1 // Copyright 2006 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 #ifndef RE2_SPARSE_ARRAY_H_
6 #define RE2_SPARSE_ARRAY_H_
7
8 // DESCRIPTION
9 //
10 // SparseArray<T>(m) is a map from integers in [0, m) to T values.
11 // It requires (sizeof(T)+sizeof(int))*m memory, but it provides
12 // fast iteration through the elements in the array and fast clearing
13 // of the array. The array has a concept of certain elements being
14 // uninitialized (having no value).
15 //
16 // Insertion and deletion are constant time operations.
17 //
18 // Allocating the array is a constant time operation
19 // when memory allocation is a constant time operation.
20 //
21 // Clearing the array is a constant time operation (unusual!).
22 //
23 // Iterating through the array is an O(n) operation, where n
24 // is the number of items in the array (not O(m)).
25 //
26 // The array iterator visits entries in the order they were first
27 // inserted into the array. It is safe to add items to the array while
28 // using an iterator: the iterator will visit indices added to the array
29 // during the iteration, but will not re-visit indices whose values
30 // change after visiting. Thus SparseArray can be a convenient
31 // implementation of a work queue.
32 //
33 // The SparseArray implementation is NOT thread-safe. It is up to the
34 // caller to make sure only one thread is accessing the array. (Typically
35 // these arrays are temporary values and used in situations where speed is
36 // important.)
37 //
38 // The SparseArray interface does not present all the usual STL bells and
39 // whistles.
40 //
41 // Implemented with reference to Briggs & Torczon, An Efficient
42 // Representation for Sparse Sets, ACM Letters on Programming Languages
43 // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
44 //
45 // Briggs & Torczon popularized this technique, but it had been known
46 // long before their paper. They point out that Aho, Hopcroft, and
47 // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
48 // 1986 Programming Pearls both hint at the technique in exercises to the
49 // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
50 // exercise 8).
51 //
52 // Briggs & Torczon describe a sparse set implementation. I have
53 // trivially generalized it to create a sparse array (actually the original
54 // target of the AHU and Bentley exercises).
55
56 // IMPLEMENTATION
57 //
58 // SparseArray is an array dense_ and an array sparse_ of identical size.
59 // At any point, the number of elements in the sparse array is size_.
60 //
61 // The array dense_ contains the size_ elements in the sparse array (with
62 // their indices),
63 // in the order that the elements were first inserted. This array is dense:
64 // the size_ pairs are dense_[0] through dense_[size_-1].
65 //
66 // The array sparse_ maps from indices in [0,m) to indices in [0,size_).
67 // For indices present in the array, dense_[sparse_[i]].index_ == i.
68 // For indices not present in the array, sparse_ can contain any value at all,
69 // perhaps outside the range [0, size_) but perhaps not.
70 //
71 // The lax requirement on sparse_ values makes clearing the array very easy:
72 // set size_ to 0. Lookups are slightly more complicated.
73 // An index i has a value in the array if and only if:
74 // sparse_[i] is in [0, size_) AND
75 // dense_[sparse_[i]].index_ == i.
76 // If both these properties hold, only then it is safe to refer to
77 // dense_[sparse_[i]].value_
78 // as the value associated with index i.
79 //
80 // To insert a new entry, set sparse_[i] to size_,
81 // initialize dense_[size_], and then increment size_.
82 //
83 // To make the sparse array as efficient as possible for non-primitive types,
84 // elements may or may not be destroyed when they are deleted from the sparse
85 // array through a call to resize(). They immediately become inaccessible, but
86 // they are only guaranteed to be destroyed when the SparseArray destructor is
87 // called.
88 //
89 // A moved-from SparseArray will be empty.
90
91 #include <assert.h>
92 #include <stdint.h>
93
94 #include <algorithm>
95 #include <memory>
96 #include <utility>
97
98 #include "re2/pod_array.h"
99
100 // Doing this simplifies the logic below.
101 #ifndef __has_feature
102 #define __has_feature(x) 0
103 #endif
104
105 #if __has_feature(memory_sanitizer)
106 #include <sanitizer/msan_interface.h>
107 #endif
108
109 namespace re2 {
110
111 template<typename Value>
112 class SparseArray {
113 public:
114 SparseArray();
115 explicit SparseArray(int max_size);
116 ~SparseArray();
117
118 // IndexValue pairs: exposed in SparseArray::iterator.
119 class IndexValue;
120
121 typedef IndexValue* iterator;
122 typedef const IndexValue* const_iterator;
123
124 SparseArray(const SparseArray& src);
125 SparseArray(SparseArray&& src);
126
127 SparseArray& operator=(const SparseArray& src);
128 SparseArray& operator=(SparseArray&& src);
129
130 // Return the number of entries in the array.
size()131 int size() const {
132 return size_;
133 }
134
135 // Indicate whether the array is empty.
empty()136 int empty() const {
137 return size_ == 0;
138 }
139
140 // Iterate over the array.
begin()141 iterator begin() {
142 return dense_.data();
143 }
end()144 iterator end() {
145 return dense_.data() + size_;
146 }
147
begin()148 const_iterator begin() const {
149 return dense_.data();
150 }
end()151 const_iterator end() const {
152 return dense_.data() + size_;
153 }
154
155 // Change the maximum size of the array.
156 // Invalidates all iterators.
157 void resize(int new_max_size);
158
159 // Return the maximum size of the array.
160 // Indices can be in the range [0, max_size).
max_size()161 int max_size() const {
162 if (dense_.data() != NULL)
163 return dense_.size();
164 else
165 return 0;
166 }
167
168 // Clear the array.
clear()169 void clear() {
170 size_ = 0;
171 }
172
173 // Check whether index i is in the array.
174 bool has_index(int i) const;
175
176 // Comparison function for sorting.
177 // Can sort the sparse array so that future iterations
178 // will visit indices in increasing order using
179 // std::sort(arr.begin(), arr.end(), arr.less);
180 static bool less(const IndexValue& a, const IndexValue& b);
181
182 public:
183 // Set the value at index i to v.
set(int i,const Value & v)184 iterator set(int i, const Value& v) {
185 return SetInternal(true, i, v);
186 }
187
188 // Set the value at new index i to v.
189 // Fast but unsafe: only use if has_index(i) is false.
set_new(int i,const Value & v)190 iterator set_new(int i, const Value& v) {
191 return SetInternal(false, i, v);
192 }
193
194 // Set the value at index i to v.
195 // Fast but unsafe: only use if has_index(i) is true.
set_existing(int i,const Value & v)196 iterator set_existing(int i, const Value& v) {
197 return SetExistingInternal(i, v);
198 }
199
200 // Get the value at index i.
201 // Fast but unsafe: only use if has_index(i) is true.
get_existing(int i)202 Value& get_existing(int i) {
203 assert(has_index(i));
204 return dense_[sparse_[i]].value_;
205 }
get_existing(int i)206 const Value& get_existing(int i) const {
207 assert(has_index(i));
208 return dense_[sparse_[i]].value_;
209 }
210
211 private:
SetInternal(bool allow_existing,int i,const Value & v)212 iterator SetInternal(bool allow_existing, int i, const Value& v) {
213 DebugCheckInvariants();
214 if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size())) {
215 assert(false && "illegal index");
216 // Semantically, end() would be better here, but we already know
217 // the user did something stupid, so begin() insulates them from
218 // dereferencing an invalid pointer.
219 return begin();
220 }
221 if (!allow_existing) {
222 assert(!has_index(i));
223 create_index(i);
224 } else {
225 if (!has_index(i))
226 create_index(i);
227 }
228 return SetExistingInternal(i, v);
229 }
230
SetExistingInternal(int i,const Value & v)231 iterator SetExistingInternal(int i, const Value& v) {
232 DebugCheckInvariants();
233 assert(has_index(i));
234 dense_[sparse_[i]].value_ = v;
235 DebugCheckInvariants();
236 return dense_.data() + sparse_[i];
237 }
238
239 // Add the index i to the array.
240 // Only use if has_index(i) is known to be false.
241 // Since it doesn't set the value associated with i,
242 // this function is private, only intended as a helper
243 // for other methods.
244 void create_index(int i);
245
246 // In debug mode, verify that some invariant properties of the class
247 // are being maintained. This is called at the end of the constructor
248 // and at the beginning and end of all public non-const member functions.
249 void DebugCheckInvariants() const;
250
251 // Initializes memory for elements [min, max).
MaybeInitializeMemory(int min,int max)252 void MaybeInitializeMemory(int min, int max) {
253 #if __has_feature(memory_sanitizer)
254 __msan_unpoison(sparse_.data() + min, (max - min) * sizeof sparse_[0]);
255 #elif defined(RE2_ON_VALGRIND)
256 for (int i = min; i < max; i++) {
257 sparse_[i] = 0xababababU;
258 }
259 #endif
260 }
261
262 int size_ = 0;
263 PODArray<int> sparse_;
264 PODArray<IndexValue> dense_;
265 };
266
267 template<typename Value>
268 SparseArray<Value>::SparseArray() = default;
269
270 template<typename Value>
SparseArray(const SparseArray & src)271 SparseArray<Value>::SparseArray(const SparseArray& src)
272 : size_(src.size_),
273 sparse_(src.max_size()),
274 dense_(src.max_size()) {
275 std::copy_n(src.sparse_.data(), src.max_size(), sparse_.data());
276 std::copy_n(src.dense_.data(), src.max_size(), dense_.data());
277 }
278
279 template<typename Value>
SparseArray(SparseArray && src)280 SparseArray<Value>::SparseArray(SparseArray&& src)
281 : size_(src.size_),
282 sparse_(std::move(src.sparse_)),
283 dense_(std::move(src.dense_)) {
284 src.size_ = 0;
285 }
286
287 template<typename Value>
288 SparseArray<Value>& SparseArray<Value>::operator=(const SparseArray& src) {
289 // Construct these first for exception safety.
290 PODArray<int> a(src.max_size());
291 PODArray<IndexValue> b(src.max_size());
292
293 size_ = src.size_;
294 sparse_ = std::move(a);
295 dense_ = std::move(b);
296 std::copy_n(src.sparse_.data(), src.max_size(), sparse_.data());
297 std::copy_n(src.dense_.data(), src.max_size(), dense_.data());
298 return *this;
299 }
300
301 template<typename Value>
302 SparseArray<Value>& SparseArray<Value>::operator=(SparseArray&& src) {
303 size_ = src.size_;
304 sparse_ = std::move(src.sparse_);
305 dense_ = std::move(src.dense_);
306 src.size_ = 0;
307 return *this;
308 }
309
310 // IndexValue pairs: exposed in SparseArray::iterator.
311 template<typename Value>
312 class SparseArray<Value>::IndexValue {
313 public:
index()314 int index() const { return index_; }
value()315 Value& value() { return value_; }
value()316 const Value& value() const { return value_; }
317
318 private:
319 friend class SparseArray;
320 int index_;
321 Value value_;
322 };
323
324 // Change the maximum size of the array.
325 // Invalidates all iterators.
326 template<typename Value>
resize(int new_max_size)327 void SparseArray<Value>::resize(int new_max_size) {
328 DebugCheckInvariants();
329 if (new_max_size > max_size()) {
330 const int old_max_size = max_size();
331
332 // Construct these first for exception safety.
333 PODArray<int> a(new_max_size);
334 PODArray<IndexValue> b(new_max_size);
335
336 std::copy_n(sparse_.data(), old_max_size, a.data());
337 std::copy_n(dense_.data(), old_max_size, b.data());
338
339 sparse_ = std::move(a);
340 dense_ = std::move(b);
341
342 MaybeInitializeMemory(old_max_size, new_max_size);
343 }
344 if (size_ > new_max_size)
345 size_ = new_max_size;
346 DebugCheckInvariants();
347 }
348
349 // Check whether index i is in the array.
350 template<typename Value>
has_index(int i)351 bool SparseArray<Value>::has_index(int i) const {
352 assert(i >= 0);
353 assert(i < max_size());
354 if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size())) {
355 return false;
356 }
357 // Unsigned comparison avoids checking sparse_[i] < 0.
358 return (uint32_t)sparse_[i] < (uint32_t)size_ &&
359 dense_[sparse_[i]].index_ == i;
360 }
361
362 template<typename Value>
create_index(int i)363 void SparseArray<Value>::create_index(int i) {
364 assert(!has_index(i));
365 assert(size_ < max_size());
366 sparse_[i] = size_;
367 dense_[size_].index_ = i;
368 size_++;
369 }
370
SparseArray(int max_size)371 template<typename Value> SparseArray<Value>::SparseArray(int max_size) :
372 sparse_(max_size), dense_(max_size) {
373 MaybeInitializeMemory(size_, max_size);
374 DebugCheckInvariants();
375 }
376
~SparseArray()377 template<typename Value> SparseArray<Value>::~SparseArray() {
378 DebugCheckInvariants();
379 }
380
DebugCheckInvariants()381 template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
382 assert(0 <= size_);
383 assert(size_ <= max_size());
384 }
385
386 // Comparison function for sorting.
less(const IndexValue & a,const IndexValue & b)387 template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
388 const IndexValue& b) {
389 return a.index_ < b.index_;
390 }
391
392 } // namespace re2
393
394 #endif // RE2_SPARSE_ARRAY_H_
395