• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_UTILS_H_
29 #define DOUBLE_CONVERSION_UTILS_H_
30 
31 // Use DOUBLE_CONVERSION_NON_PREFIXED_MACROS to get unprefixed macros as was
32 // the case in double-conversion releases prior to 3.1.6
33 
34 #include <cstdlib>
35 #include <cstring>
36 
37 // For pre-C++11 compatibility
38 #if __cplusplus >= 201103L
39 #define DOUBLE_CONVERSION_NULLPTR nullptr
40 #else
41 #define DOUBLE_CONVERSION_NULLPTR NULL
42 #endif
43 
44 #include <cassert>
45 #ifndef DOUBLE_CONVERSION_ASSERT
46 #define DOUBLE_CONVERSION_ASSERT(condition)         \
47     assert(condition)
48 #endif
49 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ASSERT)
50 #define ASSERT DOUBLE_CONVERSION_ASSERT
51 #endif
52 
53 #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
54 #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort())
55 #endif
56 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNIMPLEMENTED)
57 #define UNIMPLEMENTED DOUBLE_CONVERSION_UNIMPLEMENTED
58 #endif
59 
60 #ifndef DOUBLE_CONVERSION_NO_RETURN
61 #ifdef _MSC_VER
62 #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
63 #else
64 #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
65 #endif
66 #endif
67 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(NO_RETURN)
68 #define NO_RETURN DOUBLE_CONVERSION_NO_RETURN
69 #endif
70 
71 #ifndef DOUBLE_CONVERSION_UNREACHABLE
72 #ifdef _MSC_VER
73 void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
abort_noreturn()74 inline void abort_noreturn() { abort(); }
75 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort_noreturn())
76 #else
77 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort())
78 #endif
79 #endif
80 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNREACHABLE)
81 #define UNREACHABLE DOUBLE_CONVERSION_UNREACHABLE
82 #endif
83 
84 // Not all compilers support __has_attribute and combining a check for both
85 // ifdef and __has_attribute on the same preprocessor line isn't portable.
86 #ifdef __has_attribute
87 #   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) __has_attribute(x)
88 #else
89 #   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) 0
90 #endif
91 
92 #ifndef DOUBLE_CONVERSION_UNUSED
93 #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused)
94 #define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
95 #else
96 #define DOUBLE_CONVERSION_UNUSED
97 #endif
98 #endif
99 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNUSED)
100 #define UNUSED DOUBLE_CONVERSION_UNUSED
101 #endif
102 
103 #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized)
104 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED __attribute__((uninitialized))
105 #else
106 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED
107 #endif
108 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(STACK_UNINITIALIZED)
109 #define STACK_UNINITIALIZED DOUBLE_CONVERSION_STACK_UNINITIALIZED
110 #endif
111 
112 // Double operations detection based on target architecture.
113 // Linux uses a 80bit wide floating point stack on x86. This induces double
114 // rounding, which in turn leads to wrong results.
115 // An easy way to test if the floating-point operations are correct is to
116 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
117 // the result is equal to 89255e-22.
118 // The best way to test this, is to create a division-function and to compare
119 // the output of the division with the expected result. (Inlining must be
120 // disabled.)
121 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
122 //
123 // For example:
124 /*
125 // -- in div.c
126 double Div_double(double x, double y) { return x / y; }
127 
128 // -- in main.c
129 double Div_double(double x, double y);  // Forward declaration.
130 
131 int main(int argc, char** argv) {
132   return Div_double(89255.0, 1e22) == 89255e-22;
133 }
134 */
135 // Run as follows ./main || echo "correct"
136 //
137 // If it prints "correct" then the architecture should be here, in the "correct" section.
138 #if defined(_M_X64) || defined(__x86_64__) || \
139     defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
140     defined(__hppa__) || defined(__ia64__) || \
141     defined(__mips__) || \
142     defined(__loongarch__) || \
143     defined(__nios2__) || defined(__ghs) || \
144     defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
145     defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
146     defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
147     defined(__SH4__) || defined(__alpha__) || \
148     defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
149     defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
150     defined(__riscv) || defined(__e2k__) || \
151     defined(__or1k__) || defined(__arc__) || defined(__ARC64__) || \
152     defined(__microblaze__) || defined(__XTENSA__) || \
153     defined(__EMSCRIPTEN__) || defined(__wasm32__)
154 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
155 #elif defined(__mc68000__) || \
156     defined(__pnacl__) || defined(__native_client__)
157 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
158 #elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
159 #if defined(_WIN32)
160 // Windows uses a 64bit wide floating point stack.
161 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
162 #else
163 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
164 #endif  // _WIN32
165 #else
166 #error Target architecture was not detected as supported by Double-Conversion.
167 #endif
168 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(CORRECT_DOUBLE_OPERATIONS)
169 #define CORRECT_DOUBLE_OPERATIONS DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
170 #endif
171 
172 #if defined(_WIN32) && !defined(__MINGW32__)
173 
174 typedef signed char int8_t;
175 typedef unsigned char uint8_t;
176 typedef short int16_t;  // NOLINT
177 typedef unsigned short uint16_t;  // NOLINT
178 typedef int int32_t;
179 typedef unsigned int uint32_t;
180 typedef __int64 int64_t;
181 typedef unsigned __int64 uint64_t;
182 // intptr_t and friends are defined in crtdefs.h through stdio.h.
183 
184 #else
185 
186 #include <stdint.h>
187 
188 #endif
189 
190 typedef uint16_t uc16;
191 
192 // The following macro works on both 32 and 64-bit platforms.
193 // Usage: instead of writing 0x1234567890123456
194 //      write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
195 #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
196 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UINT64_2PART_C)
197 #define UINT64_2PART_C DOUBLE_CONVERSION_UINT64_2PART_C
198 #endif
199 
200 // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
201 // size_t which represents the number of elements of the given
202 // array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated
203 // arrays.
204 #ifndef DOUBLE_CONVERSION_ARRAY_SIZE
205 #define DOUBLE_CONVERSION_ARRAY_SIZE(a)                                   \
206   ((sizeof(a) / sizeof(*(a))) /                         \
207   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
208 #endif
209 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ARRAY_SIZE)
210 #define ARRAY_SIZE DOUBLE_CONVERSION_ARRAY_SIZE
211 #endif
212 
213 // A macro to disallow the evil copy constructor and operator= functions
214 // This should be used in the private: declarations for a class
215 #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
216 #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)      \
217   TypeName(const TypeName&);                    \
218   void operator=(const TypeName&)
219 #endif
220 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_COPY_AND_ASSIGN)
221 #define DC_DISALLOW_COPY_AND_ASSIGN DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
222 #endif
223 
224 // A macro to disallow all the implicit constructors, namely the
225 // default constructor, copy constructor and operator= functions.
226 //
227 // This should be used in the private: declarations for a class
228 // that wants to prevent anyone from instantiating it. This is
229 // especially useful for classes containing only static methods.
230 #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
231 #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
232   TypeName();                                    \
233   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
234 #endif
235 #if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_IMPLICIT_CONSTRUCTORS)
236 #define DC_DISALLOW_IMPLICIT_CONSTRUCTORS DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
237 #endif
238 
239 namespace double_conversion {
240 
StrLength(const char * string)241 inline int StrLength(const char* string) {
242   size_t length = strlen(string);
243   DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
244   return static_cast<int>(length);
245 }
246 
247 // This is a simplified version of V8's Vector class.
248 template <typename T>
249 class Vector {
250  public:
Vector()251   Vector() : start_(DOUBLE_CONVERSION_NULLPTR), length_(0) {}
Vector(T * data,int len)252   Vector(T* data, int len) : start_(data), length_(len) {
253     DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != DOUBLE_CONVERSION_NULLPTR));
254   }
255 
256   // Returns a vector using the same backing storage as this one,
257   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)258   Vector<T> SubVector(int from, int to) {
259     DOUBLE_CONVERSION_ASSERT(to <= length_);
260     DOUBLE_CONVERSION_ASSERT(from < to);
261     DOUBLE_CONVERSION_ASSERT(0 <= from);
262     return Vector<T>(start() + from, to - from);
263   }
264 
265   // Returns the length of the vector.
length()266   int length() const { return length_; }
267 
268   // Returns whether or not the vector is empty.
is_empty()269   bool is_empty() const { return length_ == 0; }
270 
271   // Returns the pointer to the start of the data in the vector.
start()272   T* start() const { return start_; }
273 
274   // Access individual vector elements - checks bounds in debug mode.
275   T& operator[](int index) const {
276     DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_);
277     return start_[index];
278   }
279 
first()280   T& first() { return start_[0]; }
281 
last()282   T& last() { return start_[length_ - 1]; }
283 
pop_back()284   void pop_back() {
285     DOUBLE_CONVERSION_ASSERT(!is_empty());
286     --length_;
287   }
288 
289  private:
290   T* start_;
291   int length_;
292 };
293 
294 
295 // Helper class for building result strings in a character buffer. The
296 // purpose of the class is to use safe operations that checks the
297 // buffer bounds on all operations in debug mode.
298 class StringBuilder {
299  public:
StringBuilder(char * buffer,int buffer_size)300   StringBuilder(char* buffer, int buffer_size)
301       : buffer_(buffer, buffer_size), position_(0) { }
302 
~StringBuilder()303   ~StringBuilder() { if (!is_finalized()) Finalize(); }
304 
size()305   int size() const { return buffer_.length(); }
306 
307   // Get the current position in the builder.
position()308   int position() const {
309     DOUBLE_CONVERSION_ASSERT(!is_finalized());
310     return position_;
311   }
312 
313   // Reset the position.
Reset()314   void Reset() { position_ = 0; }
315 
316   // Add a single character to the builder. It is not allowed to add
317   // 0-characters; use the Finalize() method to terminate the string
318   // instead.
AddCharacter(char c)319   void AddCharacter(char c) {
320     DOUBLE_CONVERSION_ASSERT(c != '\0');
321     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
322     buffer_[position_++] = c;
323   }
324 
325   // Add an entire string to the builder. Uses strlen() internally to
326   // compute the length of the input string.
AddString(const char * s)327   void AddString(const char* s) {
328     AddSubstring(s, StrLength(s));
329   }
330 
331   // Add the first 'n' characters of the given string 's' to the
332   // builder. The input string must have enough characters.
AddSubstring(const char * s,int n)333   void AddSubstring(const char* s, int n) {
334     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
335     DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
336     memmove(&buffer_[position_], s, static_cast<size_t>(n));
337     position_ += n;
338   }
339 
340 
341   // Add character padding to the builder. If count is non-positive,
342   // nothing is added to the builder.
AddPadding(char c,int count)343   void AddPadding(char c, int count) {
344     for (int i = 0; i < count; i++) {
345       AddCharacter(c);
346     }
347   }
348 
349   // Finalize the string by 0-terminating it and returning the buffer.
Finalize()350   char* Finalize() {
351     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
352     buffer_[position_] = '\0';
353     // Make sure nobody managed to add a 0-character to the
354     // buffer while building the string.
355     DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
356     position_ = -1;
357     DOUBLE_CONVERSION_ASSERT(is_finalized());
358     return buffer_.start();
359   }
360 
361  private:
362   Vector<char> buffer_;
363   int position_;
364 
is_finalized()365   bool is_finalized() const { return position_ < 0; }
366 
367   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
368 };
369 
370 // The type-based aliasing rule allows the compiler to assume that pointers of
371 // different types (for some definition of different) never alias each other.
372 // Thus the following code does not work:
373 //
374 // float f = foo();
375 // int fbits = *(int*)(&f);
376 //
377 // The compiler 'knows' that the int pointer can't refer to f since the types
378 // don't match, so the compiler may cache f in a register, leaving random data
379 // in fbits.  Using C++ style casts makes no difference, however a pointer to
380 // char data is assumed to alias any other pointer.  This is the 'memcpy
381 // exception'.
382 //
383 // Bit_cast uses the memcpy exception to move the bits from a variable of one
384 // type of a variable of another type.  Of course the end result is likely to
385 // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
386 // will completely optimize BitCast away.
387 //
388 // There is an additional use for BitCast.
389 // Recent gccs will warn when they see casts that may result in breakage due to
390 // the type-based aliasing rule.  If you have checked that there is no breakage
391 // you can use BitCast to cast one pointer type to another.  This confuses gcc
392 // enough that it can no longer see that you have cast one pointer type to
393 // another thus avoiding the warning.
394 template <class Dest, class Source>
BitCast(const Source & source)395 Dest BitCast(const Source& source) {
396   // Compile time assertion: sizeof(Dest) == sizeof(Source)
397   // A compile error here means your Dest and Source have different sizes.
398 #if __cplusplus >= 201103L
399   static_assert(sizeof(Dest) == sizeof(Source),
400                 "source and destination size mismatch");
401 #else
402   DOUBLE_CONVERSION_UNUSED
403   typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
404 #endif
405 
406   Dest dest;
407   memmove(&dest, &source, sizeof(dest));
408   return dest;
409 }
410 
411 template <class Dest, class Source>
BitCast(Source * source)412 Dest BitCast(Source* source) {
413   return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
414 }
415 
416 }  // namespace double_conversion
417 
418 #endif  // DOUBLE_CONVERSION_UTILS_H_
419