• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2021 The Tint Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SRC_PROGRAM_BUILDER_H_
16 #define SRC_PROGRAM_BUILDER_H_
17 
18 #include <string>
19 #include <unordered_set>
20 #include <utility>
21 
22 #include "src/ast/alias.h"
23 #include "src/ast/array.h"
24 #include "src/ast/assignment_statement.h"
25 #include "src/ast/atomic.h"
26 #include "src/ast/binary_expression.h"
27 #include "src/ast/binding_decoration.h"
28 #include "src/ast/bitcast_expression.h"
29 #include "src/ast/bool.h"
30 #include "src/ast/bool_literal_expression.h"
31 #include "src/ast/break_statement.h"
32 #include "src/ast/call_expression.h"
33 #include "src/ast/call_statement.h"
34 #include "src/ast/case_statement.h"
35 #include "src/ast/continue_statement.h"
36 #include "src/ast/depth_multisampled_texture.h"
37 #include "src/ast/depth_texture.h"
38 #include "src/ast/disable_validation_decoration.h"
39 #include "src/ast/discard_statement.h"
40 #include "src/ast/external_texture.h"
41 #include "src/ast/f32.h"
42 #include "src/ast/fallthrough_statement.h"
43 #include "src/ast/float_literal_expression.h"
44 #include "src/ast/for_loop_statement.h"
45 #include "src/ast/i32.h"
46 #include "src/ast/if_statement.h"
47 #include "src/ast/index_accessor_expression.h"
48 #include "src/ast/interpolate_decoration.h"
49 #include "src/ast/invariant_decoration.h"
50 #include "src/ast/loop_statement.h"
51 #include "src/ast/matrix.h"
52 #include "src/ast/member_accessor_expression.h"
53 #include "src/ast/module.h"
54 #include "src/ast/multisampled_texture.h"
55 #include "src/ast/override_decoration.h"
56 #include "src/ast/phony_expression.h"
57 #include "src/ast/pointer.h"
58 #include "src/ast/return_statement.h"
59 #include "src/ast/sampled_texture.h"
60 #include "src/ast/sampler.h"
61 #include "src/ast/sint_literal_expression.h"
62 #include "src/ast/stage_decoration.h"
63 #include "src/ast/storage_texture.h"
64 #include "src/ast/stride_decoration.h"
65 #include "src/ast/struct_block_decoration.h"
66 #include "src/ast/struct_member_align_decoration.h"
67 #include "src/ast/struct_member_offset_decoration.h"
68 #include "src/ast/struct_member_size_decoration.h"
69 #include "src/ast/switch_statement.h"
70 #include "src/ast/type_name.h"
71 #include "src/ast/u32.h"
72 #include "src/ast/uint_literal_expression.h"
73 #include "src/ast/unary_op_expression.h"
74 #include "src/ast/variable_decl_statement.h"
75 #include "src/ast/vector.h"
76 #include "src/ast/void.h"
77 #include "src/ast/workgroup_decoration.h"
78 #include "src/program.h"
79 #include "src/program_id.h"
80 #include "src/sem/array.h"
81 #include "src/sem/bool_type.h"
82 #include "src/sem/depth_texture_type.h"
83 #include "src/sem/external_texture_type.h"
84 #include "src/sem/f32_type.h"
85 #include "src/sem/i32_type.h"
86 #include "src/sem/matrix_type.h"
87 #include "src/sem/multisampled_texture_type.h"
88 #include "src/sem/pointer_type.h"
89 #include "src/sem/sampled_texture_type.h"
90 #include "src/sem/storage_texture_type.h"
91 #include "src/sem/struct.h"
92 #include "src/sem/u32_type.h"
93 #include "src/sem/vector_type.h"
94 #include "src/sem/void_type.h"
95 
96 #ifdef INCLUDE_TINT_TINT_H_
97 #error "internal tint header being #included from tint.h"
98 #endif
99 
100 // Forward declarations
101 namespace tint {
102 namespace ast {
103 class VariableDeclStatement;
104 }  // namespace ast
105 }  // namespace tint
106 
107 namespace tint {
108 class CloneContext;
109 
110 /// ProgramBuilder is a mutable builder for a Program.
111 /// To construct a Program, populate the builder and then `std::move` it to a
112 /// Program.
113 class ProgramBuilder {
114   /// A helper used to disable overloads if the first type in `TYPES` is a
115   /// Source. Used to avoid ambiguities in overloads that take a Source as the
116   /// first parameter and those that perfectly-forward the first argument.
117   template <typename... TYPES>
118   using DisableIfSource = traits::EnableIfIsNotType<
119       traits::Decay<traits::NthTypeOf<0, TYPES..., void>>,
120       Source>;
121 
122   /// VarOptionals is a helper for accepting a number of optional, extra
123   /// arguments for Var() and Global().
124   struct VarOptionals {
125     template <typename... ARGS>
VarOptionalsVarOptionals126     explicit VarOptionals(ARGS&&... args) {
127       Apply(std::forward<ARGS>(args)...);
128     }
129     ~VarOptionals();
130 
131     ast::StorageClass storage = ast::StorageClass::kNone;
132     ast::Access access = ast::Access::kUndefined;
133     const ast::Expression* constructor = nullptr;
134     ast::DecorationList decorations = {};
135 
136    private:
SetVarOptionals137     void Set(ast::StorageClass sc) { storage = sc; }
SetVarOptionals138     void Set(ast::Access ac) { access = ac; }
SetVarOptionals139     void Set(const ast::Expression* c) { constructor = c; }
SetVarOptionals140     void Set(const ast::DecorationList& l) { decorations = l; }
141 
142     template <typename FIRST, typename... ARGS>
ApplyVarOptionals143     void Apply(FIRST&& first, ARGS&&... args) {
144       Set(std::forward<FIRST>(first));
145       Apply(std::forward<ARGS>(args)...);
146     }
ApplyVarOptionals147     void Apply() {}
148   };
149 
150  public:
151   /// ASTNodeAllocator is an alias to BlockAllocator<ast::Node>
152   using ASTNodeAllocator = BlockAllocator<ast::Node>;
153 
154   /// SemNodeAllocator is an alias to BlockAllocator<sem::Node>
155   using SemNodeAllocator = BlockAllocator<sem::Node>;
156 
157   /// `i32` is a type alias to `int`.
158   /// Useful for passing to template methods such as `vec2<i32>()` to imitate
159   /// WGSL syntax.
160   /// Note: this is intentionally not aliased to uint32_t as we want integer
161   /// literals passed to the builder to match WGSL's integer literal types.
162   using i32 = decltype(1);
163   /// `u32` is a type alias to `unsigned int`.
164   /// Useful for passing to template methods such as `vec2<u32>()` to imitate
165   /// WGSL syntax.
166   /// Note: this is intentionally not aliased to uint32_t as we want integer
167   /// literals passed to the builder to match WGSL's integer literal types.
168   using u32 = decltype(1u);
169   /// `f32` is a type alias to `float`
170   /// Useful for passing to template methods such as `vec2<f32>()` to imitate
171   /// WGSL syntax.
172   using f32 = float;
173 
174   /// Constructor
175   ProgramBuilder();
176 
177   /// Move constructor
178   /// @param rhs the builder to move
179   ProgramBuilder(ProgramBuilder&& rhs);
180 
181   /// Destructor
182   virtual ~ProgramBuilder();
183 
184   /// Move assignment operator
185   /// @param rhs the builder to move
186   /// @return this builder
187   ProgramBuilder& operator=(ProgramBuilder&& rhs);
188 
189   /// Wrap returns a new ProgramBuilder wrapping the Program `program` without
190   /// making a deep clone of the Program contents.
191   /// ProgramBuilder returned by Wrap() is intended to temporarily extend an
192   /// existing immutable program.
193   /// As the returned ProgramBuilder wraps `program`, `program` must not be
194   /// destructed or assigned while using the returned ProgramBuilder.
195   /// TODO(bclayton) - Evaluate whether there are safer alternatives to this
196   /// function. See crbug.com/tint/460.
197   /// @param program the immutable Program to wrap
198   /// @return the ProgramBuilder that wraps `program`
199   static ProgramBuilder Wrap(const Program* program);
200 
201   /// @returns the unique identifier for this program
ID()202   ProgramID ID() const { return id_; }
203 
204   /// @returns a reference to the program's types
Types()205   sem::Manager& Types() {
206     AssertNotMoved();
207     return types_;
208   }
209 
210   /// @returns a reference to the program's types
Types()211   const sem::Manager& Types() const {
212     AssertNotMoved();
213     return types_;
214   }
215 
216   /// @returns a reference to the program's AST nodes storage
ASTNodes()217   ASTNodeAllocator& ASTNodes() {
218     AssertNotMoved();
219     return ast_nodes_;
220   }
221 
222   /// @returns a reference to the program's AST nodes storage
ASTNodes()223   const ASTNodeAllocator& ASTNodes() const {
224     AssertNotMoved();
225     return ast_nodes_;
226   }
227 
228   /// @returns a reference to the program's semantic nodes storage
SemNodes()229   SemNodeAllocator& SemNodes() {
230     AssertNotMoved();
231     return sem_nodes_;
232   }
233 
234   /// @returns a reference to the program's semantic nodes storage
SemNodes()235   const SemNodeAllocator& SemNodes() const {
236     AssertNotMoved();
237     return sem_nodes_;
238   }
239 
240   /// @returns a reference to the program's AST root Module
AST()241   ast::Module& AST() {
242     AssertNotMoved();
243     return *ast_;
244   }
245 
246   /// @returns a reference to the program's AST root Module
AST()247   const ast::Module& AST() const {
248     AssertNotMoved();
249     return *ast_;
250   }
251 
252   /// @returns a reference to the program's semantic info
Sem()253   sem::Info& Sem() {
254     AssertNotMoved();
255     return sem_;
256   }
257 
258   /// @returns a reference to the program's semantic info
Sem()259   const sem::Info& Sem() const {
260     AssertNotMoved();
261     return sem_;
262   }
263 
264   /// @returns a reference to the program's SymbolTable
Symbols()265   SymbolTable& Symbols() {
266     AssertNotMoved();
267     return symbols_;
268   }
269 
270   /// @returns a reference to the program's SymbolTable
Symbols()271   const SymbolTable& Symbols() const {
272     AssertNotMoved();
273     return symbols_;
274   }
275 
276   /// @returns a reference to the program's diagnostics
Diagnostics()277   diag::List& Diagnostics() {
278     AssertNotMoved();
279     return diagnostics_;
280   }
281 
282   /// @returns a reference to the program's diagnostics
Diagnostics()283   const diag::List& Diagnostics() const {
284     AssertNotMoved();
285     return diagnostics_;
286   }
287 
288   /// Controls whether the Resolver will be run on the program when it is built.
289   /// @param enable the new flag value (defaults to true)
SetResolveOnBuild(bool enable)290   void SetResolveOnBuild(bool enable) { resolve_on_build_ = enable; }
291 
292   /// @return true if the Resolver will be run on the program when it is
293   /// built.
ResolveOnBuild()294   bool ResolveOnBuild() const { return resolve_on_build_; }
295 
296   /// @returns true if the program has no error diagnostics and is not missing
297   /// information
298   bool IsValid() const;
299 
300   /// Creates a new ast::Node owned by the ProgramBuilder. When the
301   /// ProgramBuilder is destructed, the ast::Node will also be destructed.
302   /// @param source the Source of the node
303   /// @param args the arguments to pass to the type constructor
304   /// @returns the node pointer
305   template <typename T, typename... ARGS>
create(const Source & source,ARGS &&...args)306   traits::EnableIfIsType<T, ast::Node>* create(const Source& source,
307                                                ARGS&&... args) {
308     AssertNotMoved();
309     return ast_nodes_.Create<T>(id_, source, std::forward<ARGS>(args)...);
310   }
311 
312   /// Creates a new ast::Node owned by the ProgramBuilder, injecting the current
313   /// Source as set by the last call to SetSource() as the only argument to the
314   /// constructor.
315   /// When the ProgramBuilder is destructed, the ast::Node will also be
316   /// destructed.
317   /// @returns the node pointer
318   template <typename T>
create()319   traits::EnableIfIsType<T, ast::Node>* create() {
320     AssertNotMoved();
321     return ast_nodes_.Create<T>(id_, source_);
322   }
323 
324   /// Creates a new ast::Node owned by the ProgramBuilder, injecting the current
325   /// Source as set by the last call to SetSource() as the first argument to the
326   /// constructor.
327   /// When the ProgramBuilder is destructed, the ast::Node will also be
328   /// destructed.
329   /// @param arg0 the first arguments to pass to the type constructor
330   /// @param args the remaining arguments to pass to the type constructor
331   /// @returns the node pointer
332   template <typename T, typename ARG0, typename... ARGS>
333   traits::EnableIf</* T is ast::Node and ARG0 is not Source */
334                    traits::IsTypeOrDerived<T, ast::Node>::value &&
335                        !traits::IsTypeOrDerived<ARG0, Source>::value,
336                    T>*
create(ARG0 && arg0,ARGS &&...args)337   create(ARG0&& arg0, ARGS&&... args) {
338     AssertNotMoved();
339     return ast_nodes_.Create<T>(id_, source_, std::forward<ARG0>(arg0),
340                                 std::forward<ARGS>(args)...);
341   }
342 
343   /// Creates a new sem::Node owned by the ProgramBuilder.
344   /// When the ProgramBuilder is destructed, the sem::Node will also be
345   /// destructed.
346   /// @param args the arguments to pass to the type constructor
347   /// @returns the node pointer
348   template <typename T, typename... ARGS>
349   traits::EnableIf<traits::IsTypeOrDerived<T, sem::Node>::value &&
350                        !traits::IsTypeOrDerived<T, sem::Type>::value,
351                    T>*
create(ARGS &&...args)352   create(ARGS&&... args) {
353     AssertNotMoved();
354     return sem_nodes_.Create<T>(std::forward<ARGS>(args)...);
355   }
356 
357   /// Creates a new sem::Type owned by the ProgramBuilder.
358   /// When the ProgramBuilder is destructed, owned ProgramBuilder and the
359   /// returned`Type` will also be destructed.
360   /// Types are unique (de-aliased), and so calling create() for the same `T`
361   /// and arguments will return the same pointer.
362   /// @warning Use this method to acquire a type only if all of its type
363   /// information is provided in the constructor arguments `args`.<br>
364   /// If the type requires additional configuration after construction that
365   /// affect its fundamental type, build the type with `std::make_unique`, make
366   /// any necessary alterations and then call unique_type() instead.
367   /// @param args the arguments to pass to the type constructor
368   /// @returns the de-aliased type pointer
369   template <typename T, typename... ARGS>
create(ARGS &&...args)370   traits::EnableIfIsType<T, sem::Type>* create(ARGS&&... args) {
371     static_assert(std::is_base_of<sem::Type, T>::value,
372                   "T does not derive from sem::Type");
373     AssertNotMoved();
374     return types_.Get<T>(std::forward<ARGS>(args)...);
375   }
376 
377   /// Marks this builder as moved, preventing any further use of the builder.
378   void MarkAsMoved();
379 
380   //////////////////////////////////////////////////////////////////////////////
381   // TypesBuilder
382   //////////////////////////////////////////////////////////////////////////////
383 
384   /// TypesBuilder holds basic `tint` types and methods for constructing
385   /// complex types.
386   class TypesBuilder {
387    public:
388     /// Constructor
389     /// @param builder the program builder
390     explicit TypesBuilder(ProgramBuilder* builder);
391 
392     /// @return the tint AST type for the C type `T`.
393     template <typename T>
Of()394     const ast::Type* Of() const {
395       return CToAST<T>::get(this);
396     }
397 
398     /// @returns a boolean type
bool_()399     const ast::Bool* bool_() const { return builder->create<ast::Bool>(); }
400 
401     /// @param source the Source of the node
402     /// @returns a boolean type
bool_(const Source & source)403     const ast::Bool* bool_(const Source& source) const {
404       return builder->create<ast::Bool>(source);
405     }
406 
407     /// @returns a f32 type
f32()408     const ast::F32* f32() const { return builder->create<ast::F32>(); }
409 
410     /// @param source the Source of the node
411     /// @returns a f32 type
f32(const Source & source)412     const ast::F32* f32(const Source& source) const {
413       return builder->create<ast::F32>(source);
414     }
415 
416     /// @returns a i32 type
i32()417     const ast::I32* i32() const { return builder->create<ast::I32>(); }
418 
419     /// @param source the Source of the node
420     /// @returns a i32 type
i32(const Source & source)421     const ast::I32* i32(const Source& source) const {
422       return builder->create<ast::I32>(source);
423     }
424 
425     /// @returns a u32 type
u32()426     const ast::U32* u32() const { return builder->create<ast::U32>(); }
427 
428     /// @param source the Source of the node
429     /// @returns a u32 type
u32(const Source & source)430     const ast::U32* u32(const Source& source) const {
431       return builder->create<ast::U32>(source);
432     }
433 
434     /// @returns a void type
void_()435     const ast::Void* void_() const { return builder->create<ast::Void>(); }
436 
437     /// @param source the Source of the node
438     /// @returns a void type
void_(const Source & source)439     const ast::Void* void_(const Source& source) const {
440       return builder->create<ast::Void>(source);
441     }
442 
443     /// @param type vector subtype
444     /// @param n vector width in elements
445     /// @return the tint AST type for a `n`-element vector of `type`.
vec(const ast::Type * type,uint32_t n)446     const ast::Vector* vec(const ast::Type* type, uint32_t n) const {
447       return builder->create<ast::Vector>(type, n);
448     }
449 
450     /// @param source the Source of the node
451     /// @param type vector subtype
452     /// @param n vector width in elements
453     /// @return the tint AST type for a `n`-element vector of `type`.
vec(const Source & source,const ast::Type * type,uint32_t n)454     const ast::Vector* vec(const Source& source,
455                            const ast::Type* type,
456                            uint32_t n) const {
457       return builder->create<ast::Vector>(source, type, n);
458     }
459 
460     /// @param type vector subtype
461     /// @return the tint AST type for a 2-element vector of `type`.
vec2(const ast::Type * type)462     const ast::Vector* vec2(const ast::Type* type) const {
463       return vec(type, 2u);
464     }
465 
466     /// @param type vector subtype
467     /// @return the tint AST type for a 3-element vector of `type`.
vec3(const ast::Type * type)468     const ast::Vector* vec3(const ast::Type* type) const {
469       return vec(type, 3u);
470     }
471 
472     /// @param type vector subtype
473     /// @return the tint AST type for a 4-element vector of `type`.
vec4(const ast::Type * type)474     const ast::Vector* vec4(const ast::Type* type) const {
475       return vec(type, 4u);
476     }
477 
478     /// @param n vector width in elements
479     /// @return the tint AST type for a `n`-element vector of `type`.
480     template <typename T>
vec(uint32_t n)481     const ast::Vector* vec(uint32_t n) const {
482       return vec(Of<T>(), n);
483     }
484 
485     /// @return the tint AST type for a 2-element vector of the C type `T`.
486     template <typename T>
vec2()487     const ast::Vector* vec2() const {
488       return vec2(Of<T>());
489     }
490 
491     /// @return the tint AST type for a 3-element vector of the C type `T`.
492     template <typename T>
vec3()493     const ast::Vector* vec3() const {
494       return vec3(Of<T>());
495     }
496 
497     /// @return the tint AST type for a 4-element vector of the C type `T`.
498     template <typename T>
vec4()499     const ast::Vector* vec4() const {
500       return vec4(Of<T>());
501     }
502 
503     /// @param type matrix subtype
504     /// @param columns number of columns for the matrix
505     /// @param rows number of rows for the matrix
506     /// @return the tint AST type for a matrix of `type`
mat(const ast::Type * type,uint32_t columns,uint32_t rows)507     const ast::Matrix* mat(const ast::Type* type,
508                            uint32_t columns,
509                            uint32_t rows) const {
510       return builder->create<ast::Matrix>(type, rows, columns);
511     }
512 
513     /// @param source the Source of the node
514     /// @param type matrix subtype
515     /// @param columns number of columns for the matrix
516     /// @param rows number of rows for the matrix
517     /// @return the tint AST type for a matrix of `type`
mat(const Source & source,const ast::Type * type,uint32_t columns,uint32_t rows)518     const ast::Matrix* mat(const Source& source,
519                            const ast::Type* type,
520                            uint32_t columns,
521                            uint32_t rows) const {
522       return builder->create<ast::Matrix>(source, type, rows, columns);
523     }
524 
525     /// @param type matrix subtype
526     /// @return the tint AST type for a 2x3 matrix of `type`.
mat2x2(const ast::Type * type)527     const ast::Matrix* mat2x2(const ast::Type* type) const {
528       return mat(type, 2u, 2u);
529     }
530 
531     /// @param type matrix subtype
532     /// @return the tint AST type for a 2x3 matrix of `type`.
mat2x3(const ast::Type * type)533     const ast::Matrix* mat2x3(const ast::Type* type) const {
534       return mat(type, 2u, 3u);
535     }
536 
537     /// @param type matrix subtype
538     /// @return the tint AST type for a 2x4 matrix of `type`.
mat2x4(const ast::Type * type)539     const ast::Matrix* mat2x4(const ast::Type* type) const {
540       return mat(type, 2u, 4u);
541     }
542 
543     /// @param type matrix subtype
544     /// @return the tint AST type for a 3x2 matrix of `type`.
mat3x2(const ast::Type * type)545     const ast::Matrix* mat3x2(const ast::Type* type) const {
546       return mat(type, 3u, 2u);
547     }
548 
549     /// @param type matrix subtype
550     /// @return the tint AST type for a 3x3 matrix of `type`.
mat3x3(const ast::Type * type)551     const ast::Matrix* mat3x3(const ast::Type* type) const {
552       return mat(type, 3u, 3u);
553     }
554 
555     /// @param type matrix subtype
556     /// @return the tint AST type for a 3x4 matrix of `type`.
mat3x4(const ast::Type * type)557     const ast::Matrix* mat3x4(const ast::Type* type) const {
558       return mat(type, 3u, 4u);
559     }
560 
561     /// @param type matrix subtype
562     /// @return the tint AST type for a 4x2 matrix of `type`.
mat4x2(const ast::Type * type)563     const ast::Matrix* mat4x2(const ast::Type* type) const {
564       return mat(type, 4u, 2u);
565     }
566 
567     /// @param type matrix subtype
568     /// @return the tint AST type for a 4x3 matrix of `type`.
mat4x3(const ast::Type * type)569     const ast::Matrix* mat4x3(const ast::Type* type) const {
570       return mat(type, 4u, 3u);
571     }
572 
573     /// @param type matrix subtype
574     /// @return the tint AST type for a 4x4 matrix of `type`.
mat4x4(const ast::Type * type)575     const ast::Matrix* mat4x4(const ast::Type* type) const {
576       return mat(type, 4u, 4u);
577     }
578 
579     /// @param columns number of columns for the matrix
580     /// @param rows number of rows for the matrix
581     /// @return the tint AST type for a matrix of `type`
582     template <typename T>
mat(uint32_t columns,uint32_t rows)583     const ast::Matrix* mat(uint32_t columns, uint32_t rows) const {
584       return mat(Of<T>(), columns, rows);
585     }
586 
587     /// @return the tint AST type for a 2x3 matrix of the C type `T`.
588     template <typename T>
mat2x2()589     const ast::Matrix* mat2x2() const {
590       return mat2x2(Of<T>());
591     }
592 
593     /// @return the tint AST type for a 2x3 matrix of the C type `T`.
594     template <typename T>
mat2x3()595     const ast::Matrix* mat2x3() const {
596       return mat2x3(Of<T>());
597     }
598 
599     /// @return the tint AST type for a 2x4 matrix of the C type `T`.
600     template <typename T>
mat2x4()601     const ast::Matrix* mat2x4() const {
602       return mat2x4(Of<T>());
603     }
604 
605     /// @return the tint AST type for a 3x2 matrix of the C type `T`.
606     template <typename T>
mat3x2()607     const ast::Matrix* mat3x2() const {
608       return mat3x2(Of<T>());
609     }
610 
611     /// @return the tint AST type for a 3x3 matrix of the C type `T`.
612     template <typename T>
mat3x3()613     const ast::Matrix* mat3x3() const {
614       return mat3x3(Of<T>());
615     }
616 
617     /// @return the tint AST type for a 3x4 matrix of the C type `T`.
618     template <typename T>
mat3x4()619     const ast::Matrix* mat3x4() const {
620       return mat3x4(Of<T>());
621     }
622 
623     /// @return the tint AST type for a 4x2 matrix of the C type `T`.
624     template <typename T>
mat4x2()625     const ast::Matrix* mat4x2() const {
626       return mat4x2(Of<T>());
627     }
628 
629     /// @return the tint AST type for a 4x3 matrix of the C type `T`.
630     template <typename T>
mat4x3()631     const ast::Matrix* mat4x3() const {
632       return mat4x3(Of<T>());
633     }
634 
635     /// @return the tint AST type for a 4x4 matrix of the C type `T`.
636     template <typename T>
mat4x4()637     const ast::Matrix* mat4x4() const {
638       return mat4x4(Of<T>());
639     }
640 
641     /// @param subtype the array element type
642     /// @param n the array size. nullptr represents a runtime-array
643     /// @param decos the optional decorations for the array
644     /// @return the tint AST type for a array of size `n` of type `T`
645     template <typename EXPR = ast::Expression*>
646     const ast::Array* array(const ast::Type* subtype,
647                             EXPR&& n = nullptr,
648                             ast::DecorationList decos = {}) const {
649       return builder->create<ast::Array>(
650           subtype, builder->Expr(std::forward<EXPR>(n)), decos);
651     }
652 
653     /// @param source the Source of the node
654     /// @param subtype the array element type
655     /// @param n the array size. nullptr represents a runtime-array
656     /// @param decos the optional decorations for the array
657     /// @return the tint AST type for a array of size `n` of type `T`
658     template <typename EXPR = ast::Expression*>
659     const ast::Array* array(const Source& source,
660                             const ast::Type* subtype,
661                             EXPR&& n = nullptr,
662                             ast::DecorationList decos = {}) const {
663       return builder->create<ast::Array>(
664           source, subtype, builder->Expr(std::forward<EXPR>(n)), decos);
665     }
666 
667     /// @param subtype the array element type
668     /// @param n the array size. nullptr represents a runtime-array
669     /// @param stride the array stride. 0 represents implicit stride
670     /// @return the tint AST type for a array of size `n` of type `T`
671     template <typename EXPR>
array(const ast::Type * subtype,EXPR && n,uint32_t stride)672     const ast::Array* array(const ast::Type* subtype,
673                             EXPR&& n,
674                             uint32_t stride) const {
675       ast::DecorationList decos;
676       if (stride) {
677         decos.emplace_back(builder->create<ast::StrideDecoration>(stride));
678       }
679       return array(subtype, std::forward<EXPR>(n), std::move(decos));
680     }
681 
682     /// @param source the Source of the node
683     /// @param subtype the array element type
684     /// @param n the array size. nullptr represents a runtime-array
685     /// @param stride the array stride. 0 represents implicit stride
686     /// @return the tint AST type for a array of size `n` of type `T`
687     template <typename EXPR>
array(const Source & source,const ast::Type * subtype,EXPR && n,uint32_t stride)688     const ast::Array* array(const Source& source,
689                             const ast::Type* subtype,
690                             EXPR&& n,
691                             uint32_t stride) const {
692       ast::DecorationList decos;
693       if (stride) {
694         decos.emplace_back(builder->create<ast::StrideDecoration>(stride));
695       }
696       return array(source, subtype, std::forward<EXPR>(n), std::move(decos));
697     }
698 
699     /// @return the tint AST type for a runtime-sized array of type `T`
700     template <typename T>
array()701     const ast::Array* array() const {
702       return array(Of<T>(), nullptr);
703     }
704 
705     /// @return the tint AST type for an array of size `N` of type `T`
706     template <typename T, int N>
array()707     const ast::Array* array() const {
708       return array(Of<T>(), builder->Expr(N));
709     }
710 
711     /// @param stride the array stride
712     /// @return the tint AST type for a runtime-sized array of type `T`
713     template <typename T>
array(uint32_t stride)714     const ast::Array* array(uint32_t stride) const {
715       return array(Of<T>(), nullptr, stride);
716     }
717 
718     /// @param stride the array stride
719     /// @return the tint AST type for an array of size `N` of type `T`
720     template <typename T, int N>
array(uint32_t stride)721     const ast::Array* array(uint32_t stride) const {
722       return array(Of<T>(), builder->Expr(N), stride);
723     }
724 
725     /// Creates a type name
726     /// @param name the name
727     /// @returns the type name
728     template <typename NAME>
type_name(NAME && name)729     const ast::TypeName* type_name(NAME&& name) const {
730       return builder->create<ast::TypeName>(
731           builder->Sym(std::forward<NAME>(name)));
732     }
733 
734     /// Creates a type name
735     /// @param source the Source of the node
736     /// @param name the name
737     /// @returns the type name
738     template <typename NAME>
type_name(const Source & source,NAME && name)739     const ast::TypeName* type_name(const Source& source, NAME&& name) const {
740       return builder->create<ast::TypeName>(
741           source, builder->Sym(std::forward<NAME>(name)));
742     }
743 
744     /// Creates an alias type
745     /// @param name the alias name
746     /// @param type the alias type
747     /// @returns the alias pointer
748     template <typename NAME>
alias(NAME && name,const ast::Type * type)749     const ast::Alias* alias(NAME&& name, const ast::Type* type) const {
750       auto sym = builder->Sym(std::forward<NAME>(name));
751       return builder->create<ast::Alias>(sym, type);
752     }
753 
754     /// Creates an alias type
755     /// @param source the Source of the node
756     /// @param name the alias name
757     /// @param type the alias type
758     /// @returns the alias pointer
759     template <typename NAME>
alias(const Source & source,NAME && name,const ast::Type * type)760     const ast::Alias* alias(const Source& source,
761                             NAME&& name,
762                             const ast::Type* type) const {
763       auto sym = builder->Sym(std::forward<NAME>(name));
764       return builder->create<ast::Alias>(source, sym, type);
765     }
766 
767     /// @param type the type of the pointer
768     /// @param storage_class the storage class of the pointer
769     /// @param access the optional access control of the pointer
770     /// @return the pointer to `type` with the given ast::StorageClass
771     const ast::Pointer* pointer(
772         const ast::Type* type,
773         ast::StorageClass storage_class,
774         ast::Access access = ast::Access::kUndefined) const {
775       return builder->create<ast::Pointer>(type, storage_class, access);
776     }
777 
778     /// @param source the Source of the node
779     /// @param type the type of the pointer
780     /// @param storage_class the storage class of the pointer
781     /// @param access the optional access control of the pointer
782     /// @return the pointer to `type` with the given ast::StorageClass
783     const ast::Pointer* pointer(
784         const Source& source,
785         const ast::Type* type,
786         ast::StorageClass storage_class,
787         ast::Access access = ast::Access::kUndefined) const {
788       return builder->create<ast::Pointer>(source, type, storage_class, access);
789     }
790 
791     /// @param storage_class the storage class of the pointer
792     /// @param access the optional access control of the pointer
793     /// @return the pointer to type `T` with the given ast::StorageClass.
794     template <typename T>
795     const ast::Pointer* pointer(
796         ast::StorageClass storage_class,
797         ast::Access access = ast::Access::kUndefined) const {
798       return pointer(Of<T>(), storage_class, access);
799     }
800 
801     /// @param source the Source of the node
802     /// @param type the type of the atomic
803     /// @return the atomic to `type`
atomic(const Source & source,const ast::Type * type)804     const ast::Atomic* atomic(const Source& source,
805                               const ast::Type* type) const {
806       return builder->create<ast::Atomic>(source, type);
807     }
808 
809     /// @param type the type of the atomic
810     /// @return the atomic to `type`
atomic(const ast::Type * type)811     const ast::Atomic* atomic(const ast::Type* type) const {
812       return builder->create<ast::Atomic>(type);
813     }
814 
815     /// @return the atomic to type `T`
816     template <typename T>
atomic()817     const ast::Atomic* atomic() const {
818       return atomic(Of<T>());
819     }
820 
821     /// @param kind the kind of sampler
822     /// @returns the sampler
sampler(ast::SamplerKind kind)823     const ast::Sampler* sampler(ast::SamplerKind kind) const {
824       return builder->create<ast::Sampler>(kind);
825     }
826 
827     /// @param source the Source of the node
828     /// @param kind the kind of sampler
829     /// @returns the sampler
sampler(const Source & source,ast::SamplerKind kind)830     const ast::Sampler* sampler(const Source& source,
831                                 ast::SamplerKind kind) const {
832       return builder->create<ast::Sampler>(source, kind);
833     }
834 
835     /// @param dims the dimensionality of the texture
836     /// @returns the depth texture
depth_texture(ast::TextureDimension dims)837     const ast::DepthTexture* depth_texture(ast::TextureDimension dims) const {
838       return builder->create<ast::DepthTexture>(dims);
839     }
840 
841     /// @param source the Source of the node
842     /// @param dims the dimensionality of the texture
843     /// @returns the depth texture
depth_texture(const Source & source,ast::TextureDimension dims)844     const ast::DepthTexture* depth_texture(const Source& source,
845                                            ast::TextureDimension dims) const {
846       return builder->create<ast::DepthTexture>(source, dims);
847     }
848 
849     /// @param dims the dimensionality of the texture
850     /// @returns the multisampled depth texture
depth_multisampled_texture(ast::TextureDimension dims)851     const ast::DepthMultisampledTexture* depth_multisampled_texture(
852         ast::TextureDimension dims) const {
853       return builder->create<ast::DepthMultisampledTexture>(dims);
854     }
855 
856     /// @param source the Source of the node
857     /// @param dims the dimensionality of the texture
858     /// @returns the multisampled depth texture
depth_multisampled_texture(const Source & source,ast::TextureDimension dims)859     const ast::DepthMultisampledTexture* depth_multisampled_texture(
860         const Source& source,
861         ast::TextureDimension dims) const {
862       return builder->create<ast::DepthMultisampledTexture>(source, dims);
863     }
864 
865     /// @param dims the dimensionality of the texture
866     /// @param subtype the texture subtype.
867     /// @returns the sampled texture
sampled_texture(ast::TextureDimension dims,const ast::Type * subtype)868     const ast::SampledTexture* sampled_texture(ast::TextureDimension dims,
869                                                const ast::Type* subtype) const {
870       return builder->create<ast::SampledTexture>(dims, subtype);
871     }
872 
873     /// @param source the Source of the node
874     /// @param dims the dimensionality of the texture
875     /// @param subtype the texture subtype.
876     /// @returns the sampled texture
sampled_texture(const Source & source,ast::TextureDimension dims,const ast::Type * subtype)877     const ast::SampledTexture* sampled_texture(const Source& source,
878                                                ast::TextureDimension dims,
879                                                const ast::Type* subtype) const {
880       return builder->create<ast::SampledTexture>(source, dims, subtype);
881     }
882 
883     /// @param dims the dimensionality of the texture
884     /// @param subtype the texture subtype.
885     /// @returns the multisampled texture
multisampled_texture(ast::TextureDimension dims,const ast::Type * subtype)886     const ast::MultisampledTexture* multisampled_texture(
887         ast::TextureDimension dims,
888         const ast::Type* subtype) const {
889       return builder->create<ast::MultisampledTexture>(dims, subtype);
890     }
891 
892     /// @param source the Source of the node
893     /// @param dims the dimensionality of the texture
894     /// @param subtype the texture subtype.
895     /// @returns the multisampled texture
multisampled_texture(const Source & source,ast::TextureDimension dims,const ast::Type * subtype)896     const ast::MultisampledTexture* multisampled_texture(
897         const Source& source,
898         ast::TextureDimension dims,
899         const ast::Type* subtype) const {
900       return builder->create<ast::MultisampledTexture>(source, dims, subtype);
901     }
902 
903     /// @param dims the dimensionality of the texture
904     /// @param format the image format of the texture
905     /// @param access the access control of the texture
906     /// @returns the storage texture
storage_texture(ast::TextureDimension dims,ast::ImageFormat format,ast::Access access)907     const ast::StorageTexture* storage_texture(ast::TextureDimension dims,
908                                                ast::ImageFormat format,
909                                                ast::Access access) const {
910       auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder);
911       return builder->create<ast::StorageTexture>(dims, format, subtype,
912                                                   access);
913     }
914 
915     /// @param source the Source of the node
916     /// @param dims the dimensionality of the texture
917     /// @param format the image format of the texture
918     /// @param access the access control of the texture
919     /// @returns the storage texture
storage_texture(const Source & source,ast::TextureDimension dims,ast::ImageFormat format,ast::Access access)920     const ast::StorageTexture* storage_texture(const Source& source,
921                                                ast::TextureDimension dims,
922                                                ast::ImageFormat format,
923                                                ast::Access access) const {
924       auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder);
925       return builder->create<ast::StorageTexture>(source, dims, format, subtype,
926                                                   access);
927     }
928 
929     /// @returns the external texture
external_texture()930     const ast::ExternalTexture* external_texture() const {
931       return builder->create<ast::ExternalTexture>();
932     }
933 
934     /// @param source the Source of the node
935     /// @returns the external texture
external_texture(const Source & source)936     const ast::ExternalTexture* external_texture(const Source& source) const {
937       return builder->create<ast::ExternalTexture>(source);
938     }
939 
940     /// Constructs a TypeName for the type declaration.
941     /// @param type the type
942     /// @return either type or a pointer to a new ast::TypeName
943     const ast::TypeName* Of(const ast::TypeDecl* type) const;
944 
945     /// The ProgramBuilder
946     ProgramBuilder* const builder;
947 
948    private:
949     /// CToAST<T> is specialized for various `T` types and each specialization
950     /// contains a single static `get()` method for obtaining the corresponding
951     /// AST type for the C type `T`.
952     /// `get()` has the signature:
953     ///    `static const ast::Type* get(Types* t)`
954     template <typename T>
955     struct CToAST {};
956   };
957 
958   //////////////////////////////////////////////////////////////////////////////
959   // AST helper methods
960   //////////////////////////////////////////////////////////////////////////////
961 
962   /// @return a new unnamed symbol
Sym()963   Symbol Sym() { return Symbols().New(); }
964 
965   /// @param name the symbol string
966   /// @return a Symbol with the given name
Sym(const std::string & name)967   Symbol Sym(const std::string& name) { return Symbols().Register(name); }
968 
969   /// @param sym the symbol
970   /// @return `sym`
Sym(Symbol sym)971   Symbol Sym(Symbol sym) { return sym; }
972 
973   /// @param expr the expression
974   /// @return expr
975   template <typename T>
Expr(T * expr)976   traits::EnableIfIsType<T, ast::Expression>* Expr(T* expr) {
977     return expr;
978   }
979 
980   /// Passthrough for nullptr
981   /// @return nullptr
Expr(std::nullptr_t)982   const ast::IdentifierExpression* Expr(std::nullptr_t) { return nullptr; }
983 
984   /// @param source the source information
985   /// @param symbol the identifier symbol
986   /// @return an ast::IdentifierExpression with the given symbol
Expr(const Source & source,Symbol symbol)987   const ast::IdentifierExpression* Expr(const Source& source, Symbol symbol) {
988     return create<ast::IdentifierExpression>(source, symbol);
989   }
990 
991   /// @param symbol the identifier symbol
992   /// @return an ast::IdentifierExpression with the given symbol
Expr(Symbol symbol)993   const ast::IdentifierExpression* Expr(Symbol symbol) {
994     return create<ast::IdentifierExpression>(symbol);
995   }
996 
997   /// @param source the source information
998   /// @param variable the AST variable
999   /// @return an ast::IdentifierExpression with the variable's symbol
Expr(const Source & source,const ast::Variable * variable)1000   const ast::IdentifierExpression* Expr(const Source& source,
1001                                         const ast::Variable* variable) {
1002     return create<ast::IdentifierExpression>(source, variable->symbol);
1003   }
1004 
1005   /// @param variable the AST variable
1006   /// @return an ast::IdentifierExpression with the variable's symbol
Expr(const ast::Variable * variable)1007   const ast::IdentifierExpression* Expr(const ast::Variable* variable) {
1008     return create<ast::IdentifierExpression>(variable->symbol);
1009   }
1010 
1011   /// @param source the source information
1012   /// @param name the identifier name
1013   /// @return an ast::IdentifierExpression with the given name
Expr(const Source & source,const char * name)1014   const ast::IdentifierExpression* Expr(const Source& source,
1015                                         const char* name) {
1016     return create<ast::IdentifierExpression>(source, Symbols().Register(name));
1017   }
1018 
1019   /// @param name the identifier name
1020   /// @return an ast::IdentifierExpression with the given name
Expr(const char * name)1021   const ast::IdentifierExpression* Expr(const char* name) {
1022     return create<ast::IdentifierExpression>(Symbols().Register(name));
1023   }
1024 
1025   /// @param source the source information
1026   /// @param name the identifier name
1027   /// @return an ast::IdentifierExpression with the given name
Expr(const Source & source,const std::string & name)1028   const ast::IdentifierExpression* Expr(const Source& source,
1029                                         const std::string& name) {
1030     return create<ast::IdentifierExpression>(source, Symbols().Register(name));
1031   }
1032 
1033   /// @param name the identifier name
1034   /// @return an ast::IdentifierExpression with the given name
Expr(const std::string & name)1035   const ast::IdentifierExpression* Expr(const std::string& name) {
1036     return create<ast::IdentifierExpression>(Symbols().Register(name));
1037   }
1038 
1039   /// @param source the source information
1040   /// @param value the boolean value
1041   /// @return a Scalar constructor for the given value
Expr(const Source & source,bool value)1042   const ast::BoolLiteralExpression* Expr(const Source& source, bool value) {
1043     return create<ast::BoolLiteralExpression>(source, value);
1044   }
1045 
1046   /// @param value the boolean value
1047   /// @return a Scalar constructor for the given value
Expr(bool value)1048   const ast::BoolLiteralExpression* Expr(bool value) {
1049     return create<ast::BoolLiteralExpression>(value);
1050   }
1051 
1052   /// @param source the source information
1053   /// @param value the float value
1054   /// @return a Scalar constructor for the given value
Expr(const Source & source,f32 value)1055   const ast::FloatLiteralExpression* Expr(const Source& source, f32 value) {
1056     return create<ast::FloatLiteralExpression>(source, value);
1057   }
1058 
1059   /// @param value the float value
1060   /// @return a Scalar constructor for the given value
Expr(f32 value)1061   const ast::FloatLiteralExpression* Expr(f32 value) {
1062     return create<ast::FloatLiteralExpression>(value);
1063   }
1064 
1065   /// @param source the source information
1066   /// @param value the integer value
1067   /// @return a Scalar constructor for the given value
Expr(const Source & source,i32 value)1068   const ast::SintLiteralExpression* Expr(const Source& source, i32 value) {
1069     return create<ast::SintLiteralExpression>(source, value);
1070   }
1071 
1072   /// @param value the integer value
1073   /// @return a Scalar constructor for the given value
Expr(i32 value)1074   const ast::SintLiteralExpression* Expr(i32 value) {
1075     return create<ast::SintLiteralExpression>(value);
1076   }
1077 
1078   /// @param source the source information
1079   /// @param value the unsigned int value
1080   /// @return a Scalar constructor for the given value
Expr(const Source & source,u32 value)1081   const ast::UintLiteralExpression* Expr(const Source& source, u32 value) {
1082     return create<ast::UintLiteralExpression>(source, value);
1083   }
1084 
1085   /// @param value the unsigned int value
1086   /// @return a Scalar constructor for the given value
Expr(u32 value)1087   const ast::UintLiteralExpression* Expr(u32 value) {
1088     return create<ast::UintLiteralExpression>(value);
1089   }
1090 
1091   /// Converts `arg` to an `ast::Expression` using `Expr()`, then appends it to
1092   /// `list`.
1093   /// @param list the list to append too
1094   /// @param arg the arg to create
1095   template <typename ARG>
Append(ast::ExpressionList & list,ARG && arg)1096   void Append(ast::ExpressionList& list, ARG&& arg) {
1097     list.emplace_back(Expr(std::forward<ARG>(arg)));
1098   }
1099 
1100   /// Converts `arg0` and `args` to `ast::Expression`s using `Expr()`,
1101   /// then appends them to `list`.
1102   /// @param list the list to append too
1103   /// @param arg0 the first argument
1104   /// @param args the rest of the arguments
1105   template <typename ARG0, typename... ARGS>
Append(ast::ExpressionList & list,ARG0 && arg0,ARGS &&...args)1106   void Append(ast::ExpressionList& list, ARG0&& arg0, ARGS&&... args) {
1107     Append(list, std::forward<ARG0>(arg0));
1108     Append(list, std::forward<ARGS>(args)...);
1109   }
1110 
1111   /// @return an empty list of expressions
ExprList()1112   ast::ExpressionList ExprList() { return {}; }
1113 
1114   /// @param args the list of expressions
1115   /// @return the list of expressions converted to `ast::Expression`s using
1116   /// `Expr()`,
1117   template <typename... ARGS>
ExprList(ARGS &&...args)1118   ast::ExpressionList ExprList(ARGS&&... args) {
1119     ast::ExpressionList list;
1120     list.reserve(sizeof...(args));
1121     Append(list, std::forward<ARGS>(args)...);
1122     return list;
1123   }
1124 
1125   /// @param list the list of expressions
1126   /// @return `list`
ExprList(ast::ExpressionList list)1127   ast::ExpressionList ExprList(ast::ExpressionList list) { return list; }
1128 
1129   /// @param args the arguments for the type constructor
1130   /// @return an `ast::CallExpression` of type `ty`, with the values
1131   /// of `args` converted to `ast::Expression`s using `Expr()`
1132   template <typename T, typename... ARGS>
Construct(ARGS &&...args)1133   const ast::CallExpression* Construct(ARGS&&... args) {
1134     return Construct(ty.Of<T>(), std::forward<ARGS>(args)...);
1135   }
1136 
1137   /// @param type the type to construct
1138   /// @param args the arguments for the constructor
1139   /// @return an `ast::CallExpression` of `type` constructed with the
1140   /// values `args`.
1141   template <typename... ARGS>
Construct(const ast::Type * type,ARGS &&...args)1142   const ast::CallExpression* Construct(const ast::Type* type, ARGS&&... args) {
1143     return Construct(source_, type, std::forward<ARGS>(args)...);
1144   }
1145 
1146   /// @param source the source information
1147   /// @param type the type to construct
1148   /// @param args the arguments for the constructor
1149   /// @return an `ast::CallExpression` of `type` constructed with the
1150   /// values `args`.
1151   template <typename... ARGS>
Construct(const Source & source,const ast::Type * type,ARGS &&...args)1152   const ast::CallExpression* Construct(const Source& source,
1153                                        const ast::Type* type,
1154                                        ARGS&&... args) {
1155     return create<ast::CallExpression>(source, type,
1156                                        ExprList(std::forward<ARGS>(args)...));
1157   }
1158 
1159   /// @param expr the expression for the bitcast
1160   /// @return an `ast::BitcastExpression` of type `ty`, with the values of
1161   /// `expr` converted to `ast::Expression`s using `Expr()`
1162   template <typename T, typename EXPR>
Bitcast(EXPR && expr)1163   const ast::BitcastExpression* Bitcast(EXPR&& expr) {
1164     return Bitcast(ty.Of<T>(), std::forward<EXPR>(expr));
1165   }
1166 
1167   /// @param type the type to cast to
1168   /// @param expr the expression for the bitcast
1169   /// @return an `ast::BitcastExpression` of `type` constructed with the values
1170   /// `expr`.
1171   template <typename EXPR>
Bitcast(const ast::Type * type,EXPR && expr)1172   const ast::BitcastExpression* Bitcast(const ast::Type* type, EXPR&& expr) {
1173     return create<ast::BitcastExpression>(type, Expr(std::forward<EXPR>(expr)));
1174   }
1175 
1176   /// @param source the source information
1177   /// @param type the type to cast to
1178   /// @param expr the expression for the bitcast
1179   /// @return an `ast::BitcastExpression` of `type` constructed with the values
1180   /// `expr`.
1181   template <typename EXPR>
Bitcast(const Source & source,const ast::Type * type,EXPR && expr)1182   const ast::BitcastExpression* Bitcast(const Source& source,
1183                                         const ast::Type* type,
1184                                         EXPR&& expr) {
1185     return create<ast::BitcastExpression>(source, type,
1186                                           Expr(std::forward<EXPR>(expr)));
1187   }
1188 
1189   /// @param args the arguments for the vector constructor
1190   /// @param type the vector type
1191   /// @param size the vector size
1192   /// @return an `ast::CallExpression` of a `size`-element vector of
1193   /// type `type`, constructed with the values `args`.
1194   template <typename... ARGS>
vec(const ast::Type * type,uint32_t size,ARGS &&...args)1195   const ast::CallExpression* vec(const ast::Type* type,
1196                                  uint32_t size,
1197                                  ARGS&&... args) {
1198     return Construct(ty.vec(type, size), std::forward<ARGS>(args)...);
1199   }
1200 
1201   /// @param args the arguments for the vector constructor
1202   /// @return an `ast::CallExpression` of a 2-element vector of type
1203   /// `T`, constructed with the values `args`.
1204   template <typename T, typename... ARGS>
vec2(ARGS &&...args)1205   const ast::CallExpression* vec2(ARGS&&... args) {
1206     return Construct(ty.vec2<T>(), std::forward<ARGS>(args)...);
1207   }
1208 
1209   /// @param args the arguments for the vector constructor
1210   /// @return an `ast::CallExpression` of a 3-element vector of type
1211   /// `T`, constructed with the values `args`.
1212   template <typename T, typename... ARGS>
vec3(ARGS &&...args)1213   const ast::CallExpression* vec3(ARGS&&... args) {
1214     return Construct(ty.vec3<T>(), std::forward<ARGS>(args)...);
1215   }
1216 
1217   /// @param args the arguments for the vector constructor
1218   /// @return an `ast::CallExpression` of a 4-element vector of type
1219   /// `T`, constructed with the values `args`.
1220   template <typename T, typename... ARGS>
vec4(ARGS &&...args)1221   const ast::CallExpression* vec4(ARGS&&... args) {
1222     return Construct(ty.vec4<T>(), std::forward<ARGS>(args)...);
1223   }
1224 
1225   /// @param args the arguments for the matrix constructor
1226   /// @return an `ast::CallExpression` of a 2x2 matrix of type
1227   /// `T`, constructed with the values `args`.
1228   template <typename T, typename... ARGS>
mat2x2(ARGS &&...args)1229   const ast::CallExpression* mat2x2(ARGS&&... args) {
1230     return Construct(ty.mat2x2<T>(), std::forward<ARGS>(args)...);
1231   }
1232 
1233   /// @param args the arguments for the matrix constructor
1234   /// @return an `ast::CallExpression` of a 2x3 matrix of type
1235   /// `T`, constructed with the values `args`.
1236   template <typename T, typename... ARGS>
mat2x3(ARGS &&...args)1237   const ast::CallExpression* mat2x3(ARGS&&... args) {
1238     return Construct(ty.mat2x3<T>(), std::forward<ARGS>(args)...);
1239   }
1240 
1241   /// @param args the arguments for the matrix constructor
1242   /// @return an `ast::CallExpression` of a 2x4 matrix of type
1243   /// `T`, constructed with the values `args`.
1244   template <typename T, typename... ARGS>
mat2x4(ARGS &&...args)1245   const ast::CallExpression* mat2x4(ARGS&&... args) {
1246     return Construct(ty.mat2x4<T>(), std::forward<ARGS>(args)...);
1247   }
1248 
1249   /// @param args the arguments for the matrix constructor
1250   /// @return an `ast::CallExpression` of a 3x2 matrix of type
1251   /// `T`, constructed with the values `args`.
1252   template <typename T, typename... ARGS>
mat3x2(ARGS &&...args)1253   const ast::CallExpression* mat3x2(ARGS&&... args) {
1254     return Construct(ty.mat3x2<T>(), std::forward<ARGS>(args)...);
1255   }
1256 
1257   /// @param args the arguments for the matrix constructor
1258   /// @return an `ast::CallExpression` of a 3x3 matrix of type
1259   /// `T`, constructed with the values `args`.
1260   template <typename T, typename... ARGS>
mat3x3(ARGS &&...args)1261   const ast::CallExpression* mat3x3(ARGS&&... args) {
1262     return Construct(ty.mat3x3<T>(), std::forward<ARGS>(args)...);
1263   }
1264 
1265   /// @param args the arguments for the matrix constructor
1266   /// @return an `ast::CallExpression` of a 3x4 matrix of type
1267   /// `T`, constructed with the values `args`.
1268   template <typename T, typename... ARGS>
mat3x4(ARGS &&...args)1269   const ast::CallExpression* mat3x4(ARGS&&... args) {
1270     return Construct(ty.mat3x4<T>(), std::forward<ARGS>(args)...);
1271   }
1272 
1273   /// @param args the arguments for the matrix constructor
1274   /// @return an `ast::CallExpression` of a 4x2 matrix of type
1275   /// `T`, constructed with the values `args`.
1276   template <typename T, typename... ARGS>
mat4x2(ARGS &&...args)1277   const ast::CallExpression* mat4x2(ARGS&&... args) {
1278     return Construct(ty.mat4x2<T>(), std::forward<ARGS>(args)...);
1279   }
1280 
1281   /// @param args the arguments for the matrix constructor
1282   /// @return an `ast::CallExpression` of a 4x3 matrix of type
1283   /// `T`, constructed with the values `args`.
1284   template <typename T, typename... ARGS>
mat4x3(ARGS &&...args)1285   const ast::CallExpression* mat4x3(ARGS&&... args) {
1286     return Construct(ty.mat4x3<T>(), std::forward<ARGS>(args)...);
1287   }
1288 
1289   /// @param args the arguments for the matrix constructor
1290   /// @return an `ast::CallExpression` of a 4x4 matrix of type
1291   /// `T`, constructed with the values `args`.
1292   template <typename T, typename... ARGS>
mat4x4(ARGS &&...args)1293   const ast::CallExpression* mat4x4(ARGS&&... args) {
1294     return Construct(ty.mat4x4<T>(), std::forward<ARGS>(args)...);
1295   }
1296 
1297   /// @param args the arguments for the array constructor
1298   /// @return an `ast::CallExpression` of an array with element type
1299   /// `T` and size `N`, constructed with the values `args`.
1300   template <typename T, int N, typename... ARGS>
array(ARGS &&...args)1301   const ast::CallExpression* array(ARGS&&... args) {
1302     return Construct(ty.array<T, N>(), std::forward<ARGS>(args)...);
1303   }
1304 
1305   /// @param subtype the array element type
1306   /// @param n the array size. nullptr represents a runtime-array.
1307   /// @param args the arguments for the array constructor
1308   /// @return an `ast::CallExpression` of an array with element type
1309   /// `subtype`, constructed with the values `args`.
1310   template <typename EXPR, typename... ARGS>
array(const ast::Type * subtype,EXPR && n,ARGS &&...args)1311   const ast::CallExpression* array(const ast::Type* subtype,
1312                                    EXPR&& n,
1313                                    ARGS&&... args) {
1314     return Construct(ty.array(subtype, std::forward<EXPR>(n)),
1315                      std::forward<ARGS>(args)...);
1316   }
1317 
1318   /// @param name the variable name
1319   /// @param type the variable type
1320   /// @param optional the optional variable settings.
1321   /// Can be any of the following, in any order:
1322   ///   * ast::StorageClass   - specifies the variable storage class
1323   ///   * ast::Access         - specifies the variable's access control
1324   ///   * ast::Expression*    - specifies the variable's initializer expression
1325   ///   * ast::DecorationList - specifies the variable's decorations
1326   /// Note that repeated arguments of the same type will use the last argument's
1327   /// value.
1328   /// @returns a `ast::Variable` with the given name, type and additional
1329   /// options
1330   template <typename NAME, typename... OPTIONAL>
Var(NAME && name,const ast::Type * type,OPTIONAL &&...optional)1331   const ast::Variable* Var(NAME&& name,
1332                            const ast::Type* type,
1333                            OPTIONAL&&... optional) {
1334     VarOptionals opts(std::forward<OPTIONAL>(optional)...);
1335     return create<ast::Variable>(Sym(std::forward<NAME>(name)), opts.storage,
1336                                  opts.access, type, false, opts.constructor,
1337                                  std::move(opts.decorations));
1338   }
1339 
1340   /// @param source the variable source
1341   /// @param name the variable name
1342   /// @param type the variable type
1343   /// @param optional the optional variable settings.
1344   /// Can be any of the following, in any order:
1345   ///   * ast::StorageClass   - specifies the variable storage class
1346   ///   * ast::Access         - specifies the variable's access control
1347   ///   * ast::Expression*    - specifies the variable's initializer expression
1348   ///   * ast::DecorationList - specifies the variable's decorations
1349   /// Note that repeated arguments of the same type will use the last argument's
1350   /// value.
1351   /// @returns a `ast::Variable` with the given name, storage and type
1352   template <typename NAME, typename... OPTIONAL>
Var(const Source & source,NAME && name,const ast::Type * type,OPTIONAL &&...optional)1353   const ast::Variable* Var(const Source& source,
1354                            NAME&& name,
1355                            const ast::Type* type,
1356                            OPTIONAL&&... optional) {
1357     VarOptionals opts(std::forward<OPTIONAL>(optional)...);
1358     return create<ast::Variable>(source, Sym(std::forward<NAME>(name)),
1359                                  opts.storage, opts.access, type, false,
1360                                  opts.constructor, std::move(opts.decorations));
1361   }
1362 
1363   /// @param name the variable name
1364   /// @param type the variable type
1365   /// @param constructor constructor expression
1366   /// @param decorations optional variable decorations
1367   /// @returns a constant `ast::Variable` with the given name and type
1368   template <typename NAME>
1369   const ast::Variable* Const(NAME&& name,
1370                              const ast::Type* type,
1371                              const ast::Expression* constructor,
1372                              ast::DecorationList decorations = {}) {
1373     return create<ast::Variable>(
1374         Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
1375         ast::Access::kUndefined, type, true, constructor, decorations);
1376   }
1377 
1378   /// @param source the variable source
1379   /// @param name the variable name
1380   /// @param type the variable type
1381   /// @param constructor constructor expression
1382   /// @param decorations optional variable decorations
1383   /// @returns a constant `ast::Variable` with the given name and type
1384   template <typename NAME>
1385   const ast::Variable* Const(const Source& source,
1386                              NAME&& name,
1387                              const ast::Type* type,
1388                              const ast::Expression* constructor,
1389                              ast::DecorationList decorations = {}) {
1390     return create<ast::Variable>(
1391         source, Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
1392         ast::Access::kUndefined, type, true, constructor, decorations);
1393   }
1394 
1395   /// @param name the parameter name
1396   /// @param type the parameter type
1397   /// @param decorations optional parameter decorations
1398   /// @returns a constant `ast::Variable` with the given name and type
1399   template <typename NAME>
1400   const ast::Variable* Param(NAME&& name,
1401                              const ast::Type* type,
1402                              ast::DecorationList decorations = {}) {
1403     return create<ast::Variable>(
1404         Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
1405         ast::Access::kUndefined, type, true, nullptr, decorations);
1406   }
1407 
1408   /// @param source the parameter source
1409   /// @param name the parameter name
1410   /// @param type the parameter type
1411   /// @param decorations optional parameter decorations
1412   /// @returns a constant `ast::Variable` with the given name and type
1413   template <typename NAME>
1414   const ast::Variable* Param(const Source& source,
1415                              NAME&& name,
1416                              const ast::Type* type,
1417                              ast::DecorationList decorations = {}) {
1418     return create<ast::Variable>(
1419         source, Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
1420         ast::Access::kUndefined, type, true, nullptr, decorations);
1421   }
1422 
1423   /// @param name the variable name
1424   /// @param type the variable type
1425   /// @param optional the optional variable settings.
1426   /// Can be any of the following, in any order:
1427   ///   * ast::StorageClass   - specifies the variable storage class
1428   ///   * ast::Access         - specifies the variable's access control
1429   ///   * ast::Expression*    - specifies the variable's initializer expression
1430   ///   * ast::DecorationList - specifies the variable's decorations
1431   /// Note that repeated arguments of the same type will use the last argument's
1432   /// value.
1433   /// @returns a new `ast::Variable`, which is automatically registered as a
1434   /// global variable with the ast::Module.
1435   template <typename NAME,
1436             typename... OPTIONAL,
1437             typename = DisableIfSource<NAME>>
Global(NAME && name,const ast::Type * type,OPTIONAL &&...optional)1438   const ast::Variable* Global(NAME&& name,
1439                               const ast::Type* type,
1440                               OPTIONAL&&... optional) {
1441     auto* var = Var(std::forward<NAME>(name), type,
1442                     std::forward<OPTIONAL>(optional)...);
1443     AST().AddGlobalVariable(var);
1444     return var;
1445   }
1446 
1447   /// @param source the variable source
1448   /// @param name the variable name
1449   /// @param type the variable type
1450   /// @param optional the optional variable settings.
1451   /// Can be any of the following, in any order:
1452   ///   * ast::StorageClass   - specifies the variable storage class
1453   ///   * ast::Access         - specifies the variable's access control
1454   ///   * ast::Expression*    - specifies the variable's initializer expression
1455   ///   * ast::DecorationList - specifies the variable's decorations
1456   /// Note that repeated arguments of the same type will use the last argument's
1457   /// value.
1458   /// @returns a new `ast::Variable`, which is automatically registered as a
1459   /// global variable with the ast::Module.
1460   template <typename NAME, typename... OPTIONAL>
Global(const Source & source,NAME && name,const ast::Type * type,OPTIONAL &&...optional)1461   const ast::Variable* Global(const Source& source,
1462                               NAME&& name,
1463                               const ast::Type* type,
1464                               OPTIONAL&&... optional) {
1465     auto* var = Var(source, std::forward<NAME>(name), type,
1466                     std::forward<OPTIONAL>(optional)...);
1467     AST().AddGlobalVariable(var);
1468     return var;
1469   }
1470 
1471   /// @param name the variable name
1472   /// @param type the variable type
1473   /// @param constructor constructor expression
1474   /// @param decorations optional variable decorations
1475   /// @returns a const `ast::Variable` constructed by calling Var() with the
1476   /// arguments of `args`, which is automatically registered as a global
1477   /// variable with the ast::Module.
1478   template <typename NAME>
1479   const ast::Variable* GlobalConst(NAME&& name,
1480                                    const ast::Type* type,
1481                                    const ast::Expression* constructor,
1482                                    ast::DecorationList decorations = {}) {
1483     auto* var = Const(std::forward<NAME>(name), type, constructor,
1484                       std::move(decorations));
1485     AST().AddGlobalVariable(var);
1486     return var;
1487   }
1488 
1489   /// @param source the variable source
1490   /// @param name the variable name
1491   /// @param type the variable type
1492   /// @param constructor constructor expression
1493   /// @param decorations optional variable decorations
1494   /// @returns a const `ast::Variable` constructed by calling Var() with the
1495   /// arguments of `args`, which is automatically registered as a global
1496   /// variable with the ast::Module.
1497   template <typename NAME>
1498   const ast::Variable* GlobalConst(const Source& source,
1499                                    NAME&& name,
1500                                    const ast::Type* type,
1501                                    const ast::Expression* constructor,
1502                                    ast::DecorationList decorations = {}) {
1503     auto* var = Const(source, std::forward<NAME>(name), type, constructor,
1504                       std::move(decorations));
1505     AST().AddGlobalVariable(var);
1506     return var;
1507   }
1508 
1509   /// @param source the source information
1510   /// @param expr the expression to take the address of
1511   /// @return an ast::UnaryOpExpression that takes the address of `expr`
1512   template <typename EXPR>
AddressOf(const Source & source,EXPR && expr)1513   const ast::UnaryOpExpression* AddressOf(const Source& source, EXPR&& expr) {
1514     return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kAddressOf,
1515                                           Expr(std::forward<EXPR>(expr)));
1516   }
1517 
1518   /// @param expr the expression to take the address of
1519   /// @return an ast::UnaryOpExpression that takes the address of `expr`
1520   template <typename EXPR>
AddressOf(EXPR && expr)1521   const ast::UnaryOpExpression* AddressOf(EXPR&& expr) {
1522     return create<ast::UnaryOpExpression>(ast::UnaryOp::kAddressOf,
1523                                           Expr(std::forward<EXPR>(expr)));
1524   }
1525 
1526   /// @param source the source information
1527   /// @param expr the expression to perform an indirection on
1528   /// @return an ast::UnaryOpExpression that dereferences the pointer `expr`
1529   template <typename EXPR>
Deref(const Source & source,EXPR && expr)1530   const ast::UnaryOpExpression* Deref(const Source& source, EXPR&& expr) {
1531     return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kIndirection,
1532                                           Expr(std::forward<EXPR>(expr)));
1533   }
1534 
1535   /// @param expr the expression to perform an indirection on
1536   /// @return an ast::UnaryOpExpression that dereferences the pointer `expr`
1537   template <typename EXPR>
Deref(EXPR && expr)1538   const ast::UnaryOpExpression* Deref(EXPR&& expr) {
1539     return create<ast::UnaryOpExpression>(ast::UnaryOp::kIndirection,
1540                                           Expr(std::forward<EXPR>(expr)));
1541   }
1542 
1543   /// @param source the source information
1544   /// @param func the function name
1545   /// @param args the function call arguments
1546   /// @returns a `ast::CallExpression` to the function `func`, with the
1547   /// arguments of `args` converted to `ast::Expression`s using `Expr()`.
1548   template <typename NAME, typename... ARGS>
Call(const Source & source,NAME && func,ARGS &&...args)1549   const ast::CallExpression* Call(const Source& source,
1550                                   NAME&& func,
1551                                   ARGS&&... args) {
1552     return create<ast::CallExpression>(source, Expr(func),
1553                                        ExprList(std::forward<ARGS>(args)...));
1554   }
1555 
1556   /// @param func the function name
1557   /// @param args the function call arguments
1558   /// @returns a `ast::CallExpression` to the function `func`, with the
1559   /// arguments of `args` converted to `ast::Expression`s using `Expr()`.
1560   template <typename NAME, typename... ARGS, typename = DisableIfSource<NAME>>
Call(NAME && func,ARGS &&...args)1561   const ast::CallExpression* Call(NAME&& func, ARGS&&... args) {
1562     return create<ast::CallExpression>(Expr(func),
1563                                        ExprList(std::forward<ARGS>(args)...));
1564   }
1565 
1566   /// @param source the source information
1567   /// @param call the call expression to wrap in a call statement
1568   /// @returns a `ast::CallStatement` for the given call expression
CallStmt(const Source & source,const ast::CallExpression * call)1569   const ast::CallStatement* CallStmt(const Source& source,
1570                                      const ast::CallExpression* call) {
1571     return create<ast::CallStatement>(source, call);
1572   }
1573 
1574   /// @param call the call expression to wrap in a call statement
1575   /// @returns a `ast::CallStatement` for the given call expression
CallStmt(const ast::CallExpression * call)1576   const ast::CallStatement* CallStmt(const ast::CallExpression* call) {
1577     return create<ast::CallStatement>(call);
1578   }
1579 
1580   /// @param source the source information
1581   /// @returns a `ast::PhonyExpression`
Phony(const Source & source)1582   const ast::PhonyExpression* Phony(const Source& source) {
1583     return create<ast::PhonyExpression>(source);
1584   }
1585 
1586   /// @returns a `ast::PhonyExpression`
Phony()1587   const ast::PhonyExpression* Phony() { return create<ast::PhonyExpression>(); }
1588 
1589   /// @param expr the expression to ignore
1590   /// @returns a `ast::AssignmentStatement` that assigns 'expr' to the phony
1591   /// (underscore) variable.
1592   template <typename EXPR>
Ignore(EXPR && expr)1593   const ast::AssignmentStatement* Ignore(EXPR&& expr) {
1594     return create<ast::AssignmentStatement>(Phony(), Expr(expr));
1595   }
1596 
1597   /// @param lhs the left hand argument to the addition operation
1598   /// @param rhs the right hand argument to the addition operation
1599   /// @returns a `ast::BinaryExpression` summing the arguments `lhs` and `rhs`
1600   template <typename LHS, typename RHS>
Add(LHS && lhs,RHS && rhs)1601   const ast::BinaryExpression* Add(LHS&& lhs, RHS&& rhs) {
1602     return create<ast::BinaryExpression>(ast::BinaryOp::kAdd,
1603                                          Expr(std::forward<LHS>(lhs)),
1604                                          Expr(std::forward<RHS>(rhs)));
1605   }
1606 
1607   /// @param lhs the left hand argument to the and operation
1608   /// @param rhs the right hand argument to the and operation
1609   /// @returns a `ast::BinaryExpression` bitwise anding `lhs` and `rhs`
1610   template <typename LHS, typename RHS>
And(LHS && lhs,RHS && rhs)1611   const ast::BinaryExpression* And(LHS&& lhs, RHS&& rhs) {
1612     return create<ast::BinaryExpression>(ast::BinaryOp::kAnd,
1613                                          Expr(std::forward<LHS>(lhs)),
1614                                          Expr(std::forward<RHS>(rhs)));
1615   }
1616 
1617   /// @param lhs the left hand argument to the or operation
1618   /// @param rhs the right hand argument to the or operation
1619   /// @returns a `ast::BinaryExpression` bitwise or-ing `lhs` and `rhs`
1620   template <typename LHS, typename RHS>
Or(LHS && lhs,RHS && rhs)1621   const ast::BinaryExpression* Or(LHS&& lhs, RHS&& rhs) {
1622     return create<ast::BinaryExpression>(ast::BinaryOp::kOr,
1623                                          Expr(std::forward<LHS>(lhs)),
1624                                          Expr(std::forward<RHS>(rhs)));
1625   }
1626 
1627   /// @param lhs the left hand argument to the subtraction operation
1628   /// @param rhs the right hand argument to the subtraction operation
1629   /// @returns a `ast::BinaryExpression` subtracting `rhs` from `lhs`
1630   template <typename LHS, typename RHS>
Sub(LHS && lhs,RHS && rhs)1631   const ast::BinaryExpression* Sub(LHS&& lhs, RHS&& rhs) {
1632     return create<ast::BinaryExpression>(ast::BinaryOp::kSubtract,
1633                                          Expr(std::forward<LHS>(lhs)),
1634                                          Expr(std::forward<RHS>(rhs)));
1635   }
1636 
1637   /// @param lhs the left hand argument to the multiplication operation
1638   /// @param rhs the right hand argument to the multiplication operation
1639   /// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs`
1640   template <typename LHS, typename RHS>
Mul(LHS && lhs,RHS && rhs)1641   const ast::BinaryExpression* Mul(LHS&& lhs, RHS&& rhs) {
1642     return create<ast::BinaryExpression>(ast::BinaryOp::kMultiply,
1643                                          Expr(std::forward<LHS>(lhs)),
1644                                          Expr(std::forward<RHS>(rhs)));
1645   }
1646 
1647   /// @param source the source information
1648   /// @param lhs the left hand argument to the multiplication operation
1649   /// @param rhs the right hand argument to the multiplication operation
1650   /// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs`
1651   template <typename LHS, typename RHS>
Mul(const Source & source,LHS && lhs,RHS && rhs)1652   const ast::BinaryExpression* Mul(const Source& source, LHS&& lhs, RHS&& rhs) {
1653     return create<ast::BinaryExpression>(source, ast::BinaryOp::kMultiply,
1654                                          Expr(std::forward<LHS>(lhs)),
1655                                          Expr(std::forward<RHS>(rhs)));
1656   }
1657 
1658   /// @param lhs the left hand argument to the division operation
1659   /// @param rhs the right hand argument to the division operation
1660   /// @returns a `ast::BinaryExpression` dividing `lhs` by `rhs`
1661   template <typename LHS, typename RHS>
Div(LHS && lhs,RHS && rhs)1662   const ast::Expression* Div(LHS&& lhs, RHS&& rhs) {
1663     return create<ast::BinaryExpression>(ast::BinaryOp::kDivide,
1664                                          Expr(std::forward<LHS>(lhs)),
1665                                          Expr(std::forward<RHS>(rhs)));
1666   }
1667 
1668   /// @param lhs the left hand argument to the bit shift right operation
1669   /// @param rhs the right hand argument to the bit shift right operation
1670   /// @returns a `ast::BinaryExpression` bit shifting right `lhs` by `rhs`
1671   template <typename LHS, typename RHS>
Shr(LHS && lhs,RHS && rhs)1672   const ast::BinaryExpression* Shr(LHS&& lhs, RHS&& rhs) {
1673     return create<ast::BinaryExpression>(ast::BinaryOp::kShiftRight,
1674                                          Expr(std::forward<LHS>(lhs)),
1675                                          Expr(std::forward<RHS>(rhs)));
1676   }
1677 
1678   /// @param lhs the left hand argument to the bit shift left operation
1679   /// @param rhs the right hand argument to the bit shift left operation
1680   /// @returns a `ast::BinaryExpression` bit shifting left `lhs` by `rhs`
1681   template <typename LHS, typename RHS>
Shl(LHS && lhs,RHS && rhs)1682   const ast::BinaryExpression* Shl(LHS&& lhs, RHS&& rhs) {
1683     return create<ast::BinaryExpression>(ast::BinaryOp::kShiftLeft,
1684                                          Expr(std::forward<LHS>(lhs)),
1685                                          Expr(std::forward<RHS>(rhs)));
1686   }
1687 
1688   /// @param lhs the left hand argument to the equal expression
1689   /// @param rhs the right hand argument to the equal expression
1690   /// @returns a `ast::BinaryExpression` comparing `lhs` equal to `rhs`
1691   template <typename LHS, typename RHS>
Equal(LHS && lhs,RHS && rhs)1692   const ast::BinaryExpression* Equal(LHS&& lhs, RHS&& rhs) {
1693     return create<ast::BinaryExpression>(ast::BinaryOp::kEqual,
1694                                          Expr(std::forward<LHS>(lhs)),
1695                                          Expr(std::forward<RHS>(rhs)));
1696   }
1697 
1698   /// @param source the source information
1699   /// @param obj the object for the index accessor expression
1700   /// @param idx the index argument for the index accessor expression
1701   /// @returns a `ast::IndexAccessorExpression` that indexes `arr` with `idx`
1702   template <typename OBJ, typename IDX>
IndexAccessor(const Source & source,OBJ && obj,IDX && idx)1703   const ast::IndexAccessorExpression* IndexAccessor(const Source& source,
1704                                                     OBJ&& obj,
1705                                                     IDX&& idx) {
1706     return create<ast::IndexAccessorExpression>(
1707         source, Expr(std::forward<OBJ>(obj)), Expr(std::forward<IDX>(idx)));
1708   }
1709 
1710   /// @param obj the object for the index accessor expression
1711   /// @param idx the index argument for the index accessor expression
1712   /// @returns a `ast::IndexAccessorExpression` that indexes `arr` with `idx`
1713   template <typename OBJ, typename IDX>
IndexAccessor(OBJ && obj,IDX && idx)1714   const ast::IndexAccessorExpression* IndexAccessor(OBJ&& obj, IDX&& idx) {
1715     return create<ast::IndexAccessorExpression>(Expr(std::forward<OBJ>(obj)),
1716                                                 Expr(std::forward<IDX>(idx)));
1717   }
1718 
1719   /// @param source the source information
1720   /// @param obj the object for the member accessor expression
1721   /// @param idx the index argument for the member accessor expression
1722   /// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx`
1723   template <typename OBJ, typename IDX>
MemberAccessor(const Source & source,OBJ && obj,IDX && idx)1724   const ast::MemberAccessorExpression* MemberAccessor(const Source& source,
1725                                                       OBJ&& obj,
1726                                                       IDX&& idx) {
1727     return create<ast::MemberAccessorExpression>(
1728         source, Expr(std::forward<OBJ>(obj)), Expr(std::forward<IDX>(idx)));
1729   }
1730 
1731   /// @param obj the object for the member accessor expression
1732   /// @param idx the index argument for the member accessor expression
1733   /// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx`
1734   template <typename OBJ, typename IDX>
MemberAccessor(OBJ && obj,IDX && idx)1735   const ast::MemberAccessorExpression* MemberAccessor(OBJ&& obj, IDX&& idx) {
1736     return create<ast::MemberAccessorExpression>(Expr(std::forward<OBJ>(obj)),
1737                                                  Expr(std::forward<IDX>(idx)));
1738   }
1739 
1740   /// Creates a ast::StructMemberOffsetDecoration
1741   /// @param val the offset value
1742   /// @returns the offset decoration pointer
MemberOffset(uint32_t val)1743   const ast::StructMemberOffsetDecoration* MemberOffset(uint32_t val) {
1744     return create<ast::StructMemberOffsetDecoration>(source_, val);
1745   }
1746 
1747   /// Creates a ast::StructMemberSizeDecoration
1748   /// @param source the source information
1749   /// @param val the size value
1750   /// @returns the size decoration pointer
MemberSize(const Source & source,uint32_t val)1751   const ast::StructMemberSizeDecoration* MemberSize(const Source& source,
1752                                                     uint32_t val) {
1753     return create<ast::StructMemberSizeDecoration>(source, val);
1754   }
1755 
1756   /// Creates a ast::StructMemberSizeDecoration
1757   /// @param val the size value
1758   /// @returns the size decoration pointer
MemberSize(uint32_t val)1759   const ast::StructMemberSizeDecoration* MemberSize(uint32_t val) {
1760     return create<ast::StructMemberSizeDecoration>(source_, val);
1761   }
1762 
1763   /// Creates a ast::StructMemberAlignDecoration
1764   /// @param source the source information
1765   /// @param val the align value
1766   /// @returns the align decoration pointer
MemberAlign(const Source & source,uint32_t val)1767   const ast::StructMemberAlignDecoration* MemberAlign(const Source& source,
1768                                                       uint32_t val) {
1769     return create<ast::StructMemberAlignDecoration>(source, val);
1770   }
1771 
1772   /// Creates a ast::StructMemberAlignDecoration
1773   /// @param val the align value
1774   /// @returns the align decoration pointer
MemberAlign(uint32_t val)1775   const ast::StructMemberAlignDecoration* MemberAlign(uint32_t val) {
1776     return create<ast::StructMemberAlignDecoration>(source_, val);
1777   }
1778 
1779   /// Creates a ast::StructBlockDecoration
1780   /// @returns the struct block decoration pointer
StructBlock()1781   const ast::StructBlockDecoration* StructBlock() {
1782     return create<ast::StructBlockDecoration>();
1783   }
1784 
1785   /// Creates the ast::GroupDecoration
1786   /// @param value group decoration index
1787   /// @returns the group decoration pointer
Group(uint32_t value)1788   const ast::GroupDecoration* Group(uint32_t value) {
1789     return create<ast::GroupDecoration>(value);
1790   }
1791 
1792   /// Creates the ast::BindingDecoration
1793   /// @param value the binding index
1794   /// @returns the binding deocration pointer
Binding(uint32_t value)1795   const ast::BindingDecoration* Binding(uint32_t value) {
1796     return create<ast::BindingDecoration>(value);
1797   }
1798 
1799   /// Convenience function to create both a ast::GroupDecoration and
1800   /// ast::BindingDecoration
1801   /// @param group the group index
1802   /// @param binding the binding index
1803   /// @returns a decoration list with both the group and binding decorations
GroupAndBinding(uint32_t group,uint32_t binding)1804   ast::DecorationList GroupAndBinding(uint32_t group, uint32_t binding) {
1805     return {Group(group), Binding(binding)};
1806   }
1807 
1808   /// Creates an ast::Function and registers it with the ast::Module.
1809   /// @param source the source information
1810   /// @param name the function name
1811   /// @param params the function parameters
1812   /// @param type the function return type
1813   /// @param body the function body
1814   /// @param decorations the optional function decorations
1815   /// @param return_type_decorations the optional function return type
1816   /// decorations
1817   /// @returns the function pointer
1818   template <typename NAME>
1819   const ast::Function* Func(const Source& source,
1820                             NAME&& name,
1821                             ast::VariableList params,
1822                             const ast::Type* type,
1823                             ast::StatementList body,
1824                             ast::DecorationList decorations = {},
1825                             ast::DecorationList return_type_decorations = {}) {
1826     auto* func =
1827         create<ast::Function>(source, Sym(std::forward<NAME>(name)), params,
1828                               type, create<ast::BlockStatement>(body),
1829                               decorations, return_type_decorations);
1830     AST().AddFunction(func);
1831     return func;
1832   }
1833 
1834   /// Creates an ast::Function and registers it with the ast::Module.
1835   /// @param name the function name
1836   /// @param params the function parameters
1837   /// @param type the function return type
1838   /// @param body the function body
1839   /// @param decorations the optional function decorations
1840   /// @param return_type_decorations the optional function return type
1841   /// decorations
1842   /// @returns the function pointer
1843   template <typename NAME>
1844   const ast::Function* Func(NAME&& name,
1845                             ast::VariableList params,
1846                             const ast::Type* type,
1847                             ast::StatementList body,
1848                             ast::DecorationList decorations = {},
1849                             ast::DecorationList return_type_decorations = {}) {
1850     auto* func = create<ast::Function>(Sym(std::forward<NAME>(name)), params,
1851                                        type, create<ast::BlockStatement>(body),
1852                                        decorations, return_type_decorations);
1853     AST().AddFunction(func);
1854     return func;
1855   }
1856 
1857   /// Creates an ast::BreakStatement
1858   /// @param source the source information
1859   /// @returns the break statement pointer
Break(const Source & source)1860   const ast::BreakStatement* Break(const Source& source) {
1861     return create<ast::BreakStatement>(source);
1862   }
1863 
1864   /// Creates an ast::BreakStatement
1865   /// @returns the break statement pointer
Break()1866   const ast::BreakStatement* Break() { return create<ast::BreakStatement>(); }
1867 
1868   /// Creates an ast::ContinueStatement
1869   /// @param source the source information
1870   /// @returns the continue statement pointer
Continue(const Source & source)1871   const ast::ContinueStatement* Continue(const Source& source) {
1872     return create<ast::ContinueStatement>(source);
1873   }
1874 
1875   /// Creates an ast::ContinueStatement
1876   /// @returns the continue statement pointer
Continue()1877   const ast::ContinueStatement* Continue() {
1878     return create<ast::ContinueStatement>();
1879   }
1880 
1881   /// Creates an ast::ReturnStatement with no return value
1882   /// @param source the source information
1883   /// @returns the return statement pointer
Return(const Source & source)1884   const ast::ReturnStatement* Return(const Source& source) {
1885     return create<ast::ReturnStatement>(source);
1886   }
1887 
1888   /// Creates an ast::ReturnStatement with no return value
1889   /// @returns the return statement pointer
Return()1890   const ast::ReturnStatement* Return() {
1891     return create<ast::ReturnStatement>();
1892   }
1893 
1894   /// Creates an ast::ReturnStatement with the given return value
1895   /// @param source the source information
1896   /// @param val the return value
1897   /// @returns the return statement pointer
1898   template <typename EXPR>
Return(const Source & source,EXPR && val)1899   const ast::ReturnStatement* Return(const Source& source, EXPR&& val) {
1900     return create<ast::ReturnStatement>(source, Expr(std::forward<EXPR>(val)));
1901   }
1902 
1903   /// Creates an ast::ReturnStatement with the given return value
1904   /// @param val the return value
1905   /// @returns the return statement pointer
1906   template <typename EXPR, typename = DisableIfSource<EXPR>>
Return(EXPR && val)1907   const ast::ReturnStatement* Return(EXPR&& val) {
1908     return create<ast::ReturnStatement>(Expr(std::forward<EXPR>(val)));
1909   }
1910 
1911   /// Creates an ast::DiscardStatement
1912   /// @param source the source information
1913   /// @returns the discard statement pointer
Discard(const Source & source)1914   const ast::DiscardStatement* Discard(const Source& source) {
1915     return create<ast::DiscardStatement>(source);
1916   }
1917 
1918   /// Creates an ast::DiscardStatement
1919   /// @returns the discard statement pointer
Discard()1920   const ast::DiscardStatement* Discard() {
1921     return create<ast::DiscardStatement>();
1922   }
1923 
1924   /// Creates a ast::Alias registering it with the AST().TypeDecls().
1925   /// @param source the source information
1926   /// @param name the alias name
1927   /// @param type the alias target type
1928   /// @returns the alias type
1929   template <typename NAME>
Alias(const Source & source,NAME && name,const ast::Type * type)1930   const ast::Alias* Alias(const Source& source,
1931                           NAME&& name,
1932                           const ast::Type* type) {
1933     auto* out = ty.alias(source, std::forward<NAME>(name), type);
1934     AST().AddTypeDecl(out);
1935     return out;
1936   }
1937 
1938   /// Creates a ast::Alias registering it with the AST().TypeDecls().
1939   /// @param name the alias name
1940   /// @param type the alias target type
1941   /// @returns the alias type
1942   template <typename NAME>
Alias(NAME && name,const ast::Type * type)1943   const ast::Alias* Alias(NAME&& name, const ast::Type* type) {
1944     auto* out = ty.alias(std::forward<NAME>(name), type);
1945     AST().AddTypeDecl(out);
1946     return out;
1947   }
1948 
1949   /// Creates a ast::Struct registering it with the AST().TypeDecls().
1950   /// @param source the source information
1951   /// @param name the struct name
1952   /// @param members the struct members
1953   /// @param decorations the optional struct decorations
1954   /// @returns the struct type
1955   template <typename NAME>
1956   const ast::Struct* Structure(const Source& source,
1957                                NAME&& name,
1958                                ast::StructMemberList members,
1959                                ast::DecorationList decorations = {}) {
1960     auto sym = Sym(std::forward<NAME>(name));
1961     auto* type = create<ast::Struct>(source, sym, std::move(members),
1962                                      std::move(decorations));
1963     AST().AddTypeDecl(type);
1964     return type;
1965   }
1966 
1967   /// Creates a ast::Struct registering it with the AST().TypeDecls().
1968   /// @param name the struct name
1969   /// @param members the struct members
1970   /// @param decorations the optional struct decorations
1971   /// @returns the struct type
1972   template <typename NAME>
1973   const ast::Struct* Structure(NAME&& name,
1974                                ast::StructMemberList members,
1975                                ast::DecorationList decorations = {}) {
1976     auto sym = Sym(std::forward<NAME>(name));
1977     auto* type =
1978         create<ast::Struct>(sym, std::move(members), std::move(decorations));
1979     AST().AddTypeDecl(type);
1980     return type;
1981   }
1982 
1983   /// Creates a ast::StructMember
1984   /// @param source the source information
1985   /// @param name the struct member name
1986   /// @param type the struct member type
1987   /// @param decorations the optional struct member decorations
1988   /// @returns the struct member pointer
1989   template <typename NAME>
1990   const ast::StructMember* Member(const Source& source,
1991                                   NAME&& name,
1992                                   const ast::Type* type,
1993                                   ast::DecorationList decorations = {}) {
1994     return create<ast::StructMember>(source, Sym(std::forward<NAME>(name)),
1995                                      type, std::move(decorations));
1996   }
1997 
1998   /// Creates a ast::StructMember
1999   /// @param name the struct member name
2000   /// @param type the struct member type
2001   /// @param decorations the optional struct member decorations
2002   /// @returns the struct member pointer
2003   template <typename NAME>
2004   const ast::StructMember* Member(NAME&& name,
2005                                   const ast::Type* type,
2006                                   ast::DecorationList decorations = {}) {
2007     return create<ast::StructMember>(source_, Sym(std::forward<NAME>(name)),
2008                                      type, std::move(decorations));
2009   }
2010 
2011   /// Creates a ast::StructMember with the given byte offset
2012   /// @param offset the offset to use in the StructMemberOffsetDecoration
2013   /// @param name the struct member name
2014   /// @param type the struct member type
2015   /// @returns the struct member pointer
2016   template <typename NAME>
Member(uint32_t offset,NAME && name,const ast::Type * type)2017   const ast::StructMember* Member(uint32_t offset,
2018                                   NAME&& name,
2019                                   const ast::Type* type) {
2020     return create<ast::StructMember>(
2021         source_, Sym(std::forward<NAME>(name)), type,
2022         ast::DecorationList{
2023             create<ast::StructMemberOffsetDecoration>(offset),
2024         });
2025   }
2026 
2027   /// Creates a ast::BlockStatement with input statements
2028   /// @param source the source information for the block
2029   /// @param statements statements of block
2030   /// @returns the block statement pointer
2031   template <typename... Statements>
Block(const Source & source,Statements &&...statements)2032   const ast::BlockStatement* Block(const Source& source,
2033                                    Statements&&... statements) {
2034     return create<ast::BlockStatement>(
2035         source, ast::StatementList{std::forward<Statements>(statements)...});
2036   }
2037 
2038   /// Creates a ast::BlockStatement with input statements
2039   /// @param statements statements of block
2040   /// @returns the block statement pointer
2041   template <typename... STATEMENTS, typename = DisableIfSource<STATEMENTS...>>
Block(STATEMENTS &&...statements)2042   const ast::BlockStatement* Block(STATEMENTS&&... statements) {
2043     return create<ast::BlockStatement>(
2044         ast::StatementList{std::forward<STATEMENTS>(statements)...});
2045   }
2046 
2047   /// Creates a ast::ElseStatement with input condition and body
2048   /// @param condition the else condition expression
2049   /// @param body the else body
2050   /// @returns the else statement pointer
2051   template <typename CONDITION>
Else(CONDITION && condition,const ast::BlockStatement * body)2052   const ast::ElseStatement* Else(CONDITION&& condition,
2053                                  const ast::BlockStatement* body) {
2054     return create<ast::ElseStatement>(Expr(std::forward<CONDITION>(condition)),
2055                                       body);
2056   }
2057 
2058   /// Creates a ast::ElseStatement with no condition and body
2059   /// @param body the else body
2060   /// @returns the else statement pointer
Else(const ast::BlockStatement * body)2061   const ast::ElseStatement* Else(const ast::BlockStatement* body) {
2062     return create<ast::ElseStatement>(nullptr, body);
2063   }
2064 
2065   /// Creates a ast::IfStatement with input condition, body, and optional
2066   /// variadic else statements
2067   /// @param condition the if statement condition expression
2068   /// @param body the if statement body
2069   /// @param elseStatements optional variadic else statements
2070   /// @returns the if statement pointer
2071   template <typename CONDITION, typename... ELSE_STATEMENTS>
If(CONDITION && condition,const ast::BlockStatement * body,ELSE_STATEMENTS &&...elseStatements)2072   const ast::IfStatement* If(CONDITION&& condition,
2073                              const ast::BlockStatement* body,
2074                              ELSE_STATEMENTS&&... elseStatements) {
2075     return create<ast::IfStatement>(
2076         Expr(std::forward<CONDITION>(condition)), body,
2077         ast::ElseStatementList{
2078             std::forward<ELSE_STATEMENTS>(elseStatements)...});
2079   }
2080 
2081   /// Creates a ast::AssignmentStatement with input lhs and rhs expressions
2082   /// @param source the source information
2083   /// @param lhs the left hand side expression initializer
2084   /// @param rhs the right hand side expression initializer
2085   /// @returns the assignment statement pointer
2086   template <typename LhsExpressionInit, typename RhsExpressionInit>
Assign(const Source & source,LhsExpressionInit && lhs,RhsExpressionInit && rhs)2087   const ast::AssignmentStatement* Assign(const Source& source,
2088                                          LhsExpressionInit&& lhs,
2089                                          RhsExpressionInit&& rhs) {
2090     return create<ast::AssignmentStatement>(
2091         source, Expr(std::forward<LhsExpressionInit>(lhs)),
2092         Expr(std::forward<RhsExpressionInit>(rhs)));
2093   }
2094 
2095   /// Creates a ast::AssignmentStatement with input lhs and rhs expressions
2096   /// @param lhs the left hand side expression initializer
2097   /// @param rhs the right hand side expression initializer
2098   /// @returns the assignment statement pointer
2099   template <typename LhsExpressionInit, typename RhsExpressionInit>
Assign(LhsExpressionInit && lhs,RhsExpressionInit && rhs)2100   const ast::AssignmentStatement* Assign(LhsExpressionInit&& lhs,
2101                                          RhsExpressionInit&& rhs) {
2102     return create<ast::AssignmentStatement>(
2103         Expr(std::forward<LhsExpressionInit>(lhs)),
2104         Expr(std::forward<RhsExpressionInit>(rhs)));
2105   }
2106 
2107   /// Creates a ast::LoopStatement with input body and optional continuing
2108   /// @param source the source information
2109   /// @param body the loop body
2110   /// @param continuing the optional continuing block
2111   /// @returns the loop statement pointer
2112   const ast::LoopStatement* Loop(
2113       const Source& source,
2114       const ast::BlockStatement* body,
2115       const ast::BlockStatement* continuing = nullptr) {
2116     return create<ast::LoopStatement>(source, body, continuing);
2117   }
2118 
2119   /// Creates a ast::LoopStatement with input body and optional continuing
2120   /// @param body the loop body
2121   /// @param continuing the optional continuing block
2122   /// @returns the loop statement pointer
2123   const ast::LoopStatement* Loop(
2124       const ast::BlockStatement* body,
2125       const ast::BlockStatement* continuing = nullptr) {
2126     return create<ast::LoopStatement>(body, continuing);
2127   }
2128 
2129   /// Creates a ast::ForLoopStatement with input body and optional initializer,
2130   /// condition and continuing.
2131   /// @param source the source information
2132   /// @param init the optional loop initializer
2133   /// @param cond the optional loop condition
2134   /// @param cont the optional loop continuing
2135   /// @param body the loop body
2136   /// @returns the for loop statement pointer
2137   template <typename COND>
For(const Source & source,const ast::Statement * init,COND && cond,const ast::Statement * cont,const ast::BlockStatement * body)2138   const ast::ForLoopStatement* For(const Source& source,
2139                                    const ast::Statement* init,
2140                                    COND&& cond,
2141                                    const ast::Statement* cont,
2142                                    const ast::BlockStatement* body) {
2143     return create<ast::ForLoopStatement>(
2144         source, init, Expr(std::forward<COND>(cond)), cont, body);
2145   }
2146 
2147   /// Creates a ast::ForLoopStatement with input body and optional initializer,
2148   /// condition and continuing.
2149   /// @param init the optional loop initializer
2150   /// @param cond the optional loop condition
2151   /// @param cont the optional loop continuing
2152   /// @param body the loop body
2153   /// @returns the for loop statement pointer
2154   template <typename COND>
For(const ast::Statement * init,COND && cond,const ast::Statement * cont,const ast::BlockStatement * body)2155   const ast::ForLoopStatement* For(const ast::Statement* init,
2156                                    COND&& cond,
2157                                    const ast::Statement* cont,
2158                                    const ast::BlockStatement* body) {
2159     return create<ast::ForLoopStatement>(init, Expr(std::forward<COND>(cond)),
2160                                          cont, body);
2161   }
2162 
2163   /// Creates a ast::VariableDeclStatement for the input variable
2164   /// @param source the source information
2165   /// @param var the variable to wrap in a decl statement
2166   /// @returns the variable decl statement pointer
Decl(const Source & source,const ast::Variable * var)2167   const ast::VariableDeclStatement* Decl(const Source& source,
2168                                          const ast::Variable* var) {
2169     return create<ast::VariableDeclStatement>(source, var);
2170   }
2171 
2172   /// Creates a ast::VariableDeclStatement for the input variable
2173   /// @param var the variable to wrap in a decl statement
2174   /// @returns the variable decl statement pointer
Decl(const ast::Variable * var)2175   const ast::VariableDeclStatement* Decl(const ast::Variable* var) {
2176     return create<ast::VariableDeclStatement>(var);
2177   }
2178 
2179   /// Creates a ast::SwitchStatement with input expression and cases
2180   /// @param source the source information
2181   /// @param condition the condition expression initializer
2182   /// @param cases case statements
2183   /// @returns the switch statement pointer
2184   template <typename ExpressionInit, typename... Cases>
Switch(const Source & source,ExpressionInit && condition,Cases &&...cases)2185   const ast::SwitchStatement* Switch(const Source& source,
2186                                      ExpressionInit&& condition,
2187                                      Cases&&... cases) {
2188     return create<ast::SwitchStatement>(
2189         source, Expr(std::forward<ExpressionInit>(condition)),
2190         ast::CaseStatementList{std::forward<Cases>(cases)...});
2191   }
2192 
2193   /// Creates a ast::SwitchStatement with input expression and cases
2194   /// @param condition the condition expression initializer
2195   /// @param cases case statements
2196   /// @returns the switch statement pointer
2197   template <typename ExpressionInit,
2198             typename... Cases,
2199             typename = DisableIfSource<ExpressionInit>>
Switch(ExpressionInit && condition,Cases &&...cases)2200   const ast::SwitchStatement* Switch(ExpressionInit&& condition,
2201                                      Cases&&... cases) {
2202     return create<ast::SwitchStatement>(
2203         Expr(std::forward<ExpressionInit>(condition)),
2204         ast::CaseStatementList{std::forward<Cases>(cases)...});
2205   }
2206 
2207   /// Creates a ast::CaseStatement with input list of selectors, and body
2208   /// @param source the source information
2209   /// @param selectors list of selectors
2210   /// @param body the case body
2211   /// @returns the case statement pointer
2212   const ast::CaseStatement* Case(const Source& source,
2213                                  ast::CaseSelectorList selectors,
2214                                  const ast::BlockStatement* body = nullptr) {
2215     return create<ast::CaseStatement>(source, std::move(selectors),
2216                                       body ? body : Block());
2217   }
2218 
2219   /// Creates a ast::CaseStatement with input list of selectors, and body
2220   /// @param selectors list of selectors
2221   /// @param body the case body
2222   /// @returns the case statement pointer
2223   const ast::CaseStatement* Case(ast::CaseSelectorList selectors,
2224                                  const ast::BlockStatement* body = nullptr) {
2225     return create<ast::CaseStatement>(std::move(selectors),
2226                                       body ? body : Block());
2227   }
2228 
2229   /// Convenient overload that takes a single selector
2230   /// @param selector a single case selector
2231   /// @param body the case body
2232   /// @returns the case statement pointer
2233   const ast::CaseStatement* Case(const ast::IntLiteralExpression* selector,
2234                                  const ast::BlockStatement* body = nullptr) {
2235     return Case(ast::CaseSelectorList{selector}, body);
2236   }
2237 
2238   /// Convenience function that creates a 'default' ast::CaseStatement
2239   /// @param source the source information
2240   /// @param body the case body
2241   /// @returns the case statement pointer
2242   const ast::CaseStatement* DefaultCase(
2243       const Source& source,
2244       const ast::BlockStatement* body = nullptr) {
2245     return Case(source, ast::CaseSelectorList{}, body);
2246   }
2247 
2248   /// Convenience function that creates a 'default' ast::CaseStatement
2249   /// @param body the case body
2250   /// @returns the case statement pointer
2251   const ast::CaseStatement* DefaultCase(
2252       const ast::BlockStatement* body = nullptr) {
2253     return Case(ast::CaseSelectorList{}, body);
2254   }
2255 
2256   /// Creates an ast::FallthroughStatement
2257   /// @param source the source information
2258   /// @returns the fallthrough statement pointer
Fallthrough(const Source & source)2259   const ast::FallthroughStatement* Fallthrough(const Source& source) {
2260     return create<ast::FallthroughStatement>(source);
2261   }
2262 
2263   /// Creates an ast::FallthroughStatement
2264   /// @returns the fallthrough statement pointer
Fallthrough()2265   const ast::FallthroughStatement* Fallthrough() {
2266     return create<ast::FallthroughStatement>();
2267   }
2268 
2269   /// Creates an ast::BuiltinDecoration
2270   /// @param source the source information
2271   /// @param builtin the builtin value
2272   /// @returns the builtin decoration pointer
Builtin(const Source & source,ast::Builtin builtin)2273   const ast::BuiltinDecoration* Builtin(const Source& source,
2274                                         ast::Builtin builtin) {
2275     return create<ast::BuiltinDecoration>(source, builtin);
2276   }
2277 
2278   /// Creates an ast::BuiltinDecoration
2279   /// @param builtin the builtin value
2280   /// @returns the builtin decoration pointer
Builtin(ast::Builtin builtin)2281   const ast::BuiltinDecoration* Builtin(ast::Builtin builtin) {
2282     return create<ast::BuiltinDecoration>(source_, builtin);
2283   }
2284 
2285   /// Creates an ast::InterpolateDecoration
2286   /// @param source the source information
2287   /// @param type the interpolation type
2288   /// @param sampling the interpolation sampling
2289   /// @returns the interpolate decoration pointer
Interpolate(const Source & source,ast::InterpolationType type,ast::InterpolationSampling sampling)2290   const ast::InterpolateDecoration* Interpolate(
2291       const Source& source,
2292       ast::InterpolationType type,
2293       ast::InterpolationSampling sampling) {
2294     return create<ast::InterpolateDecoration>(source, type, sampling);
2295   }
2296 
2297   /// Creates an ast::InterpolateDecoration
2298   /// @param type the interpolation type
2299   /// @param sampling the interpolation sampling
2300   /// @returns the interpolate decoration pointer
Interpolate(ast::InterpolationType type,ast::InterpolationSampling sampling)2301   const ast::InterpolateDecoration* Interpolate(
2302       ast::InterpolationType type,
2303       ast::InterpolationSampling sampling) {
2304     return create<ast::InterpolateDecoration>(source_, type, sampling);
2305   }
2306 
2307   /// Creates an ast::InvariantDecoration
2308   /// @param source the source information
2309   /// @returns the invariant decoration pointer
Invariant(const Source & source)2310   const ast::InvariantDecoration* Invariant(const Source& source) {
2311     return create<ast::InvariantDecoration>(source);
2312   }
2313 
2314   /// Creates an ast::InvariantDecoration
2315   /// @returns the invariant decoration pointer
Invariant()2316   const ast::InvariantDecoration* Invariant() {
2317     return create<ast::InvariantDecoration>(source_);
2318   }
2319 
2320   /// Creates an ast::LocationDecoration
2321   /// @param source the source information
2322   /// @param location the location value
2323   /// @returns the location decoration pointer
Location(const Source & source,uint32_t location)2324   const ast::LocationDecoration* Location(const Source& source,
2325                                           uint32_t location) {
2326     return create<ast::LocationDecoration>(source, location);
2327   }
2328 
2329   /// Creates an ast::LocationDecoration
2330   /// @param location the location value
2331   /// @returns the location decoration pointer
Location(uint32_t location)2332   const ast::LocationDecoration* Location(uint32_t location) {
2333     return create<ast::LocationDecoration>(source_, location);
2334   }
2335 
2336   /// Creates an ast::OverrideDecoration with a specific constant ID
2337   /// @param source the source information
2338   /// @param id the id value
2339   /// @returns the override decoration pointer
Override(const Source & source,uint32_t id)2340   const ast::OverrideDecoration* Override(const Source& source, uint32_t id) {
2341     return create<ast::OverrideDecoration>(source, id);
2342   }
2343 
2344   /// Creates an ast::OverrideDecoration with a specific constant ID
2345   /// @param id the optional id value
2346   /// @returns the override decoration pointer
Override(uint32_t id)2347   const ast::OverrideDecoration* Override(uint32_t id) {
2348     return Override(source_, id);
2349   }
2350 
2351   /// Creates an ast::OverrideDecoration without a constant ID
2352   /// @param source the source information
2353   /// @returns the override decoration pointer
Override(const Source & source)2354   const ast::OverrideDecoration* Override(const Source& source) {
2355     return create<ast::OverrideDecoration>(source);
2356   }
2357 
2358   /// Creates an ast::OverrideDecoration without a constant ID
2359   /// @returns the override decoration pointer
Override()2360   const ast::OverrideDecoration* Override() { return Override(source_); }
2361 
2362   /// Creates an ast::StageDecoration
2363   /// @param source the source information
2364   /// @param stage the pipeline stage
2365   /// @returns the stage decoration pointer
Stage(const Source & source,ast::PipelineStage stage)2366   const ast::StageDecoration* Stage(const Source& source,
2367                                     ast::PipelineStage stage) {
2368     return create<ast::StageDecoration>(source, stage);
2369   }
2370 
2371   /// Creates an ast::StageDecoration
2372   /// @param stage the pipeline stage
2373   /// @returns the stage decoration pointer
Stage(ast::PipelineStage stage)2374   const ast::StageDecoration* Stage(ast::PipelineStage stage) {
2375     return create<ast::StageDecoration>(source_, stage);
2376   }
2377 
2378   /// Creates an ast::WorkgroupDecoration
2379   /// @param x the x dimension expression
2380   /// @returns the workgroup decoration pointer
2381   template <typename EXPR_X>
WorkgroupSize(EXPR_X && x)2382   const ast::WorkgroupDecoration* WorkgroupSize(EXPR_X&& x) {
2383     return WorkgroupSize(std::forward<EXPR_X>(x), nullptr, nullptr);
2384   }
2385 
2386   /// Creates an ast::WorkgroupDecoration
2387   /// @param x the x dimension expression
2388   /// @param y the y dimension expression
2389   /// @returns the workgroup decoration pointer
2390   template <typename EXPR_X, typename EXPR_Y>
WorkgroupSize(EXPR_X && x,EXPR_Y && y)2391   const ast::WorkgroupDecoration* WorkgroupSize(EXPR_X&& x, EXPR_Y&& y) {
2392     return WorkgroupSize(std::forward<EXPR_X>(x), std::forward<EXPR_Y>(y),
2393                          nullptr);
2394   }
2395 
2396   /// Creates an ast::WorkgroupDecoration
2397   /// @param source the source information
2398   /// @param x the x dimension expression
2399   /// @param y the y dimension expression
2400   /// @param z the z dimension expression
2401   /// @returns the workgroup decoration pointer
2402   template <typename EXPR_X, typename EXPR_Y, typename EXPR_Z>
WorkgroupSize(const Source & source,EXPR_X && x,EXPR_Y && y,EXPR_Z && z)2403   const ast::WorkgroupDecoration* WorkgroupSize(const Source& source,
2404                                                 EXPR_X&& x,
2405                                                 EXPR_Y&& y,
2406                                                 EXPR_Z&& z) {
2407     return create<ast::WorkgroupDecoration>(
2408         source, Expr(std::forward<EXPR_X>(x)), Expr(std::forward<EXPR_Y>(y)),
2409         Expr(std::forward<EXPR_Z>(z)));
2410   }
2411 
2412   /// Creates an ast::WorkgroupDecoration
2413   /// @param x the x dimension expression
2414   /// @param y the y dimension expression
2415   /// @param z the z dimension expression
2416   /// @returns the workgroup decoration pointer
2417   template <typename EXPR_X, typename EXPR_Y, typename EXPR_Z>
WorkgroupSize(EXPR_X && x,EXPR_Y && y,EXPR_Z && z)2418   const ast::WorkgroupDecoration* WorkgroupSize(EXPR_X&& x,
2419                                                 EXPR_Y&& y,
2420                                                 EXPR_Z&& z) {
2421     return create<ast::WorkgroupDecoration>(
2422         source_, Expr(std::forward<EXPR_X>(x)), Expr(std::forward<EXPR_Y>(y)),
2423         Expr(std::forward<EXPR_Z>(z)));
2424   }
2425 
2426   /// Creates an ast::DisableValidationDecoration
2427   /// @param validation the validation to disable
2428   /// @returns the disable validation decoration pointer
Disable(ast::DisabledValidation validation)2429   const ast::DisableValidationDecoration* Disable(
2430       ast::DisabledValidation validation) {
2431     return ASTNodes().Create<ast::DisableValidationDecoration>(ID(),
2432                                                                validation);
2433   }
2434 
2435   /// Sets the current builder source to `src`
2436   /// @param src the Source used for future create() calls
SetSource(const Source & src)2437   void SetSource(const Source& src) {
2438     AssertNotMoved();
2439     source_ = src;
2440   }
2441 
2442   /// Sets the current builder source to `loc`
2443   /// @param loc the Source used for future create() calls
SetSource(const Source::Location & loc)2444   void SetSource(const Source::Location& loc) {
2445     AssertNotMoved();
2446     source_ = Source(loc);
2447   }
2448 
2449   /// Marks that the given transform has been applied to this program.
2450   /// @param transform the transform that has been applied
SetTransformApplied(const CastableBase * transform)2451   void SetTransformApplied(const CastableBase* transform) {
2452     transforms_applied_.emplace(&transform->TypeInfo());
2453   }
2454 
2455   /// Marks that the given transform `T` has been applied to this program.
2456   template <typename T>
SetTransformApplied()2457   void SetTransformApplied() {
2458     transforms_applied_.emplace(&TypeInfo::Of<T>());
2459   }
2460 
2461   /// Marks that the transforms with the given TypeInfos have been applied to
2462   /// this program.
2463   /// @param transforms the set of transform TypeInfos that has been applied
SetTransformApplied(const std::unordered_set<const TypeInfo * > & transforms)2464   void SetTransformApplied(
2465       const std::unordered_set<const TypeInfo*>& transforms) {
2466     for (auto* transform : transforms) {
2467       transforms_applied_.emplace(transform);
2468     }
2469   }
2470 
2471   /// @returns true if the transform of type `T` was applied.
2472   template <typename T>
HasTransformApplied()2473   bool HasTransformApplied() {
2474     return transforms_applied_.count(&TypeInfo::Of<T>());
2475   }
2476 
2477   /// @return the TypeInfo pointers of all transforms that have been applied to
2478   /// this program.
TransformsApplied()2479   std::unordered_set<const TypeInfo*> TransformsApplied() const {
2480     return transforms_applied_;
2481   }
2482 
2483   /// Helper for returning the resolved semantic type of the expression `expr`.
2484   /// @note As the Resolver is run when the Program is built, this will only be
2485   /// useful for the Resolver itself and tests that use their own Resolver.
2486   /// @param expr the AST expression
2487   /// @return the resolved semantic type for the expression, or nullptr if the
2488   /// expression has no resolved type.
2489   const sem::Type* TypeOf(const ast::Expression* expr) const;
2490 
2491   /// Helper for returning the resolved semantic type of the variable `var`.
2492   /// @note As the Resolver is run when the Program is built, this will only be
2493   /// useful for the Resolver itself and tests that use their own Resolver.
2494   /// @param var the AST variable
2495   /// @return the resolved semantic type for the variable, or nullptr if the
2496   /// variable has no resolved type.
2497   const sem::Type* TypeOf(const ast::Variable* var) const;
2498 
2499   /// Helper for returning the resolved semantic type of the AST type `type`.
2500   /// @note As the Resolver is run when the Program is built, this will only be
2501   /// useful for the Resolver itself and tests that use their own Resolver.
2502   /// @param type the AST type
2503   /// @return the resolved semantic type for the type, or nullptr if the type
2504   /// has no resolved type.
2505   const sem::Type* TypeOf(const ast::Type* type) const;
2506 
2507   /// Helper for returning the resolved semantic type of the AST type
2508   /// declaration `type_decl`.
2509   /// @note As the Resolver is run when the Program is built, this will only be
2510   /// useful for the Resolver itself and tests that use their own Resolver.
2511   /// @param type_decl the AST type declaration
2512   /// @return the resolved semantic type for the type declaration, or nullptr if
2513   /// the type declaration has no resolved type.
2514   const sem::Type* TypeOf(const ast::TypeDecl* type_decl) const;
2515 
2516   /// Wraps the ast::Expression in a statement. This is used by tests that
2517   /// construct a partial AST and require the Resolver to reach these
2518   /// nodes.
2519   /// @param expr the ast::Expression to be wrapped by an ast::Statement
2520   /// @return the ast::Statement that wraps the ast::Expression
2521   const ast::Statement* WrapInStatement(const ast::Expression* expr);
2522   /// Wraps the ast::Variable in a ast::VariableDeclStatement. This is used by
2523   /// tests that construct a partial AST and require the Resolver to reach
2524   /// these nodes.
2525   /// @param v the ast::Variable to be wrapped by an ast::VariableDeclStatement
2526   /// @return the ast::VariableDeclStatement that wraps the ast::Variable
2527   const ast::VariableDeclStatement* WrapInStatement(const ast::Variable* v);
2528   /// Returns the statement argument. Used as a passthrough-overload by
2529   /// WrapInFunction().
2530   /// @param stmt the ast::Statement
2531   /// @return `stmt`
2532   const ast::Statement* WrapInStatement(const ast::Statement* stmt);
2533   /// Wraps the list of arguments in a simple function so that each is reachable
2534   /// by the Resolver.
2535   /// @param args a mix of ast::Expression, ast::Statement, ast::Variables.
2536   /// @returns the function
2537   template <typename... ARGS>
WrapInFunction(ARGS &&...args)2538   const ast::Function* WrapInFunction(ARGS&&... args) {
2539     ast::StatementList stmts{WrapInStatement(std::forward<ARGS>(args))...};
2540     return WrapInFunction(std::move(stmts));
2541   }
2542   /// @param stmts a list of ast::Statement that will be wrapped by a function,
2543   /// so that each statement is reachable by the Resolver.
2544   /// @returns the function
2545   const ast::Function* WrapInFunction(ast::StatementList stmts);
2546 
2547   /// The builder types
2548   TypesBuilder const ty{this};
2549 
2550  protected:
2551   /// Asserts that the builder has not been moved.
2552   void AssertNotMoved() const;
2553 
2554  private:
2555   ProgramID id_;
2556   sem::Manager types_;
2557   ASTNodeAllocator ast_nodes_;
2558   SemNodeAllocator sem_nodes_;
2559   ast::Module* ast_;
2560   sem::Info sem_;
2561   SymbolTable symbols_{id_};
2562   diag::List diagnostics_;
2563   std::unordered_set<const TypeInfo*> transforms_applied_;
2564 
2565   /// The source to use when creating AST nodes without providing a Source as
2566   /// the first argument.
2567   Source source_;
2568 
2569   /// Set by SetResolveOnBuild(). If set, the Resolver will be run on the
2570   /// program when built.
2571   bool resolve_on_build_ = true;
2572 
2573   /// Set by MarkAsMoved(). Once set, no methods may be called on this builder.
2574   bool moved_ = false;
2575 };
2576 
2577 //! @cond Doxygen_Suppress
2578 // Various template specializations for ProgramBuilder::TypesBuilder::CToAST.
2579 template <>
2580 struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::i32> {
2581   static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
2582     return t->i32();
2583   }
2584 };
2585 template <>
2586 struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::u32> {
2587   static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
2588     return t->u32();
2589   }
2590 };
2591 template <>
2592 struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::f32> {
2593   static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
2594     return t->f32();
2595   }
2596 };
2597 template <>
2598 struct ProgramBuilder::TypesBuilder::CToAST<bool> {
2599   static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
2600     return t->bool_();
2601   }
2602 };
2603 template <>
2604 struct ProgramBuilder::TypesBuilder::CToAST<void> {
2605   static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
2606     return t->void_();
2607   }
2608 };
2609 //! @endcond
2610 
2611 /// @param builder the ProgramBuilder
2612 /// @returns the ProgramID of the ProgramBuilder
2613 inline ProgramID ProgramIDOf(const ProgramBuilder* builder) {
2614   return builder->ID();
2615 }
2616 
2617 }  // namespace tint
2618 
2619 #endif  // SRC_PROGRAM_BUILDER_H_
2620