• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 #include "sensor_algorithm.h"
16 
17 #include "sensor_errors.h"
18 #include "sensor_utils.h"
19 
20 #undef LOG_TAG
21 #define LOG_TAG "SensorAlgorithmAPI"
22 using namespace OHOS::Sensors;
23 
CreateQuaternion(std::vector<float> rotationVector,std::vector<float> & quaternion)24 int32_t SensorAlgorithm::CreateQuaternion(std::vector<float> rotationVector, std::vector<float> &quaternion)
25 {
26     if (static_cast<int32_t>(rotationVector.size()) < ROTATION_VECTOR_LENGTH
27         || static_cast<int32_t>(rotationVector.size()) > QUATERNION_LENGTH) {
28         SEN_HILOGE("Invalid input rotationVector parameter");
29         return OHOS::Sensors::PARAMETER_ERROR;
30     }
31     if (static_cast<int32_t>(quaternion.size()) < QUATERNION_LENGTH) {
32         SEN_HILOGE("Invalid input quaternion parameter");
33         return OHOS::Sensors::PARAMETER_ERROR;
34     }
35     if (static_cast<int32_t>(rotationVector.size()) == ROTATION_VECTOR_LENGTH) {
36         quaternion[0] = 1 - static_cast<float>((pow(rotationVector[0], 2) + pow(rotationVector[1], 2)
37             + pow(rotationVector[2], 2)));
38         quaternion[0]  = (quaternion[0] > 0) ? static_cast<float>(std::sqrt(quaternion[0])) : 0;
39     } else {
40         quaternion[0] = rotationVector[3];
41     }
42     quaternion[1] = rotationVector[0];
43     quaternion[2] = rotationVector[1];
44     quaternion[3] = rotationVector[2];
45     return OHOS::Sensors::SUCCESS;
46 }
47 
TransformCoordinateSystemImpl(std::vector<float> inRotationMatrix,int32_t axisX,int32_t axisY,std::vector<float> & outRotationMatrix)48 int32_t SensorAlgorithm::TransformCoordinateSystemImpl(std::vector<float> inRotationMatrix, int32_t axisX,
49     int32_t axisY, std::vector<float> &outRotationMatrix)
50 {
51     if ((axisX & 0x7C) != 0 || (axisX & 0x3) == 0) {
52         SEN_HILOGE("axisX is invalid parameter");
53         return OHOS::Sensors::PARAMETER_ERROR;
54     }
55     if ((axisY & 0x7C) != 0 || (axisY & 0x3) == 0 || (axisX & 0x3) == (axisY & 0x3)) {
56         SEN_HILOGE("axisY is invalid parameter");
57         return OHOS::Sensors::PARAMETER_ERROR;
58     }
59     int32_t axisZ = axisX ^ axisY;
60     int32_t x = (axisX & 0x3) - 1;
61     int32_t y = (axisY & 0x3) - 1;
62     int32_t z = (axisZ & 0x3) - 1;
63     if (((x ^ ((z + 1) % 3)) | (y ^ ((z + 2) % 3))) != 0) {
64         axisZ ^= 0x80;
65     }
66     int32_t inRotationMatrixLength = static_cast<int32_t>(inRotationMatrix.size());
67     int32_t matrixDimension = ((inRotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
68         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
69     for (int32_t j = 0; j < ROTATION_VECTOR_LENGTH; j++) {
70         int32_t offset = j * matrixDimension;
71         for (int32_t i = 0; i < 3; i++) {
72             if (x == i) {
73                 outRotationMatrix[offset + i] = (axisX >= 0x80) ? -inRotationMatrix[offset + 0] :
74                     inRotationMatrix[offset + 0];
75             }
76             if (y == i) {
77                 outRotationMatrix[offset + i] = (axisY >= 0x80) ? -inRotationMatrix[offset + 1] :
78                     inRotationMatrix[offset + 1];
79             }
80             if (z == i) {
81                 outRotationMatrix[offset + i] = (axisZ >= 0x80) ? -inRotationMatrix[offset + 2] :
82                     inRotationMatrix[offset + 2];
83             }
84         }
85     }
86     if (inRotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH) {
87         outRotationMatrix[3] = outRotationMatrix[7] = outRotationMatrix[11] =
88             outRotationMatrix[12] = outRotationMatrix[13] = outRotationMatrix[14] = 0;
89         outRotationMatrix[15] = 1;
90     }
91     return OHOS::Sensors::SUCCESS;
92 }
93 
TransformCoordinateSystem(std::vector<float> inRotationMatrix,int32_t axisX,int32_t axisY,std::vector<float> & outRotationMatrix)94 int32_t SensorAlgorithm::TransformCoordinateSystem(std::vector<float> inRotationMatrix, int32_t axisX, int32_t axisY,
95     std::vector<float> &outRotationMatrix)
96 {
97     if (axisX < 0 || axisY < 0) {
98         SEN_HILOGE("Invalid axisX or axisY");
99         return OHOS::Sensors::PARAMETER_ERROR;
100     }
101     int32_t inRotationMatrixLength = static_cast<int32_t>(inRotationMatrix.size());
102     if (((inRotationMatrixLength != THREE_DIMENSIONAL_MATRIX_LENGTH) &&
103         (inRotationMatrixLength != FOUR_DIMENSIONAL_MATRIX_LENGTH)) ||
104         (inRotationMatrixLength != static_cast<int32_t>(outRotationMatrix.size()))) {
105         SEN_HILOGE("Invalid input parameter");
106         return OHOS::Sensors::PARAMETER_ERROR;
107     }
108     if (inRotationMatrix == outRotationMatrix) {
109         std::vector<float> tempRotationMatrix(inRotationMatrixLength);
110         if (TransformCoordinateSystemImpl(inRotationMatrix, axisX, axisY, tempRotationMatrix)
111             != OHOS::Sensors::SUCCESS) {
112             SEN_HILOGE("TransformCoordinateSystemImpl failed");
113             return OHOS::Sensors::PARAMETER_ERROR;
114         }
115         for (int32_t i = 0; i < inRotationMatrixLength; i++) {
116             outRotationMatrix[i] = tempRotationMatrix[i];
117         }
118         return OHOS::Sensors::SUCCESS;
119     }
120     return TransformCoordinateSystemImpl(inRotationMatrix, axisX, axisY, outRotationMatrix);
121 }
122 
GetAltitude(float seaPressure,float currentPressure,float * altitude)123 int32_t SensorAlgorithm::GetAltitude(float seaPressure, float currentPressure, float *altitude)
124 {
125     if (altitude == nullptr) {
126         SEN_HILOGE("Invalid parameter");
127         return OHOS::Sensors::PARAMETER_ERROR;
128     }
129     float coef = 1.0f / RECIPROCAL_COEFFICIENT;
130     float rationOfStandardPressure = IsEqual(seaPressure, 0.0f) ?
131         std::numeric_limits<float>::max() : currentPressure / seaPressure;
132     float difference = pow(rationOfStandardPressure, coef);
133     *altitude = ZERO_PRESSURE_ALTITUDE * (1.0f - difference);
134     return OHOS::Sensors::SUCCESS;
135 }
136 
GetGeomagneticDip(std::vector<float> inclinationMatrix,float * geomagneticDip)137 int32_t SensorAlgorithm::GetGeomagneticDip(std::vector<float> inclinationMatrix, float *geomagneticDip)
138 {
139     if (geomagneticDip == nullptr) {
140         SEN_HILOGE("Invalid parameter");
141         return OHOS::Sensors::PARAMETER_ERROR;
142     }
143     int32_t matrixLength = static_cast<int32_t>(inclinationMatrix.size());
144     if (matrixLength != THREE_DIMENSIONAL_MATRIX_LENGTH && matrixLength != FOUR_DIMENSIONAL_MATRIX_LENGTH) {
145         SEN_HILOGE("Invalid input parameter");
146         return OHOS::Sensors::PARAMETER_ERROR;
147     }
148     if (matrixLength == THREE_DIMENSIONAL_MATRIX_LENGTH) {
149         *geomagneticDip = std::atan2(inclinationMatrix[5], inclinationMatrix[4]);
150     } else {
151         *geomagneticDip = std::atan2(inclinationMatrix[6], inclinationMatrix[5]);
152     }
153     return OHOS::Sensors::SUCCESS;
154 }
155 
GetAngleModify(std::vector<float> curRotationMatrix,std::vector<float> preRotationMatrix,std::vector<float> & angleChange)156 int32_t SensorAlgorithm::GetAngleModify(std::vector<float> curRotationMatrix, std::vector<float> preRotationMatrix,
157     std::vector<float> &angleChange)
158 {
159     if (static_cast<int32_t>(angleChange.size()) < ROTATION_VECTOR_LENGTH) {
160         SEN_HILOGE("Invalid parameter");
161         return OHOS::Sensors::PARAMETER_ERROR;
162     }
163     int32_t curRotationMatrixLength = static_cast<int32_t>(curRotationMatrix.size());
164     int32_t preRotationMatrixLength = static_cast<int32_t>(preRotationMatrix.size());
165     if ((curRotationMatrixLength != FOUR_DIMENSIONAL_MATRIX_LENGTH)
166         && (curRotationMatrixLength != THREE_DIMENSIONAL_MATRIX_LENGTH)) {
167         SEN_HILOGE("Invalid input curRotationMatrix parameter");
168         return OHOS::Sensors::PARAMETER_ERROR;
169     }
170     if ((preRotationMatrixLength != FOUR_DIMENSIONAL_MATRIX_LENGTH)
171         && (preRotationMatrixLength != THREE_DIMENSIONAL_MATRIX_LENGTH)) {
172         SEN_HILOGE("Invalid input currotationMatrix parameter");
173         return OHOS::Sensors::PARAMETER_ERROR;
174     }
175     float curMatrix[THREE_DIMENSIONAL_MATRIX_LENGTH] = {0};
176     float preMatrix[THREE_DIMENSIONAL_MATRIX_LENGTH] = {0};
177     int32_t curmatrixDimension = ((curRotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
178         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
179     int32_t prematrixDimension = ((preRotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
180         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
181     for (int32_t i = 0; i < THREE_DIMENSIONAL_MATRIX_LENGTH; i++) {
182         int32_t curMatrixIndex = i % ROTATION_VECTOR_LENGTH + (i / ROTATION_VECTOR_LENGTH) * curmatrixDimension;
183         curMatrix[i] = curRotationMatrix[curMatrixIndex];
184         int32_t preMatrixIndex = i % ROTATION_VECTOR_LENGTH + (i / ROTATION_VECTOR_LENGTH) * prematrixDimension;
185         preMatrix[i] = preRotationMatrix[preMatrixIndex];
186     }
187     float radian[THREE_DIMENSIONAL_MATRIX_LENGTH] = {0};
188     radian[1] = preMatrix[0] * curMatrix[1] + preMatrix[3] * curMatrix[4] + preMatrix[6] * curMatrix[7];
189     radian[4] = preMatrix[1] * curMatrix[1] + preMatrix[4] * curMatrix[4] + preMatrix[7] * curMatrix[7];
190     radian[6] = preMatrix[2] * curMatrix[0] + preMatrix[5] * curMatrix[3] + preMatrix[8] * curMatrix[6];
191     radian[7] = preMatrix[2] * curMatrix[1] + preMatrix[5] * curMatrix[4] + preMatrix[8] * curMatrix[7];
192     radian[8] = preMatrix[2] * curMatrix[2] + preMatrix[5] * curMatrix[5] + preMatrix[8] * curMatrix[8];
193     angleChange[0] = static_cast<float>(std::atan2(radian[1], radian[4]));
194     angleChange[1] = static_cast<float>(std::asin(-radian[7]));
195     angleChange[2] = static_cast<float>(std::atan2(-radian[6], radian[8]));
196     return OHOS::Sensors::SUCCESS;
197 }
198 
GetDirection(std::vector<float> rotationMatrix,std::vector<float> & rotationAngle)199 int32_t SensorAlgorithm::GetDirection(std::vector<float> rotationMatrix, std::vector<float> &rotationAngle)
200 {
201     if (static_cast<int32_t>(rotationAngle.size()) < ROTATION_VECTOR_LENGTH) {
202         SEN_HILOGE("Invalid parameter");
203         return OHOS::Sensors::PARAMETER_ERROR;
204     }
205     int32_t rotationMatrixLength = static_cast<int32_t>(rotationMatrix.size());
206     if ((rotationMatrixLength != FOUR_DIMENSIONAL_MATRIX_LENGTH)
207         && (rotationMatrixLength != THREE_DIMENSIONAL_MATRIX_LENGTH)) {
208         SEN_HILOGE("Invalid input rotationMatrix parameter");
209         return OHOS::Sensors::PARAMETER_ERROR;
210     }
211     int32_t dimension = ((rotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
212         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
213     rotationAngle[0] = static_cast<float>(std::atan2(rotationMatrix[1],
214         rotationMatrix[dimension * 1 + 1]));
215     rotationAngle[1] = static_cast<float>(std::atan2(-rotationMatrix[2 * dimension + 1],
216         std::sqrt(pow(rotationMatrix[1], 2) + pow(rotationMatrix[dimension + 1], 2))));
217     rotationAngle[2] = static_cast<float>(std::atan2(-rotationMatrix[2 * dimension],
218         rotationMatrix[2 * dimension + 2]));
219     return OHOS::Sensors::SUCCESS;
220 }
221 
CreateRotationMatrix(std::vector<float> rotationVector,std::vector<float> & rotationMatrix)222 int32_t SensorAlgorithm::CreateRotationMatrix(std::vector<float> rotationVector, std::vector<float> &rotationMatrix)
223 {
224     int32_t rotationMatrixLength = static_cast<int32_t>(rotationMatrix.size());
225     if ((static_cast<int32_t>(rotationVector.size()) < ROTATION_VECTOR_LENGTH)
226         || ((rotationMatrixLength != FOUR_DIMENSIONAL_MATRIX_LENGTH)
227         && (rotationMatrixLength != THREE_DIMENSIONAL_MATRIX_LENGTH))) {
228         SEN_HILOGE("Invalid input rotationMatrix parameter");
229         return OHOS::Sensors::PARAMETER_ERROR;
230     }
231     std::vector<float> quaternion(4);
232     int32_t ret = CreateQuaternion(rotationVector, quaternion);
233     if (ret != OHOS::Sensors::SUCCESS) {
234         SEN_HILOGE("Create quaternion failed");
235         return ret;
236     }
237     float squareOfX = 2 * static_cast<float>(pow(quaternion[1], 2));
238     float squareOfY = 2 * static_cast<float>(pow(quaternion[2], 2));
239     float squareOfZ = 2 * static_cast<float>(pow(quaternion[3], 2));
240     float productOfWZ = 2 * quaternion[0] * quaternion[3];
241     float productOfXY = 2 * quaternion[1] * quaternion[2];
242     float productOfWY = 2 * quaternion[0] * quaternion[2];
243     float productOfXZ = 2 * quaternion[1] * quaternion[3];
244     float productOfWX = 2 * quaternion[0] * quaternion[1];
245     float productOfYZ = 2 * quaternion[2] * quaternion[3];
246     int32_t rotationMatrixDimension =  ((rotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
247         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
248     rotationMatrix[0] = 1 - squareOfY - squareOfZ;
249     rotationMatrix[1] = productOfXY - productOfWZ;
250     rotationMatrix[2] = productOfXZ + productOfWY;
251     rotationMatrix[3 % ROTATION_VECTOR_LENGTH + (3 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension]
252         = productOfXY + productOfWZ;
253     rotationMatrix[4 % ROTATION_VECTOR_LENGTH + (4 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension]
254         = 1 - squareOfX - squareOfZ;
255     rotationMatrix[5 % ROTATION_VECTOR_LENGTH + (5 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension]
256         = productOfYZ - productOfWX;
257     rotationMatrix[6 % ROTATION_VECTOR_LENGTH + (6 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension]
258         = productOfXZ - productOfWY;
259     rotationMatrix[7 % ROTATION_VECTOR_LENGTH + (7 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension]
260         = productOfYZ + productOfWX;
261     rotationMatrix[8 % ROTATION_VECTOR_LENGTH + (8 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension]
262         = 1 - squareOfX - squareOfY;
263     if (rotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH) {
264         rotationMatrix[3] = rotationMatrix[7] = rotationMatrix[11] = rotationMatrix[12] = rotationMatrix[13]
265             = rotationMatrix[14] = 0.0f;
266         rotationMatrix[15] = 1.0f;
267     }
268     return OHOS::Sensors::SUCCESS;
269 }
270 
CreateRotationAndInclination(std::vector<float> gravity,std::vector<float> geomagnetic,std::vector<float> & rotationMatrix,std::vector<float> & inclinationMatrix)271 int32_t SensorAlgorithm::CreateRotationAndInclination(std::vector<float> gravity, std::vector<float> geomagnetic,
272     std::vector<float> &rotationMatrix, std::vector<float> &inclinationMatrix)
273 {
274     if (static_cast<int32_t>(gravity.size()) < ROTATION_VECTOR_LENGTH
275         || static_cast<int32_t>(geomagnetic.size()) < ROTATION_VECTOR_LENGTH) {
276         SEN_HILOGE("Invalid input parameter");
277         return OHOS::Sensors::PARAMETER_ERROR;
278     }
279     float totalGravity = pow(gravity[0], 2) + pow(gravity[1], 2) + pow(gravity[2], 2);
280     if (totalGravity < (0.01f * pow(GRAVITATIONAL_ACCELERATION, 2))) {
281         SEN_HILOGE("Invalid input gravity parameter");
282         return OHOS::Sensors::PARAMETER_ERROR;
283     }
284     std::vector<float> componentH(3);
285     componentH[0] = geomagnetic[1] * gravity[2] - geomagnetic[2] * gravity[1];
286     componentH[1] = geomagnetic[2] * gravity[0] - geomagnetic[0] * gravity[2];
287     componentH[2] = geomagnetic[0] * gravity[1] - geomagnetic[1] * gravity[0];
288     float totalH = static_cast<float>(std::sqrt(pow(componentH[0], 2) + pow(componentH[1], 2)
289         + pow(componentH[2], 2)));
290     if (totalH < 0.1f) {
291         SEN_HILOGE("The total strength of H is less than 0.1");
292         return OHOS::Sensors::PARAMETER_ERROR;
293     }
294     float reciprocalH = 1.0f / totalH;
295     componentH[0] *= reciprocalH;
296     componentH[1] *= reciprocalH;
297     componentH[2] *= reciprocalH;
298     float reciprocalA = 1.0f / static_cast<float>(std::sqrt(totalGravity));
299     gravity[0] *= reciprocalA;
300     gravity[1] *= reciprocalA;
301     gravity[2] *= reciprocalA;
302 
303     std::vector<float> measuredValue(3);
304     measuredValue[0] = gravity[1] * componentH[2] - gravity[2] * componentH[1];
305     measuredValue[1] = gravity[2] * componentH[0] - gravity[0] * componentH[2];
306     measuredValue[2] = gravity[0] * componentH[1] - gravity[1] * componentH[0];
307     int32_t rotationMatrixLength = static_cast<int32_t>(rotationMatrix.size());
308     int32_t inclinationMatrixLength = static_cast<int32_t>(inclinationMatrix.size());
309     if ((rotationMatrixLength != 9 && rotationMatrixLength != 16) || (inclinationMatrixLength != 9
310         && inclinationMatrixLength != 16)) {
311         SEN_HILOGE("Invalid input parameter");
312         return OHOS::Sensors::PARAMETER_ERROR;
313     }
314     float e = static_cast<float>(std::sqrt(pow(geomagnetic[0], 2) + pow(geomagnetic[1], 2) + pow(geomagnetic[2], 2)));
315     float reciprocalE = IsEqual(e, 0.0f) ? std::numeric_limits<float>::max() : 1.0f / e;
316     float c = (geomagnetic[0] * measuredValue[0] + geomagnetic[1] * measuredValue[1]
317         + geomagnetic[2] * measuredValue[2]) * reciprocalE;
318     float s = (geomagnetic[0] * gravity[0] + geomagnetic[1] * gravity[1] + geomagnetic[2] * gravity[2]) * reciprocalE;
319 
320     int32_t rotationMatrixDimension =  ((rotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
321         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
322     int32_t inclinationMatrixDimension =  ((inclinationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH)
323         ? QUATERNION_LENGTH : ROTATION_VECTOR_LENGTH);
324     rotationMatrix[0] = componentH[0];
325     rotationMatrix[1] = componentH[1];
326     rotationMatrix[2] = componentH[2];
327     rotationMatrix[3 % ROTATION_VECTOR_LENGTH + (3 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension] =
328         measuredValue[0];
329     rotationMatrix[4 % ROTATION_VECTOR_LENGTH + (4 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension] =
330         measuredValue[1];
331     rotationMatrix[5 % ROTATION_VECTOR_LENGTH + (5 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension] =
332         measuredValue[2];
333     rotationMatrix[6 % ROTATION_VECTOR_LENGTH + (6 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension] = gravity[0];
334     rotationMatrix[7 % ROTATION_VECTOR_LENGTH + (7 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension] = gravity[1];
335     rotationMatrix[8 % ROTATION_VECTOR_LENGTH + (8 / ROTATION_VECTOR_LENGTH) * rotationMatrixDimension] = gravity[2];
336     if (rotationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH) {
337         rotationMatrix[3] = rotationMatrix[7] = rotationMatrix[11] = rotationMatrix[12]
338             = rotationMatrix[13] = rotationMatrix[14] = 0.0f;
339         rotationMatrix[15] = 1.0f;
340     }
341     inclinationMatrix[0] = 1;
342     inclinationMatrix[1] = 0;
343     inclinationMatrix[2] = 0;
344     inclinationMatrix[3 % ROTATION_VECTOR_LENGTH + (3 / ROTATION_VECTOR_LENGTH) * inclinationMatrixDimension] = 0;
345     inclinationMatrix[4 % ROTATION_VECTOR_LENGTH + (4 / ROTATION_VECTOR_LENGTH) * inclinationMatrixDimension] = c;
346     inclinationMatrix[5 % ROTATION_VECTOR_LENGTH + (5 / ROTATION_VECTOR_LENGTH) * inclinationMatrixDimension] = s;
347     inclinationMatrix[6 % ROTATION_VECTOR_LENGTH + (6 / ROTATION_VECTOR_LENGTH) * inclinationMatrixDimension] = 0;
348     inclinationMatrix[7 % ROTATION_VECTOR_LENGTH + (7 / ROTATION_VECTOR_LENGTH) * inclinationMatrixDimension] = -s;
349     inclinationMatrix[8 % ROTATION_VECTOR_LENGTH + (8 / ROTATION_VECTOR_LENGTH) * inclinationMatrixDimension] = c;
350     if (inclinationMatrixLength == FOUR_DIMENSIONAL_MATRIX_LENGTH) {
351         inclinationMatrix[3] = inclinationMatrix[7] = inclinationMatrix[11] = inclinationMatrix[12]
352             = inclinationMatrix[13] = inclinationMatrix[14] = 0.0f;
353         inclinationMatrix[15] = 1.0f;
354     }
355     return OHOS::Sensors::SUCCESS;
356 }