1# Copyright 2024 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import numpy as np 16 17import mindspore.context as context 18import mindspore.nn as nn 19from mindspore import Tensor 20from mindspore.common.initializer import initializer 21from mindspore.common.parameter import Parameter 22from mindspore.communication.management import init, get_rank, get_group_size 23from mindspore.ops import operations as P 24 25context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') 26context.set_context(jit_level='O0') 27 28init() 29rank = get_rank() 30size = get_group_size() 31x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1) 32 33 34class Net(nn.Cell): 35 def __init__(self): 36 super(Net, self).__init__() 37 self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1') 38 self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2') 39 self.x3 = Parameter(initializer(Tensor(x), x.shape), name='x3') 40 41 self.broadcast1 = P.Broadcast(0) 42 self.broadcast2 = P.Broadcast(1) 43 self.broadcast3 = P.Broadcast(2) 44 45 def construct(self): 46 return (self.broadcast1((self.x1,)), 47 self.broadcast2((self.x2,)), 48 self.broadcast3((self.x3,))) 49 50 51def test_Broadcast(): 52 """ 53 Feature: lccl operator test. 54 Description: msrun lccl broadcast 8P case. 55 Expectation: success 56 """ 57 broadcast = Net() 58 output = broadcast() 59 60 expect0 = np.ones([3, 1, 3, 3]).astype(np.float32) * 1 61 expect1 = np.ones([3, 1, 3, 3]).astype(np.float32) * 2 62 expect2 = np.ones([3, 1, 3, 3]).astype(np.float32) * 3 63 64 diff0 = output[0][0].asnumpy() - expect0 65 error0 = np.ones(shape=expect0.shape) * 1.0e-5 66 assert np.all(diff0 < error0) 67 assert output[0][0].shape == expect0.shape 68 69 diff1 = output[1][0].asnumpy() - expect1 70 error1 = np.ones(shape=expect1.shape) * 1.0e-5 71 assert np.all(diff1 < error1) 72 assert output[1][0].shape == expect1.shape 73 74 diff2 = output[2][0].asnumpy() - expect2 75 error2 = np.ones(shape=expect2.shape) * 1.0e-5 76 assert np.all(diff2 < error2) 77 assert output[2][0].shape == expect2.shape 78