1# Copyright 2024 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16"""test lccl allreduce with 8p""" 17 18import numpy as np 19 20import mindspore.context as context 21import mindspore.nn as nn 22from mindspore import Tensor 23from mindspore.common.initializer import initializer 24from mindspore.common.parameter import Parameter 25from mindspore.communication.management import init, HCCL_WORLD_COMM_GROUP, get_rank, get_group_size 26from mindspore.ops import operations as P 27 28context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') 29context.set_context(jit_level='O0') 30 31init() 32rank = get_rank() 33size = get_group_size() 34x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1) 35 36class Net(nn.Cell): 37 def __init__(self): 38 super(Net, self).__init__() 39 self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1') 40 self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2') 41 self.x3 = Parameter(initializer(Tensor(x), x.shape), name='x3') 42 43 self.op0 = "sum" 44 self.op1 = "sum" 45 self.op2 = "sum" 46 47 self.all_reduce1 = P.AllReduce(self.op0, group=HCCL_WORLD_COMM_GROUP) 48 self.all_reduce2 = P.AllReduce(self.op1, group=HCCL_WORLD_COMM_GROUP) 49 self.all_reduce3 = P.AllReduce(self.op2, group=HCCL_WORLD_COMM_GROUP) 50 51 def construct(self): 52 return (self.all_reduce1(self.x1), 53 self.all_reduce2(self.x2), 54 self.all_reduce3(self.x3)) 55 56 57def test_AllReduce(): 58 """ 59 Feature: lccl operator test. 60 Description: msrun lccl all_reduce 8P case. 61 Expectation: success 62 """ 63 all_reduce = Net() 64 output = all_reduce() 65 66 expect0 = np.ones([3, 1, 3, 3]).astype(np.float32) * 0 67 for i in range(size): 68 part = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1) 69 expect0 += part 70 diff0 = output[0].asnumpy() - expect0 71 error0 = np.ones(shape=expect0.shape) * 1.0e-5 72 assert np.all(diff0 < error0) 73 assert output[0].shape == expect0.shape 74 75 expect1 = expect0 76 diff1 = output[1].asnumpy() - expect1 77 error1 = np.ones(shape=expect1.shape) * 1.0e-5 78 assert np.all(diff1 < error1) 79 assert output[1].shape == expect1.shape 80 81 expect2 = expect1 82 diff2 = output[2].asnumpy() - expect2 83 error2 = np.ones(shape=expect2.shape) * 1.0e-5 84 assert np.all(diff2 < error2) 85 assert output[2].shape == expect2.shape 86