1 /*
2 * Copyright (c) 2023 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "sync/delayed_worker.h"
17
18 #include <array>
19 #include <unistd.h>
20 #include <sstream>
21 #include <sys/prctl.h>
22 #include <sys/timerfd.h>
23 #include <thread>
24 #include <pthread.h>
25 #include "eu/blockaware.h"
26 #include "eu/execute_unit.h"
27 #include "dfx/log/ffrt_log_api.h"
28 #include "util/name_manager.h"
29 #include "sched/scheduler.h"
30 #include "util/ffrt_facade.h"
31 #include "util/white_list.h"
32
33 namespace {
34 const uintptr_t FFRT_DELAY_WORKER_MAGICNUM = 0x5aa5;
35 const int FFRT_DELAY_WORKER_IDLE_TIMEOUT_SECONDS = 3 * 60;
36 const int EPOLL_WAIT_TIMEOUT_MILLISECONDS = 3 * 60 * 1000;
37 const int NS_PER_SEC = 1000 * 1000 * 1000;
38 const int FAKE_WAKE_UP_ERROR = 4;
39 const int WAIT_EVENT_SIZE = 5;
40 const int64_t EXECUTION_TIMEOUT_MILLISECONDS = 500;
41 const int DUMP_MAP_MAX_COUNT = 3;
42 constexpr int ASYNC_TASK_SLEEP_MS = 1;
43 }
44
45 namespace ffrt {
46 pthread_key_t g_ffrtDelayWorkerFlagKey;
47 pthread_once_t g_ffrtDelayWorkerThreadKeyOnce = PTHREAD_ONCE_INIT;
FFRTDelayedWorkerEnvKeyCreate()48 void FFRTDelayedWorkerEnvKeyCreate()
49 {
50 pthread_key_create(&g_ffrtDelayWorkerFlagKey, nullptr);
51 }
52
ThreadEnvCreate()53 void DelayedWorker::ThreadEnvCreate()
54 {
55 pthread_once(&g_ffrtDelayWorkerThreadKeyOnce, FFRTDelayedWorkerEnvKeyCreate);
56 }
57
IsDelayerWorkerThread()58 bool DelayedWorker::IsDelayerWorkerThread()
59 {
60 bool isDelayerWorkerFlag = false;
61 void* flag = pthread_getspecific(g_ffrtDelayWorkerFlagKey);
62 if ((flag != nullptr) && (reinterpret_cast<uintptr_t>(flag) == FFRT_DELAY_WORKER_MAGICNUM)) {
63 isDelayerWorkerFlag = true;
64 }
65 return isDelayerWorkerFlag;
66 }
67
IsDelayedWorkerPreserved()68 bool IsDelayedWorkerPreserved()
69 {
70 return WhiteList::GetInstance().IsEnabled("IsDelayedWorkerPreserved", false);
71 }
72
DumpMap()73 void DelayedWorker::DumpMap()
74 {
75 std::lock_guard lg(lock);
76 if (map.empty()) {
77 return;
78 }
79
80 TimePoint now = std::chrono::steady_clock::now();
81 if (now < map.begin()->first) {
82 return;
83 }
84
85 int count = 0;
86 std::stringstream ss;
87 int printCount = map.size() < DUMP_MAP_MAX_COUNT ? map.size() : DUMP_MAP_MAX_COUNT;
88 for (auto it = map.begin(); it != map.end() && count < DUMP_MAP_MAX_COUNT; ++it, ++count) {
89 ss << it->first.time_since_epoch().count();
90 if (count < printCount - 1) {
91 ss << ",";
92 }
93 }
94 FFRT_SYSEVENT_LOGW("DumpMap:now=%lu,%s", now.time_since_epoch().count(), ss.str().c_str());
95 }
96
ThreadInit()97 void DelayedWorker::ThreadInit()
98 {
99 if (delayedWorker != nullptr && delayedWorker->joinable()) {
100 delayedWorker->join();
101 }
102 delayedWorker = std::make_unique<std::thread>([this]() {
103 struct sched_param param;
104 param.sched_priority = 1;
105 int ret = pthread_setschedparam(pthread_self(), SCHED_RR, ¶m);
106 if (ret != 0) {
107 FFRT_LOGW("[%d] set priority warn ret[%d] eno[%d]\n", pthread_self(), ret, errno);
108 } else {
109 FFRT_LOGW("delayedWorker init");
110 }
111 prctl(PR_SET_NAME, DELAYED_WORKER_NAME);
112 pthread_setspecific(g_ffrtDelayWorkerFlagKey, reinterpret_cast<void*>(FFRT_DELAY_WORKER_MAGICNUM));
113 std::array<epoll_event, WAIT_EVENT_SIZE> waitedEvents;
114 static bool preserved = IsDelayedWorkerPreserved();
115 for (;;) {
116 std::unique_lock lk(lock);
117 if (toExit) {
118 exited_ = true;
119 FFRT_LOGW("delayedWorker exit");
120 break;
121 }
122 int result = HandleWork();
123 if (toExit) {
124 exited_ = true;
125 FFRT_LOGW("delayedWorker exit");
126 break;
127 }
128 if (result == 0) {
129 uint64_t ns = map.begin()->first.time_since_epoch().count();
130 itimerspec its = { {0, 0}, {static_cast<long>(ns / NS_PER_SEC), static_cast<long>(ns % NS_PER_SEC)} };
131 ret = timerfd_settime(timerfd_, TFD_TIMER_ABSTIME, &its, nullptr);
132 if (ret != 0) {
133 FFRT_SYSEVENT_LOGE("timerfd_settime error,ns=%lu,ret= %d.", ns, ret);
134 }
135 } else if ((result == 1) && (!preserved)) {
136 if (++noTaskDelayCount_ > 1 && ffrt::FFRTFacade::GetEUInstance().GetWorkerNum() == 0) {
137 exited_ = true;
138 FFRT_LOGW("delayedWorker exit");
139 break;
140 }
141 itimerspec its = { {0, 0}, {FFRT_DELAY_WORKER_IDLE_TIMEOUT_SECONDS, 0} };
142 ret = timerfd_settime(timerfd_, 0, &its, nullptr);
143 if (ret != 0) {
144 FFRT_SYSEVENT_LOGE("timerfd_settime error, ret= %d.", ret);
145 }
146 }
147 lk.unlock();
148
149 int nfds = epoll_wait(epollfd_, waitedEvents.data(), waitedEvents.size(),
150 EPOLL_WAIT_TIMEOUT_MILLISECONDS);
151 if (nfds == 0) {
152 DumpMap();
153 }
154
155 if (nfds < 0) {
156 if (errno != FAKE_WAKE_UP_ERROR) {
157 FFRT_SYSEVENT_LOGW("epoll_wait error, errorno= %d.", errno);
158 }
159 continue;
160 }
161 #ifdef FFRT_WORKERS_DYNAMIC_SCALING
162 for (int i = 0; i < nfds; i++) {
163 if (waitedEvents[i].data.fd == monitorfd_) {
164 char buffer;
165 size_t n = ::read(monitorfd_, &buffer, sizeof buffer);
166 if (n == 1) {
167 ExecuteUnit::Instance().MonitorMain();
168 } else {
169 FFRT_SYSEVENT_LOGE("monitor read fail:%d, %s", n, errno);
170 }
171 break;
172 }
173 }
174 #endif
175 }
176 });
177 }
178
DelayedWorker()179 DelayedWorker::DelayedWorker()
180 {
181 epollfd_ = ::epoll_create1(EPOLL_CLOEXEC);
182 if (epollfd_ < 0) {
183 FFRT_LOGE("epoll_create1 failed: errno=%d", errno);
184 }
185 timerfd_ = ::timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC);
186 if (timerfd_ < 0) {
187 FFRT_LOGE("timerfd_create failed: errno=%d", errno);
188 }
189
190 epoll_event timer_event { .events = EPOLLIN | EPOLLET, .data = { .fd = timerfd_ } };
191 if (epoll_ctl(epollfd_, EPOLL_CTL_ADD, timerfd_, &timer_event) < 0) {
192 FFRT_COND_TERMINATE((epoll_ctl(epollfd_, EPOLL_CTL_ADD, timerfd_, &timer_event) < 0),
193 "epoll_ctl add tfd error: efd=%d, fd=%d, errorno=%d", epollfd_, timerfd_, errno);
194 }
195 DelayedWorker::ThreadEnvCreate();
196 #ifdef FFRT_WORKERS_DYNAMIC_SCALING
197 monitorfd_ = BlockawareMonitorfd(-1, ExecuteUnit::Instance().WakeupCond());
198 FFRT_LOGI("timerfd:%d, monitorfd:%d", timerfd_, monitorfd_);
199 /* monitorfd does not support 'CLOEXEC', and current kernel does not inherit monitorfd after 'fork'.
200 * 1. if user calls 'exec' directly after 'fork' and does not use ffrt, it's ok.
201 * 2. if user calls 'exec' directly, the original process cannot close monitorfd automatically, and
202 * it will be fail when new program use ffrt to create monitorfd.
203 */
204 epoll_event monitor_event {.events = EPOLLIN, .data = {.fd = monitorfd_}};
205 int ret = epoll_ctl(epollfd_, EPOLL_CTL_ADD, monitorfd_, &monitor_event);
206 if (ret < 0) {
207 FFRT_SYSEVENT_LOGE("monitor:%d add fail, ret:%d, errno:%d, %s", monitorfd_, ret, errno, strerror(errno));
208 }
209 #endif
210 FFRT_LOGD("Construction completed.");
211 }
212
Terminate()213 void DelayedWorker::Terminate()
214 {
215 if (delayedWorker != nullptr && delayedWorker->joinable()) {
216 FFRT_LOGD("Terminating Delayed worker");
217 toExit = true;
218 // Reduce the timeout to zero, in order to
219 // wakeup epoll_wait immediately.
220 itimerspec its = { {0, 0}, {0, 1} };
221 timerfd_settime(timerfd_, 0, &its, nullptr);
222 delayedWorker->join();
223 delayedWorker = nullptr;
224 }
225 }
226
~DelayedWorker()227 DelayedWorker::~DelayedWorker()
228 {
229 Terminate();
230 SetDelayedWorkerExitFlag();
231 while (asyncTaskCnt_.load() > 0) {
232 std::this_thread::sleep_for(std::chrono::microseconds(ASYNC_TASK_SLEEP_MS));
233 }
234 #ifdef FFRT_WORKERS_DYNAMIC_SCALING
235 ::close(monitorfd_);
236 #endif
237 ::close(timerfd_);
238 FFRT_LOGD("Destruction completed.");
239 }
240
GetInstance()241 DelayedWorker& DelayedWorker::GetInstance()
242 {
243 static DelayedWorker instance;
244 return instance;
245 }
246
CheckTimeInterval(const TimePoint & startTp,const TimePoint & endTp)247 void CheckTimeInterval(const TimePoint& startTp, const TimePoint& endTp)
248 {
249 auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(endTp - startTp);
250 int64_t durationMs = duration.count();
251 if (durationMs > EXECUTION_TIMEOUT_MILLISECONDS) {
252 FFRT_LOGW("handle work more than [%lld]ms", durationMs);
253 }
254 }
255
HandleWork()256 int DelayedWorker::HandleWork()
257 {
258 if (!map.empty()) {
259 noTaskDelayCount_ = 0;
260 TimePoint startTp = std::chrono::steady_clock::now();
261 do {
262 auto cur = map.begin();
263 if (!toExit && cur != map.end() && cur->first <= startTp) {
264 DelayedWork w = cur->second;
265 map.erase(cur);
266 lock.unlock();
267 std::function<void(WaitEntry*)> workCb = *w.cb;
268 (workCb)(w.we);
269 lock.lock();
270 FFRT_COND_DO_ERR(toExit, return -1, "HandleWork exit, map size:%d", map.size());
271 TimePoint endTp = std::chrono::steady_clock::now();
272 CheckTimeInterval(startTp, endTp);
273 startTp = std::move(endTp);
274 } else {
275 return 0;
276 }
277 } while (!map.empty());
278 }
279 return 1;
280 }
281
282 // There is no requirement that to be less than now
dispatch(const TimePoint & to,WaitEntry * we,const std::function<void (WaitEntry *)> & wakeup,bool skipTimeCheck)283 bool DelayedWorker::dispatch(const TimePoint& to, WaitEntry* we, const std::function<void(WaitEntry*)>& wakeup,
284 bool skipTimeCheck)
285 {
286 bool w = false;
287 if (toExit) {
288 FFRT_SYSEVENT_LOGE("DelayedWorker destroy, dispatch failed\n");
289 return false;
290 }
291
292 if (!skipTimeCheck && to <= std::chrono::steady_clock::now()) {
293 return false;
294 }
295 std::lock_guard lg(lock);
296 if (exited_) {
297 ThreadInit();
298 exited_ = false;
299 }
300
301 if (map.empty() || to < map.begin()->first) {
302 w = true;
303 }
304 map.emplace(to, DelayedWork {we, &wakeup});
305 if (w) {
306 uint64_t ns = static_cast<uint64_t>(to.time_since_epoch().count());
307 itimerspec its = { {0, 0}, {static_cast<long>(ns / NS_PER_SEC), static_cast<long>(ns % NS_PER_SEC)} };
308 int ret = timerfd_settime(timerfd_, TFD_TIMER_ABSTIME, &its, nullptr);
309 if (ret != 0) {
310 FFRT_SYSEVENT_LOGE("timerfd_settime error, ns=%lu, ret= %d.", ns, ret);
311 }
312 }
313 return true;
314 }
315
remove(const TimePoint & to,WaitEntry * we)316 bool DelayedWorker::remove(const TimePoint& to, WaitEntry* we)
317 {
318 std::lock_guard lg(lock);
319
320 auto range = map.equal_range(to);
321 for (auto it = range.first; it != range.second; ++it) {
322 if (it->second.we == we) {
323 map.erase(it);
324 return true;
325 }
326 }
327
328 return false;
329 }
330
SubmitAsyncTask(std::function<void ()> && func)331 void DelayedWorker::SubmitAsyncTask(std::function<void()>&& func)
332 {
333 asyncTaskCnt_.fetch_add(1);
334 ffrt::submit([this, func = std::move(func)]() {
335 if (toExit) {
336 asyncTaskCnt_.fetch_sub(1);
337 return;
338 }
339
340 func();
341 asyncTaskCnt_.fetch_sub(1);
342 }, {}, {this}, ffrt::task_attr().qos(qos_background));
343 }
344 } // namespace ffrt
345