• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * \file ecp_internal.h
3  *
4  * \brief Function declarations for alternative implementation of elliptic curve
5  * point arithmetic.
6  */
7 /*
8  *  Copyright (C) 2016, ARM Limited, All Rights Reserved
9  *  SPDX-License-Identifier: Apache-2.0
10  *
11  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
12  *  not use this file except in compliance with the License.
13  *  You may obtain a copy of the License at
14  *
15  *  http://www.apache.org/licenses/LICENSE-2.0
16  *
17  *  Unless required by applicable law or agreed to in writing, software
18  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
19  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20  *  See the License for the specific language governing permissions and
21  *  limitations under the License.
22  *
23  *  This file is part of mbed TLS (https://tls.mbed.org)
24  */
25 
26 /*
27  * References:
28  *
29  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
30  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
31  *
32  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
33  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
34  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
35  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
36  *
37  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
38  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
39  *     ePrint Archive, 2004, vol. 2004, p. 342.
40  *     <http://eprint.iacr.org/2004/342.pdf>
41  *
42  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
43  *     <http://www.secg.org/sec2-v2.pdf>
44  *
45  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
46  *     Curve Cryptography.
47  *
48  * [6] Digital Signature Standard (DSS), FIPS 186-4.
49  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
50  *
51  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
52  *     Security (TLS), RFC 4492.
53  *     <https://tools.ietf.org/search/rfc4492>
54  *
55  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
56  *
57  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
58  *     Springer Science & Business Media, 1 Aug 2000
59  */
60 
61 #ifndef MBEDTLS_ECP_INTERNAL_H
62 #define MBEDTLS_ECP_INTERNAL_H
63 
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 
70 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
71 
72 /**
73  * \brief           Indicate if the Elliptic Curve Point module extension can
74  *                  handle the group.
75  *
76  * \param grp       The pointer to the elliptic curve group that will be the
77  *                  basis of the cryptographic computations.
78  *
79  * \return          Non-zero if successful.
80  */
81 unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
82 
83 /**
84  * \brief           Initialise the Elliptic Curve Point module extension.
85  *
86  *                  If mbedtls_internal_ecp_grp_capable returns true for a
87  *                  group, this function has to be able to initialise the
88  *                  module for it.
89  *
90  *                  This module can be a driver to a crypto hardware
91  *                  accelerator, for which this could be an initialise function.
92  *
93  * \param grp       The pointer to the group the module needs to be
94  *                  initialised for.
95  *
96  * \return          0 if successful.
97  */
98 int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
99 
100 /**
101  * \brief           Frees and deallocates the Elliptic Curve Point module
102  *                  extension.
103  *
104  * \param grp       The pointer to the group the module was initialised for.
105  */
106 void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
107 
108 #if defined(ECP_SHORTWEIERSTRASS)
109 
110 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
111 /**
112  * \brief           Randomize jacobian coordinates:
113  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
114  *
115  * \param grp       Pointer to the group representing the curve.
116  *
117  * \param pt        The point on the curve to be randomised, given with Jacobian
118  *                  coordinates.
119  *
120  * \param f_rng     A function pointer to the random number generator.
121  *
122  * \param p_rng     A pointer to the random number generator state.
123  *
124  * \return          0 if successful.
125  */
126 int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
127         mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
128         void *p_rng );
129 #endif
130 
131 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
132 /**
133  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
134  *
135  *                  The coordinates of Q must be normalized (= affine),
136  *                  but those of P don't need to. R is not normalized.
137  *
138  *                  This function is used only as a subrutine of
139  *                  ecp_mul_comb().
140  *
141  *                  Special cases: (1) P or Q is zero, (2) R is zero,
142  *                      (3) P == Q.
143  *                  None of these cases can happen as intermediate step in
144  *                  ecp_mul_comb():
145  *                      - at each step, P, Q and R are multiples of the base
146  *                      point, the factor being less than its order, so none of
147  *                      them is zero;
148  *                      - Q is an odd multiple of the base point, P an even
149  *                      multiple, due to the choice of precomputed points in the
150  *                      modified comb method.
151  *                  So branches for these cases do not leak secret information.
152  *
153  *                  We accept Q->Z being unset (saving memory in tables) as
154  *                  meaning 1.
155  *
156  *                  Cost in field operations if done by [5] 3.22:
157  *                      1A := 8M + 3S
158  *
159  * \param grp       Pointer to the group representing the curve.
160  *
161  * \param R         Pointer to a point structure to hold the result.
162  *
163  * \param P         Pointer to the first summand, given with Jacobian
164  *                  coordinates
165  *
166  * \param Q         Pointer to the second summand, given with affine
167  *                  coordinates.
168  *
169  * \return          0 if successful.
170  */
171 int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
172         mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
173         const mbedtls_ecp_point *Q );
174 #endif
175 
176 /**
177  * \brief           Point doubling R = 2 P, Jacobian coordinates.
178  *
179  *                  Cost:   1D := 3M + 4S    (A ==  0)
180  *                          4M + 4S          (A == -3)
181  *                          3M + 6S + 1a     otherwise
182  *                  when the implementation is based on the "dbl-1998-cmo-2"
183  *                  doubling formulas in [8] and standard optimizations are
184  *                  applied when curve parameter A is one of { 0, -3 }.
185  *
186  * \param grp       Pointer to the group representing the curve.
187  *
188  * \param R         Pointer to a point structure to hold the result.
189  *
190  * \param P         Pointer to the point that has to be doubled, given with
191  *                  Jacobian coordinates.
192  *
193  * \return          0 if successful.
194  */
195 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
196 int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
197         mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
198 #endif
199 
200 /**
201  * \brief           Normalize jacobian coordinates of an array of (pointers to)
202  *                  points.
203  *
204  *                  Using Montgomery's trick to perform only one inversion mod P
205  *                  the cost is:
206  *                      1N(t) := 1I + (6t - 3)M + 1S
207  *                  (See for example Algorithm 10.3.4. in [9])
208  *
209  *                  This function is used only as a subrutine of
210  *                  ecp_mul_comb().
211  *
212  *                  Warning: fails (returning an error) if one of the points is
213  *                  zero!
214  *                  This should never happen, see choice of w in ecp_mul_comb().
215  *
216  * \param grp       Pointer to the group representing the curve.
217  *
218  * \param T         Array of pointers to the points to normalise.
219  *
220  * \param t_len     Number of elements in the array.
221  *
222  * \return          0 if successful,
223  *                      an error if one of the points is zero.
224  */
225 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
226 int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
227         mbedtls_ecp_point *T[], size_t t_len );
228 #endif
229 
230 /**
231  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
232  *
233  *                  Cost in field operations if done by [5] 3.2.1:
234  *                      1N := 1I + 3M + 1S
235  *
236  * \param grp       Pointer to the group representing the curve.
237  *
238  * \param pt        pointer to the point to be normalised. This is an
239  *                  input/output parameter.
240  *
241  * \return          0 if successful.
242  */
243 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
244 int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
245         mbedtls_ecp_point *pt );
246 #endif
247 
248 #endif /* ECP_SHORTWEIERSTRASS */
249 
250 #if defined(ECP_MONTGOMERY)
251 
252 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
253 int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
254         mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
255         const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
256 #endif
257 
258 /**
259  * \brief           Randomize projective x/z coordinates:
260  *                      (X, Z) -> (l X, l Z) for random l
261  *
262  * \param grp       pointer to the group representing the curve
263  *
264  * \param P         the point on the curve to be randomised given with
265  *                  projective coordinates. This is an input/output parameter.
266  *
267  * \param f_rng     a function pointer to the random number generator
268  *
269  * \param p_rng     a pointer to the random number generator state
270  *
271  * \return          0 if successful
272  */
273 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
274 int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
275         mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
276         void *p_rng );
277 #endif
278 
279 /**
280  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
281  *
282  * \param grp       pointer to the group representing the curve
283  *
284  * \param P         pointer to the point to be normalised. This is an
285  *                  input/output parameter.
286  *
287  * \return          0 if successful
288  */
289 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
290 int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
291         mbedtls_ecp_point *P );
292 #endif
293 
294 #endif /* ECP_MONTGOMERY */
295 
296 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
297 
298 #endif /* ecp_internal.h */
299 
300