArm,
688 }
689
690 /// A witness of non-exhaustiveness for error reporting, represented
691 /// as a list of patterns (in reverse order of construction) with
692 /// wildcards inside to represent elements that can take any inhabitant
693 /// of the type as a value.
694 ///
695 /// A witness against a list of patterns should have the same types
696 /// and length as the pattern matched against. Because Rust `match`
697 /// is always against a single pattern, at the end the witness will
698 /// have length 1, but in the middle of the algorithm, it can contain
699 /// multiple patterns.
700 ///
701 /// For example, if we are constructing a witness for the match against
702 ///
703 /// ```compile_fail,E0004
704 /// struct Pair(Option<(u32, u32)>, bool);
705 /// # fn foo(p: Pair) {
706 /// match p {
707 /// Pair(None, _) => {}
708 /// Pair(_, false) => {}
709 /// }
710 /// # }
711 /// ```
712 ///
713 /// We'll perform the following steps:
714 /// 1. Start with an empty witness
715 /// `Witness(vec![])`
716 /// 2. Push a witness `true` against the `false`
717 /// `Witness(vec![true])`
718 /// 3. Push a witness `Some(_)` against the `None`
719 /// `Witness(vec![true, Some(_)])`
720 /// 4. Apply the `Pair` constructor to the witnesses
721 /// `Witness(vec![Pair(Some(_), true)])`
722 ///
723 /// The final `Pair(Some(_), true)` is then the resulting witness.
724 #[derive(Debug)]
725 pub(crate) struct Witness<'p, 'tcx>(Vec<DeconstructedPat<'p, 'tcx>>);
726
727 impl<'p, 'tcx> Witness<'p, 'tcx> {
728 /// Asserts that the witness contains a single pattern, and returns it.
single_pattern(self) -> DeconstructedPat<'p, 'tcx>729 fn single_pattern(self) -> DeconstructedPat<'p, 'tcx> {
730 assert_eq!(self.0.len(), 1);
731 self.0.into_iter().next().unwrap()
732 }
733
734 /// Constructs a partial witness for a pattern given a list of
735 /// patterns expanded by the specialization step.
736 ///
737 /// When a pattern P is discovered to be useful, this function is used bottom-up
738 /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
739 /// of values, V, where each value in that set is not covered by any previously
740 /// used patterns and is covered by the pattern P'. Examples:
741 ///
742 /// left_ty: tuple of 3 elements
743 /// pats: [10, 20, _] => (10, 20, _)
744 ///
745 /// left_ty: struct X { a: (bool, &'static str), b: usize}
746 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
apply_constructor(mut self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Self747 fn apply_constructor(mut self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
748 let pat = {
749 let len = self.0.len();
750 let arity = ctor.arity(pcx);
751 let pats = self.0.drain((len - arity)..).rev();
752 let fields = Fields::from_iter(pcx.cx, pats);
753 DeconstructedPat::new(ctor.clone(), fields, pcx.ty, pcx.span)
754 };
755
756 self.0.push(pat);
757
758 self
759 }
760 }
761
762 /// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
763 /// The algorithm from the paper has been modified to correctly handle empty
764 /// types. The changes are:
765 /// (0) We don't exit early if the pattern matrix has zero rows. We just
766 /// continue to recurse over columns.
767 /// (1) all_constructors will only return constructors that are statically
768 /// possible. E.g., it will only return `Ok` for `Result<T, !>`.
769 ///
770 /// This finds whether a (row) vector `v` of patterns is 'useful' in relation
771 /// to a set of such vectors `m` - this is defined as there being a set of
772 /// inputs that will match `v` but not any of the sets in `m`.
773 ///
774 /// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
775 ///
776 /// This is used both for reachability checking (if a pattern isn't useful in
777 /// relation to preceding patterns, it is not reachable) and exhaustiveness
778 /// checking (if a wildcard pattern is useful in relation to a matrix, the
779 /// matrix isn't exhaustive).
780 ///
781 /// `is_under_guard` is used to inform if the pattern has a guard. If it
782 /// has one it must not be inserted into the matrix. This shouldn't be
783 /// relied on for soundness.
784 #[instrument(level = "debug", skip(cx, matrix, lint_root), ret)]
is_useful<'p, 'tcx>( cx: &MatchCheckCtxt<'p, 'tcx>, matrix: &Matrix<'p, 'tcx>, v: &PatStack<'p, 'tcx>, witness_preference: ArmType, lint_root: HirId, is_under_guard: bool, is_top_level: bool, ) -> Usefulness<'p, 'tcx>785 fn is_useful<'p, 'tcx>(
786 cx: &MatchCheckCtxt<'p, 'tcx>,
787 matrix: &Matrix<'p, 'tcx>,
788 v: &PatStack<'p, 'tcx>,
789 witness_preference: ArmType,
790 lint_root: HirId,
791 is_under_guard: bool,
792 is_top_level: bool,
793 ) -> Usefulness<'p, 'tcx> {
794 debug!(?matrix, ?v);
795 let Matrix { patterns: rows, .. } = matrix;
796
797 // The base case. We are pattern-matching on () and the return value is
798 // based on whether our matrix has a row or not.
799 // NOTE: This could potentially be optimized by checking rows.is_empty()
800 // first and then, if v is non-empty, the return value is based on whether
801 // the type of the tuple we're checking is inhabited or not.
802 if v.is_empty() {
803 let ret = if rows.is_empty() {
804 Usefulness::new_useful(witness_preference)
805 } else {
806 Usefulness::new_not_useful(witness_preference)
807 };
808 debug!(?ret);
809 return ret;
810 }
811
812 debug_assert!(rows.iter().all(|r| r.len() == v.len()));
813
814 // If the first pattern is an or-pattern, expand it.
815 let mut ret = Usefulness::new_not_useful(witness_preference);
816 if v.head().is_or_pat() {
817 debug!("expanding or-pattern");
818 // We try each or-pattern branch in turn.
819 let mut matrix = matrix.clone();
820 for v in v.expand_or_pat() {
821 debug!(?v);
822 let usefulness = ensure_sufficient_stack(|| {
823 is_useful(cx, &matrix, &v, witness_preference, lint_root, is_under_guard, false)
824 });
825 debug!(?usefulness);
826 ret.extend(usefulness);
827 // If pattern has a guard don't add it to the matrix.
828 if !is_under_guard {
829 // We push the already-seen patterns into the matrix in order to detect redundant
830 // branches like `Some(_) | Some(0)`.
831 matrix.push(v);
832 }
833 }
834 } else {
835 let mut ty = v.head().ty();
836
837 // Opaque types can't get destructured/split, but the patterns can
838 // actually hint at hidden types, so we use the patterns' types instead.
839 if let ty::Alias(ty::Opaque, ..) = ty.kind() {
840 if let Some(row) = rows.first() {
841 ty = row.head().ty();
842 }
843 }
844 let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty);
845 debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span());
846 let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level, is_non_exhaustive };
847
848 let v_ctor = v.head().ctor();
849 debug!(?v_ctor);
850 if let Constructor::IntRange(ctor_range) = &v_ctor {
851 // Lint on likely incorrect range patterns (#63987)
852 ctor_range.lint_overlapping_range_endpoints(
853 pcx,
854 matrix.heads(),
855 matrix.column_count().unwrap_or(0),
856 lint_root,
857 )
858 }
859 // We split the head constructor of `v`.
860 let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
861 let is_non_exhaustive_and_wild = is_non_exhaustive && v_ctor.is_wildcard();
862 // For each constructor, we compute whether there's a value that starts with it that would
863 // witness the usefulness of `v`.
864 let start_matrix = &matrix;
865 for ctor in split_ctors {
866 debug!("specialize({:?})", ctor);
867 // We cache the result of `Fields::wildcards` because it is used a lot.
868 let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
869 let v = v.pop_head_constructor(pcx, &ctor);
870 let usefulness = ensure_sufficient_stack(|| {
871 is_useful(
872 cx,
873 &spec_matrix,
874 &v,
875 witness_preference,
876 lint_root,
877 is_under_guard,
878 false,
879 )
880 });
881 let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);
882
883 // When all the conditions are met we have a match with a `non_exhaustive` enum
884 // that has the potential to trigger the `non_exhaustive_omitted_patterns` lint.
885 // To understand the workings checkout `Constructor::split` and `SplitWildcard::new/into_ctors`
886 if is_non_exhaustive_and_wild
887 // Only emit a lint on refutable patterns.
888 && cx.refutable
889 // We check that the match has a wildcard pattern and that wildcard is useful,
890 // meaning there are variants that are covered by the wildcard. Without the check
891 // for `witness_preference` the lint would trigger on `if let NonExhaustiveEnum::A = foo {}`
892 && usefulness.is_useful() && matches!(witness_preference, RealArm)
893 && matches!(
894 &ctor,
895 Constructor::Missing { nonexhaustive_enum_missing_real_variants: true }
896 )
897 {
898 let patterns = {
899 let mut split_wildcard = SplitWildcard::new(pcx);
900 split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
901 // Construct for each missing constructor a "wild" version of this
902 // constructor, that matches everything that can be built with
903 // it. For example, if `ctor` is a `Constructor::Variant` for
904 // `Option::Some`, we get the pattern `Some(_)`.
905 split_wildcard
906 .iter_missing(pcx)
907 // Filter out the `NonExhaustive` because we want to list only real
908 // variants. Also remove any unstable feature gated variants.
909 // Because of how we computed `nonexhaustive_enum_missing_real_variants`,
910 // this will not return an empty `Vec`.
911 .filter(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx)))
912 .cloned()
913 .map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor))
914 .collect::<Vec<_>>()
915 };
916
917 // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
918 // is not exhaustive enough.
919 //
920 // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
921 cx.tcx.emit_spanned_lint(
922 NON_EXHAUSTIVE_OMITTED_PATTERNS,
923 lint_root,
924 pcx.span,
925 NonExhaustiveOmittedPattern {
926 scrut_ty: pcx.ty,
927 uncovered: Uncovered::new(pcx.span, pcx.cx, patterns),
928 },
929 );
930 }
931
932 ret.extend(usefulness);
933 }
934 }
935
936 if ret.is_useful() {
937 v.head().set_reachable();
938 }
939
940 ret
941 }
942
943 /// The arm of a match expression.
944 #[derive(Clone, Copy, Debug)]
945 pub(crate) struct MatchArm<'p, 'tcx> {
946 /// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
947 pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
948 pub(crate) hir_id: HirId,
949 pub(crate) has_guard: bool,
950 }
951
952 /// Indicates whether or not a given arm is reachable.
953 #[derive(Clone, Debug)]
954 pub(crate) enum Reachability {
955 /// The arm is reachable. This additionally carries a set of or-pattern branches that have been
956 /// found to be unreachable despite the overall arm being reachable. Used only in the presence
957 /// of or-patterns, otherwise it stays empty.
958 Reachable(Vec<Span>),
959 /// The arm is unreachable.
960 Unreachable,
961 }
962
963 /// The output of checking a match for exhaustiveness and arm reachability.
964 pub(crate) struct UsefulnessReport<'p, 'tcx> {
965 /// For each arm of the input, whether that arm is reachable after the arms above it.
966 pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>,
967 /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
968 /// exhaustiveness.
969 pub(crate) non_exhaustiveness_witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
970 }
971
972 /// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
973 /// of its arms are reachable.
974 ///
975 /// Note: the input patterns must have been lowered through
976 /// `check_match::MatchVisitor::lower_pattern`.
977 #[instrument(skip(cx, arms), level = "debug")]
compute_match_usefulness<'p, 'tcx>( cx: &MatchCheckCtxt<'p, 'tcx>, arms: &[MatchArm<'p, 'tcx>], lint_root: HirId, scrut_ty: Ty<'tcx>, ) -> UsefulnessReport<'p, 'tcx>978 pub(crate) fn compute_match_usefulness<'p, 'tcx>(
979 cx: &MatchCheckCtxt<'p, 'tcx>,
980 arms: &[MatchArm<'p, 'tcx>],
981 lint_root: HirId,
982 scrut_ty: Ty<'tcx>,
983 ) -> UsefulnessReport<'p, 'tcx> {
984 let mut matrix = Matrix::empty();
985 let arm_usefulness: Vec<_> = arms
986 .iter()
987 .copied()
988 .map(|arm| {
989 debug!(?arm);
990 let v = PatStack::from_pattern(arm.pat);
991 is_useful(cx, &matrix, &v, RealArm, arm.hir_id, arm.has_guard, true);
992 if !arm.has_guard {
993 matrix.push(v);
994 }
995 let reachability = if arm.pat.is_reachable() {
996 Reachability::Reachable(arm.pat.unreachable_spans())
997 } else {
998 Reachability::Unreachable
999 };
1000 (arm, reachability)
1001 })
1002 .collect();
1003
1004 let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty, DUMMY_SP));
1005 let v = PatStack::from_pattern(wild_pattern);
1006 let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, lint_root, false, true);
1007 let non_exhaustiveness_witnesses = match usefulness {
1008 WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(),
1009 NoWitnesses { .. } => bug!(),
1010 };
1011 UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
1012 }
1013