1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 //
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file or at
6 // https://developers.google.com/open-source/licenses/bsd
7
8 #include "google/protobuf/generated_message_tctable_gen.h"
9
10 #include <algorithm>
11 #include <cstddef>
12 #include <cstdint>
13 #include <cstring>
14 #include <limits>
15 #include <vector>
16
17 #include "absl/container/fixed_array.h"
18 #include "absl/log/absl_check.h"
19 #include "absl/numeric/bits.h"
20 #include "absl/strings/string_view.h"
21 #include "absl/types/optional.h"
22 #include "absl/types/span.h"
23 #include "google/protobuf/descriptor.h"
24 #include "google/protobuf/descriptor.pb.h"
25 #include "google/protobuf/generated_message_tctable_decl.h"
26 #include "google/protobuf/generated_message_tctable_impl.h"
27 #include "google/protobuf/port.h"
28 #include "google/protobuf/wire_format.h"
29 #include "google/protobuf/wire_format_lite.h"
30
31 // Must come last:
32 #include "google/protobuf/port_def.inc"
33
34 namespace google {
35 namespace protobuf {
36 namespace internal {
37
38 namespace {
39
TreatEnumAsInt(const FieldDescriptor * field)40 bool TreatEnumAsInt(const FieldDescriptor* field) {
41 return cpp::HasPreservingUnknownEnumSemantics(field) ||
42 // For legacy reasons, MapEntry mapped_type enum fields are handled as
43 // open always. The validation happens elsewhere.
44 (field->enum_type() != nullptr &&
45 field->containing_type() != nullptr &&
46 field->containing_type()->map_value() == field);
47 }
48
SetEnumValidationRange(int start_value,int64_t size_value,int16_t & start,uint16_t & size)49 bool SetEnumValidationRange(int start_value, int64_t size_value, int16_t& start,
50 uint16_t& size) {
51 if (static_cast<int16_t>(start_value) != start_value) {
52 return false;
53 }
54
55 if (static_cast<uint16_t>(size_value) != size_value) {
56 return false;
57 }
58
59 start = start_value;
60 size = size_value;
61 return true;
62 }
63
GetEnumValidationRangeSlow(const EnumDescriptor * enum_type,int16_t & start,uint16_t & size)64 bool GetEnumValidationRangeSlow(const EnumDescriptor* enum_type, int16_t& start,
65 uint16_t& size) {
66 const auto val = [&](int index) { return enum_type->value(index)->number(); };
67 int min = val(0);
68 int max = min;
69
70 for (int i = 1, N = static_cast<int>(enum_type->value_count()); i < N; ++i) {
71 min = std::min(min, val(i));
72 max = std::max(max, val(i));
73 }
74
75 // int64 because max-min can overflow int.
76 int64_t range = static_cast<int64_t>(max) - static_cast<int64_t>(min) + 1;
77
78 if (enum_type->value_count() < range) {
79 // There are not enough values to fill the range. Exit early.
80 return false;
81 }
82
83 if (!SetEnumValidationRange(min, range, start, size)) {
84 // Don't even bother on checking for a dense range if we can't represent the
85 // min/max in the output.
86 return false;
87 }
88
89 absl::FixedArray<uint64_t> array((range + 63) / 64);
90 array.fill(0);
91
92 int unique_count = 0;
93 for (int i = 0, N = static_cast<int>(enum_type->value_count()); i < N; ++i) {
94 size_t index = val(i) - min;
95 uint64_t& v = array[index / 64];
96 size_t bit_pos = index % 64;
97 unique_count += (v & (uint64_t{1} << bit_pos)) == 0;
98 v |= uint64_t{1} << bit_pos;
99 }
100
101 return unique_count == range;
102 }
103
GetEnumValidationRange(const EnumDescriptor * enum_type,int16_t & start,uint16_t & size)104 bool GetEnumValidationRange(const EnumDescriptor* enum_type, int16_t& start,
105 uint16_t& size) {
106 if (!IsEnumFullySequential(enum_type)) {
107 // Maybe the labels are not sequential in declaration order, but the values
108 // could still be a dense range. Try the slower approach.
109 return GetEnumValidationRangeSlow(enum_type, start, size);
110 }
111
112 return SetEnumValidationRange(enum_type->value(0)->number(),
113 enum_type->value_count(), start, size);
114 }
115
116 enum class EnumRangeInfo {
117 kNone, // No contiguous range
118 kContiguous, // Has a contiguous range
119 kContiguous0, // Has a small contiguous range starting at 0
120 kContiguous1, // Has a small contiguous range starting at 1
121 };
122
123 // Returns enum validation range info, and sets `rmax_value` iff
124 // the returned range is a small range. `rmax_value` is guaranteed
125 // to remain unchanged if the enum range is not small.
GetEnumRangeInfo(const FieldDescriptor * field,uint8_t & rmax_value)126 EnumRangeInfo GetEnumRangeInfo(const FieldDescriptor* field,
127 uint8_t& rmax_value) {
128 int16_t start;
129 uint16_t size;
130 if (!GetEnumValidationRange(field->enum_type(), start, size)) {
131 return EnumRangeInfo::kNone;
132 }
133 int max_value = start + size - 1;
134 if (max_value <= 127 && (start == 0 || start == 1)) {
135 rmax_value = static_cast<uint8_t>(max_value);
136 return start == 0 ? EnumRangeInfo::kContiguous0
137 : EnumRangeInfo::kContiguous1;
138 }
139 return EnumRangeInfo::kContiguous;
140 }
141
142 // options.lazy_opt might be on for fields that don't really support lazy, so we
143 // make sure we only use lazy rep for singular TYPE_MESSAGE fields.
144 // We can't trust the `lazy=true` annotation.
HasLazyRep(const FieldDescriptor * field,const TailCallTableInfo::FieldOptions & options)145 bool HasLazyRep(const FieldDescriptor* field,
146 const TailCallTableInfo::FieldOptions& options) {
147 return field->type() == field->TYPE_MESSAGE && !field->is_repeated() &&
148 options.lazy_opt != 0;
149 }
150
MakeFastFieldEntry(const TailCallTableInfo::FieldEntryInfo & entry,const TailCallTableInfo::FieldOptions & options,const TailCallTableInfo::MessageOptions & message_options)151 TailCallTableInfo::FastFieldInfo::Field MakeFastFieldEntry(
152 const TailCallTableInfo::FieldEntryInfo& entry,
153 const TailCallTableInfo::FieldOptions& options,
154 const TailCallTableInfo::MessageOptions& message_options) {
155 TailCallTableInfo::FastFieldInfo::Field info{};
156 #define PROTOBUF_PICK_FUNCTION(fn) \
157 (field->number() < 16 ? TcParseFunction::fn##1 : TcParseFunction::fn##2)
158
159 #define PROTOBUF_PICK_SINGLE_FUNCTION(fn) PROTOBUF_PICK_FUNCTION(fn##S)
160
161 #define PROTOBUF_PICK_REPEATABLE_FUNCTION(fn) \
162 (field->is_repeated() ? PROTOBUF_PICK_FUNCTION(fn##R) \
163 : PROTOBUF_PICK_FUNCTION(fn##S))
164
165 #define PROTOBUF_PICK_PACKABLE_FUNCTION(fn) \
166 (field->is_packed() ? PROTOBUF_PICK_FUNCTION(fn##P) \
167 : field->is_repeated() ? PROTOBUF_PICK_FUNCTION(fn##R) \
168 : PROTOBUF_PICK_FUNCTION(fn##S))
169
170 #define PROTOBUF_PICK_STRING_FUNCTION(fn) \
171 (field->cpp_string_type() == FieldDescriptor::CppStringType::kCord \
172 ? PROTOBUF_PICK_FUNCTION(fn##cS) \
173 : options.is_string_inlined ? PROTOBUF_PICK_FUNCTION(fn##iS) \
174 : PROTOBUF_PICK_REPEATABLE_FUNCTION(fn))
175
176 const FieldDescriptor* field = entry.field;
177 info.aux_idx = static_cast<uint8_t>(entry.aux_idx);
178 if (field->type() == FieldDescriptor::TYPE_BYTES ||
179 field->type() == FieldDescriptor::TYPE_STRING) {
180 if (options.is_string_inlined) {
181 ABSL_CHECK(!field->is_repeated());
182 info.aux_idx = static_cast<uint8_t>(entry.inlined_string_idx);
183 }
184 }
185
186 TcParseFunction picked = TcParseFunction::kNone;
187 switch (field->type()) {
188 case FieldDescriptor::TYPE_BOOL:
189 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastV8);
190 break;
191 case FieldDescriptor::TYPE_INT32:
192 case FieldDescriptor::TYPE_UINT32:
193 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastV32);
194 break;
195 case FieldDescriptor::TYPE_SINT32:
196 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastZ32);
197 break;
198 case FieldDescriptor::TYPE_INT64:
199 case FieldDescriptor::TYPE_UINT64:
200 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastV64);
201 break;
202 case FieldDescriptor::TYPE_SINT64:
203 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastZ64);
204 break;
205 case FieldDescriptor::TYPE_FLOAT:
206 case FieldDescriptor::TYPE_FIXED32:
207 case FieldDescriptor::TYPE_SFIXED32:
208 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastF32);
209 break;
210 case FieldDescriptor::TYPE_DOUBLE:
211 case FieldDescriptor::TYPE_FIXED64:
212 case FieldDescriptor::TYPE_SFIXED64:
213 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastF64);
214 break;
215 case FieldDescriptor::TYPE_ENUM:
216 if (TreatEnumAsInt(field)) {
217 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastV32);
218 } else {
219 switch (GetEnumRangeInfo(field, info.aux_idx)) {
220 case EnumRangeInfo::kNone:
221 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastEv);
222 break;
223 case EnumRangeInfo::kContiguous:
224 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastEr);
225 break;
226 case EnumRangeInfo::kContiguous0:
227 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastEr0);
228 break;
229 case EnumRangeInfo::kContiguous1:
230 picked = PROTOBUF_PICK_PACKABLE_FUNCTION(kFastEr1);
231 break;
232 }
233 }
234 break;
235 case FieldDescriptor::TYPE_BYTES:
236 picked = PROTOBUF_PICK_STRING_FUNCTION(kFastB);
237 break;
238 case FieldDescriptor::TYPE_STRING:
239 switch (entry.utf8_check_mode) {
240 case cpp::Utf8CheckMode::kStrict:
241 picked = PROTOBUF_PICK_STRING_FUNCTION(kFastU);
242 break;
243 case cpp::Utf8CheckMode::kVerify:
244 picked = PROTOBUF_PICK_STRING_FUNCTION(kFastS);
245 break;
246 case cpp::Utf8CheckMode::kNone:
247 picked = PROTOBUF_PICK_STRING_FUNCTION(kFastB);
248 break;
249 }
250 break;
251 case FieldDescriptor::TYPE_MESSAGE:
252 picked =
253 (HasLazyRep(field, options) ? PROTOBUF_PICK_SINGLE_FUNCTION(kFastMl)
254 : options.use_direct_tcparser_table
255 ? PROTOBUF_PICK_REPEATABLE_FUNCTION(kFastMt)
256 : PROTOBUF_PICK_REPEATABLE_FUNCTION(kFastMd));
257 break;
258 case FieldDescriptor::TYPE_GROUP:
259 picked = (options.use_direct_tcparser_table
260 ? PROTOBUF_PICK_REPEATABLE_FUNCTION(kFastGt)
261 : PROTOBUF_PICK_REPEATABLE_FUNCTION(kFastGd));
262 break;
263 }
264
265 ABSL_CHECK(picked != TcParseFunction::kNone);
266 info.func = picked;
267 info.presence_probability = options.presence_probability;
268 return info;
269
270 #undef PROTOBUF_PICK_FUNCTION
271 #undef PROTOBUF_PICK_SINGLE_FUNCTION
272 #undef PROTOBUF_PICK_REPEATABLE_FUNCTION
273 #undef PROTOBUF_PICK_PACKABLE_FUNCTION
274 #undef PROTOBUF_PICK_STRING_FUNCTION
275 }
276
IsFieldEligibleForFastParsing(const TailCallTableInfo::FieldEntryInfo & entry,const TailCallTableInfo::FieldOptions & options,const TailCallTableInfo::MessageOptions & message_options)277 bool IsFieldEligibleForFastParsing(
278 const TailCallTableInfo::FieldEntryInfo& entry,
279 const TailCallTableInfo::FieldOptions& options,
280 const TailCallTableInfo::MessageOptions& message_options) {
281 const auto* field = entry.field;
282 // Map, oneof, weak, and split fields are not handled on the fast path.
283 if (field->is_map() || field->real_containing_oneof() ||
284 field->options().weak() || options.is_implicitly_weak ||
285 options.should_split) {
286 return false;
287 }
288
289 if (HasLazyRep(field, options) && !message_options.uses_codegen) {
290 // Can't use TDP on lazy fields if we can't do codegen.
291 return false;
292 }
293
294 if (HasLazyRep(field, options) && options.lazy_opt == field_layout::kTvLazy) {
295 // We only support eagerly verified lazy fields in the fast path.
296 return false;
297 }
298
299 // We will check for a valid auxiliary index range later. However, we might
300 // want to change the value we check for inlined string fields.
301 int aux_idx = entry.aux_idx;
302
303 switch (field->type()) {
304 // Some bytes fields can be handled on fast path.
305 case FieldDescriptor::TYPE_STRING:
306 case FieldDescriptor::TYPE_BYTES: {
307 auto ctype = field->cpp_string_type();
308 if (ctype == FieldDescriptor::CppStringType::kString ||
309 ctype == FieldDescriptor::CppStringType::kView) {
310 // strings are fine...
311 } else if (ctype == FieldDescriptor::CppStringType::kCord) {
312 // Cords are worth putting into the fast table, if they're not repeated
313 if (field->is_repeated()) return false;
314 } else {
315 return false;
316 }
317 if (options.is_string_inlined) {
318 ABSL_CHECK(!field->is_repeated());
319 // For inlined strings, the donation state index is stored in the
320 // `aux_idx` field of the fast parsing info. We need to check the range
321 // of that value instead of the auxiliary index.
322 aux_idx = entry.inlined_string_idx;
323 }
324 break;
325 }
326
327 case FieldDescriptor::TYPE_ENUM: {
328 uint8_t rmax_value;
329 if (!message_options.uses_codegen &&
330 GetEnumRangeInfo(field, rmax_value) == EnumRangeInfo::kNone) {
331 // We can't use fast parsing for these entries because we can't specify
332 // the validator.
333 // TODO: Implement a fast parser for these enums.
334 return false;
335 }
336 break;
337 }
338
339 default:
340 break;
341 }
342
343 // The tailcall parser can only update the first 32 hasbits. Fields with
344 // has-bits beyond the first 32 are handled by mini parsing/fallback.
345 if (entry.hasbit_idx >= 32) return false;
346
347 // If the field needs auxiliary data, then the aux index is needed. This
348 // must fit in a uint8_t.
349 if (aux_idx > std::numeric_limits<uint8_t>::max()) {
350 return false;
351 }
352
353 // The largest tag that can be read by the tailcall parser is two bytes
354 // when varint-coded. This allows 14 bits for the numeric tag value:
355 // byte 0 byte 1
356 // 1nnnnttt 0nnnnnnn
357 // ^^^^^^^ ^^^^^^^
358 if (field->number() >= 1 << 11) return false;
359
360 return true;
361 }
362
GetEndGroupTag(const Descriptor * descriptor)363 absl::optional<uint32_t> GetEndGroupTag(const Descriptor* descriptor) {
364 auto* parent = descriptor->containing_type();
365 if (parent == nullptr) return absl::nullopt;
366 for (int i = 0; i < parent->field_count(); ++i) {
367 auto* field = parent->field(i);
368 if (field->type() == field->TYPE_GROUP &&
369 field->message_type() == descriptor) {
370 return WireFormatLite::MakeTag(field->number(),
371 WireFormatLite::WIRETYPE_END_GROUP);
372 }
373 }
374 return absl::nullopt;
375 }
376
RecodeTagForFastParsing(uint32_t tag)377 uint32_t RecodeTagForFastParsing(uint32_t tag) {
378 ABSL_DCHECK_LE(tag, 0x3FFFu);
379 // Construct the varint-coded tag. If it is more than 7 bits, we need to
380 // shift the high bits and add a continue bit.
381 if (uint32_t hibits = tag & 0xFFFFFF80) {
382 // hi = tag & ~0x7F
383 // lo = tag & 0x7F
384 // This shifts hi to the left by 1 to the next byte and sets the
385 // continuation bit.
386 tag = tag + hibits + 128;
387 }
388 return tag;
389 }
390
PopulateFastFields(absl::optional<uint32_t> end_group_tag,const std::vector<TailCallTableInfo::FieldEntryInfo> & field_entries,const TailCallTableInfo::MessageOptions & message_options,absl::Span<const TailCallTableInfo::FieldOptions> fields,absl::Span<TailCallTableInfo::FastFieldInfo> result,uint32_t & important_fields)391 void PopulateFastFields(
392 absl::optional<uint32_t> end_group_tag,
393 const std::vector<TailCallTableInfo::FieldEntryInfo>& field_entries,
394 const TailCallTableInfo::MessageOptions& message_options,
395 absl::Span<const TailCallTableInfo::FieldOptions> fields,
396 absl::Span<TailCallTableInfo::FastFieldInfo> result,
397 uint32_t& important_fields) {
398 const uint32_t idx_mask = static_cast<uint32_t>(result.size() - 1);
399 const auto tag_to_idx = [&](uint32_t tag) {
400 // The field index is determined by the low bits of the field number, where
401 // the table size determines the width of the mask. The largest table
402 // supported is 32 entries. The parse loop uses these bits directly, so that
403 // the dispatch does not require arithmetic:
404 // byte 0 byte 1
405 // tag: 1nnnnttt 0nnnnnnn
406 // ^^^^^
407 // idx (table_size_log2=5)
408 // This means that any field number that does not fit in the lower 4 bits
409 // will always have the top bit of its table index asserted.
410 return (tag >> 3) & idx_mask;
411 };
412
413 if (end_group_tag.has_value() && (*end_group_tag >> 14) == 0) {
414 // Fits in 1 or 2 varint bytes.
415 const uint32_t tag = RecodeTagForFastParsing(*end_group_tag);
416 const uint32_t fast_idx = tag_to_idx(tag);
417
418 TailCallTableInfo::FastFieldInfo& info = result[fast_idx];
419 info.data = TailCallTableInfo::FastFieldInfo::NonField{
420 *end_group_tag < 128 ? TcParseFunction::kFastEndG1
421 : TcParseFunction::kFastEndG2,
422 static_cast<uint16_t>(tag),
423 static_cast<uint16_t>(*end_group_tag),
424 };
425 important_fields |= uint32_t{1} << fast_idx;
426 }
427
428 for (size_t i = 0; i < field_entries.size(); ++i) {
429 const auto& entry = field_entries[i];
430 const auto& options = fields[i];
431 if (!IsFieldEligibleForFastParsing(entry, options, message_options)) {
432 continue;
433 }
434
435 const auto* field = entry.field;
436 const uint32_t tag = RecodeTagForFastParsing(WireFormat::MakeTag(field));
437 const uint32_t fast_idx = tag_to_idx(tag);
438
439 TailCallTableInfo::FastFieldInfo& info = result[fast_idx];
440 if (info.AsNonField() != nullptr) {
441 // Right now non-field means END_GROUP which is guaranteed to be present.
442 continue;
443 }
444 if (auto* as_field = info.AsField()) {
445 // This field entry is already filled. Skip if previous entry is more
446 // likely present.
447 if (as_field->presence_probability >= options.presence_probability) {
448 continue;
449 }
450 }
451
452 // We reset the entry even if it had a field already.
453 // Fill in this field's entry:
454 auto& fast_field =
455 info.data.emplace<TailCallTableInfo::FastFieldInfo::Field>(
456 MakeFastFieldEntry(entry, options, message_options));
457 fast_field.field = field;
458 fast_field.coded_tag = tag;
459 // If this field does not have presence, then it can set an out-of-bounds
460 // bit (tailcall parsing uses a uint64_t for hasbits, but only stores 32).
461 fast_field.hasbit_idx = entry.hasbit_idx >= 0 ? entry.hasbit_idx : 63;
462 // 0.05 was selected based on load tests where 0.1 and 0.01 were also
463 // evaluated and worse.
464 constexpr float kMinPresence = 0.05f;
465 important_fields |= uint32_t{options.presence_probability >= kMinPresence}
466 << fast_idx;
467 }
468 }
469
GenerateFieldNames(const Descriptor * descriptor,const absl::Span<const TailCallTableInfo::FieldEntryInfo> entries,const TailCallTableInfo::MessageOptions & message_options,absl::Span<const TailCallTableInfo::FieldOptions> fields)470 std::vector<uint8_t> GenerateFieldNames(
471 const Descriptor* descriptor,
472 const absl::Span<const TailCallTableInfo::FieldEntryInfo> entries,
473 const TailCallTableInfo::MessageOptions& message_options,
474 absl::Span<const TailCallTableInfo::FieldOptions> fields) {
475 static constexpr size_t kMaxNameLength = 255;
476
477 size_t field_name_total_size = 0;
478 const auto for_each_field_name = [&](auto with_name, auto no_name) {
479 for (const auto& entry : entries) {
480 // We only need field names for reporting UTF-8 parsing errors, so we only
481 // emit them for string fields with Utf8 transform specified.
482 if (entry.utf8_check_mode != cpp::Utf8CheckMode::kNone) {
483 with_name(absl::string_view(entry.field->name()));
484 } else {
485 no_name();
486 }
487 }
488 };
489
490 for_each_field_name([&](auto name) { field_name_total_size += name.size(); },
491 [] {});
492
493 // No names needed. Omit the whole table.
494 if (field_name_total_size == 0) {
495 return {};
496 }
497
498 const absl::string_view message_name = descriptor->full_name();
499 uint8_t message_name_size =
500 static_cast<uint8_t>(std::min(message_name.size(), kMaxNameLength));
501 size_t total_byte_size =
502 ((/* message */ 1 + /* fields */ entries.size() + /* round up */ 7) &
503 ~7) +
504 message_name_size + field_name_total_size;
505
506 std::vector<uint8_t> out_vec(total_byte_size, uint8_t{0});
507 uint8_t* out_it = out_vec.data();
508
509 // First, we output the size of each string, as an unsigned byte. The first
510 // string is the message name.
511 int count = 1;
512 *out_it++ = message_name_size;
513 for_each_field_name(
514 [&](auto name) {
515 *out_it++ = static_cast<uint8_t>(name.size());
516 ++count;
517 },
518 [&] {
519 ++out_it;
520 ++count;
521 });
522 // align to an 8-byte boundary
523 out_it += -count & 7;
524
525 const auto append = [&](absl::string_view str) {
526 if (!str.empty()) {
527 memcpy(out_it, str.data(), str.size());
528 out_it += str.size();
529 }
530 };
531
532 // The message name is stored at the beginning of the string
533 if (message_name.size() > kMaxNameLength) {
534 static constexpr int kNameHalfLength = (kMaxNameLength - 3) / 2;
535 append(message_name.substr(0, kNameHalfLength));
536 append("...");
537 append(message_name.substr(message_name.size() - kNameHalfLength));
538 } else {
539 append(message_name);
540 }
541 // Then we output the actual field names
542 for_each_field_name([&](auto name) { append(name); }, [] {});
543
544 return out_vec;
545 }
546
MakeNumToEntryTable(absl::Span<const TailCallTableInfo::FieldOptions> ordered_fields)547 TailCallTableInfo::NumToEntryTable MakeNumToEntryTable(
548 absl::Span<const TailCallTableInfo::FieldOptions> ordered_fields) {
549 TailCallTableInfo::NumToEntryTable num_to_entry_table;
550 num_to_entry_table.skipmap32 = static_cast<uint32_t>(-1);
551
552 // skip_entry_block is the current block of SkipEntries that we're
553 // appending to. cur_block_first_fnum is the number of the first
554 // field represented by the block.
555 uint16_t field_entry_index = 0;
556 uint16_t N = ordered_fields.size();
557 // First, handle field numbers 1-32, which affect only the initial
558 // skipmap32 and don't generate additional skip-entry blocks.
559 for (; field_entry_index != N; ++field_entry_index) {
560 auto* field_descriptor = ordered_fields[field_entry_index].field;
561 if (field_descriptor->number() > 32) break;
562 auto skipmap32_index = field_descriptor->number() - 1;
563 num_to_entry_table.skipmap32 -= 1 << skipmap32_index;
564 }
565 // If all the field numbers were less than or equal to 32, we will have
566 // no further entries to process, and we are already done.
567 if (field_entry_index == N) return num_to_entry_table;
568
569 TailCallTableInfo::SkipEntryBlock* block = nullptr;
570 bool start_new_block = true;
571 // To determine sparseness, track the field number corresponding to
572 // the start of the most recent skip entry.
573 uint32_t last_skip_entry_start = 0;
574 for (; field_entry_index != N; ++field_entry_index) {
575 auto* field_descriptor = ordered_fields[field_entry_index].field;
576 uint32_t fnum = static_cast<uint32_t>(field_descriptor->number());
577 ABSL_CHECK_GT(fnum, last_skip_entry_start);
578 if (start_new_block == false) {
579 // If the next field number is within 15 of the last_skip_entry_start, we
580 // continue writing just to that entry. If it's between 16 and 31 more,
581 // then we just extend the current block by one. If it's more than 31
582 // more, we have to add empty skip entries in order to continue using the
583 // existing block. Obviously it's just 32 more, it doesn't make sense to
584 // start a whole new block, since new blocks mean having to write out
585 // their starting field number, which is 32 bits, as well as the size of
586 // the additional block, which is 16... while an empty SkipEntry16 only
587 // costs 32 bits. So if it was 48 more, it's a slight space win; we save
588 // 16 bits, but probably at the cost of slower run time. We're choosing
589 // 96 for now.
590 if (fnum - last_skip_entry_start > 96) start_new_block = true;
591 }
592 if (start_new_block) {
593 num_to_entry_table.blocks.push_back({fnum});
594 block = &num_to_entry_table.blocks.back();
595 start_new_block = false;
596 }
597
598 auto skip_entry_num = (fnum - block->first_fnum) / 16;
599 auto skip_entry_index = (fnum - block->first_fnum) % 16;
600 while (skip_entry_num >= block->entries.size())
601 block->entries.push_back({0xFFFF, field_entry_index});
602 block->entries[skip_entry_num].skipmap -= 1 << (skip_entry_index);
603
604 last_skip_entry_start = fnum - skip_entry_index;
605 }
606 return num_to_entry_table;
607 }
608
MakeTypeCardForField(const FieldDescriptor * field,bool has_hasbit,const TailCallTableInfo::FieldOptions & options,cpp::Utf8CheckMode utf8_check_mode)609 uint16_t MakeTypeCardForField(
610 const FieldDescriptor* field, bool has_hasbit,
611 const TailCallTableInfo::FieldOptions& options,
612 cpp::Utf8CheckMode utf8_check_mode) {
613 uint16_t type_card;
614 namespace fl = internal::field_layout;
615 if (has_hasbit) {
616 type_card = fl::kFcOptional;
617 } else if (field->is_repeated()) {
618 type_card = fl::kFcRepeated;
619 } else if (field->real_containing_oneof()) {
620 type_card = fl::kFcOneof;
621 } else {
622 type_card = fl::kFcSingular;
623 }
624
625 // The rest of the type uses convenience aliases:
626 switch (field->type()) {
627 case FieldDescriptor::TYPE_DOUBLE:
628 type_card |= field->is_repeated() && field->is_packed()
629 ? fl::kPackedDouble
630 : fl::kDouble;
631 break;
632 case FieldDescriptor::TYPE_FLOAT:
633 type_card |= field->is_repeated() && field->is_packed() ? fl::kPackedFloat
634 : fl::kFloat;
635 break;
636 case FieldDescriptor::TYPE_FIXED32:
637 type_card |= field->is_repeated() && field->is_packed()
638 ? fl::kPackedFixed32
639 : fl::kFixed32;
640 break;
641 case FieldDescriptor::TYPE_SFIXED32:
642 type_card |= field->is_repeated() && field->is_packed()
643 ? fl::kPackedSFixed32
644 : fl::kSFixed32;
645 break;
646 case FieldDescriptor::TYPE_FIXED64:
647 type_card |= field->is_repeated() && field->is_packed()
648 ? fl::kPackedFixed64
649 : fl::kFixed64;
650 break;
651 case FieldDescriptor::TYPE_SFIXED64:
652 type_card |= field->is_repeated() && field->is_packed()
653 ? fl::kPackedSFixed64
654 : fl::kSFixed64;
655 break;
656 case FieldDescriptor::TYPE_BOOL:
657 type_card |= field->is_repeated() && field->is_packed() ? fl::kPackedBool
658 : fl::kBool;
659 break;
660 case FieldDescriptor::TYPE_ENUM:
661 if (TreatEnumAsInt(field)) {
662 // No validation is required.
663 type_card |= field->is_repeated() && field->is_packed()
664 ? fl::kPackedOpenEnum
665 : fl::kOpenEnum;
666 } else {
667 int16_t start;
668 uint16_t size;
669 if (GetEnumValidationRange(field->enum_type(), start, size)) {
670 // Validation is done by range check (start/length in FieldAux).
671 type_card |= field->is_repeated() && field->is_packed()
672 ? fl::kPackedEnumRange
673 : fl::kEnumRange;
674 } else {
675 // Validation uses the generated _IsValid function.
676 type_card |= field->is_repeated() && field->is_packed()
677 ? fl::kPackedEnum
678 : fl::kEnum;
679 }
680 }
681 break;
682 case FieldDescriptor::TYPE_UINT32:
683 type_card |= field->is_repeated() && field->is_packed()
684 ? fl::kPackedUInt32
685 : fl::kUInt32;
686 break;
687 case FieldDescriptor::TYPE_SINT32:
688 type_card |= field->is_repeated() && field->is_packed()
689 ? fl::kPackedSInt32
690 : fl::kSInt32;
691 break;
692 case FieldDescriptor::TYPE_INT32:
693 type_card |= field->is_repeated() && field->is_packed() ? fl::kPackedInt32
694 : fl::kInt32;
695 break;
696 case FieldDescriptor::TYPE_UINT64:
697 type_card |= field->is_repeated() && field->is_packed()
698 ? fl::kPackedUInt64
699 : fl::kUInt64;
700 break;
701 case FieldDescriptor::TYPE_SINT64:
702 type_card |= field->is_repeated() && field->is_packed()
703 ? fl::kPackedSInt64
704 : fl::kSInt64;
705 break;
706 case FieldDescriptor::TYPE_INT64:
707 type_card |= field->is_repeated() && field->is_packed() ? fl::kPackedInt64
708 : fl::kInt64;
709 break;
710
711 case FieldDescriptor::TYPE_BYTES:
712 type_card |= fl::kBytes;
713 break;
714 case FieldDescriptor::TYPE_STRING: {
715 switch (utf8_check_mode) {
716 case cpp::Utf8CheckMode::kStrict:
717 type_card |= fl::kUtf8String;
718 break;
719 case cpp::Utf8CheckMode::kVerify:
720 type_card |= fl::kRawString;
721 break;
722 case cpp::Utf8CheckMode::kNone:
723 type_card |= fl::kBytes;
724 break;
725 }
726 break;
727 }
728
729 case FieldDescriptor::TYPE_GROUP:
730 type_card |= 0 | fl::kMessage | fl::kRepGroup;
731 if (options.is_implicitly_weak) {
732 type_card |= fl::kTvWeakPtr;
733 } else if (options.use_direct_tcparser_table) {
734 type_card |= fl::kTvTable;
735 } else {
736 type_card |= fl::kTvDefault;
737 }
738 break;
739 case FieldDescriptor::TYPE_MESSAGE:
740 if (field->is_map()) {
741 type_card |= fl::kMap;
742 } else {
743 type_card |= fl::kMessage;
744 if (HasLazyRep(field, options)) {
745 ABSL_CHECK(options.lazy_opt == field_layout::kTvEager ||
746 options.lazy_opt == field_layout::kTvLazy);
747 type_card |= +fl::kRepLazy | options.lazy_opt;
748 } else {
749 if (options.is_implicitly_weak) {
750 type_card |= fl::kTvWeakPtr;
751 } else if (options.use_direct_tcparser_table) {
752 type_card |= fl::kTvTable;
753 } else {
754 type_card |= fl::kTvDefault;
755 }
756 }
757 }
758 break;
759 }
760
761 // Fill in extra information about string and bytes field representations.
762 if (field->type() == FieldDescriptor::TYPE_BYTES ||
763 field->type() == FieldDescriptor::TYPE_STRING) {
764 switch (field->cpp_string_type()) {
765 case FieldDescriptor::CppStringType::kCord:
766 // `Cord` is always used, even for repeated fields.
767 type_card |= fl::kRepCord;
768 break;
769 case FieldDescriptor::CppStringType::kView:
770 case FieldDescriptor::CppStringType::kString:
771 if (field->is_repeated()) {
772 // A repeated string field uses RepeatedPtrField<std::string>
773 // (unless it has a ctype option; see above).
774 type_card |= fl::kRepSString;
775 } else {
776 // Otherwise, non-repeated string fields use ArenaStringPtr.
777 type_card |= fl::kRepAString;
778 }
779 break;
780 }
781 }
782
783 if (options.should_split) {
784 type_card |= fl::kSplitTrue;
785 }
786
787 return type_card;
788 }
789
HasWeakFields(const Descriptor * descriptor)790 bool HasWeakFields(const Descriptor* descriptor) {
791 for (int i = 0; i < descriptor->field_count(); i++) {
792 if (descriptor->field(i)->options().weak()) {
793 return true;
794 }
795 }
796 return false;
797 }
798
799 } // namespace
800
TailCallTableInfo(const Descriptor * descriptor,const MessageOptions & message_options,absl::Span<const FieldOptions> ordered_fields)801 TailCallTableInfo::TailCallTableInfo(
802 const Descriptor* descriptor, const MessageOptions& message_options,
803 absl::Span<const FieldOptions> ordered_fields) {
804 fallback_function =
805 // Map entries discard unknown data
806 descriptor->options().map_entry()
807 ? TcParseFunction::kDiscardEverythingFallback
808 // Reflection and weak messages have the reflection fallback
809 : !message_options.uses_codegen || HasWeakFields(descriptor)
810 ? TcParseFunction::kReflectionFallback
811 // Codegen messages have lite and non-lite version
812 : message_options.is_lite ? TcParseFunction::kGenericFallbackLite
813 : TcParseFunction::kGenericFallback;
814
815 if (descriptor->options().message_set_wire_format()) {
816 ABSL_DCHECK(ordered_fields.empty());
817 if (message_options.uses_codegen) {
818 fast_path_fields = {{TailCallTableInfo::FastFieldInfo::NonField{
819 message_options.is_lite
820 ? TcParseFunction::kMessageSetWireFormatParseLoopLite
821 : TcParseFunction::kMessageSetWireFormatParseLoop,
822 0, 0}}};
823
824 aux_entries = {{kSelfVerifyFunc}};
825 } else {
826 ABSL_DCHECK(!message_options.is_lite);
827 // The message set parser loop only handles codegen because it hardcodes
828 // the generated extension registry. For reflection, use the reflection
829 // loop which can handle arbitrary message factories.
830 fast_path_fields = {{TailCallTableInfo::FastFieldInfo::NonField{
831 TcParseFunction::kReflectionParseLoop, 0, 0}}};
832 }
833
834 table_size_log2 = 0;
835 num_to_entry_table = MakeNumToEntryTable(ordered_fields);
836 field_name_data = GenerateFieldNames(descriptor, field_entries,
837 message_options, ordered_fields);
838
839 return;
840 }
841
842 ABSL_DCHECK(std::is_sorted(ordered_fields.begin(), ordered_fields.end(),
843 [](const auto& lhs, const auto& rhs) {
844 return lhs.field->number() < rhs.field->number();
845 }));
846 // If this message has any inlined string fields, store the donation state
847 // offset in the first auxiliary entry, which is kInlinedStringAuxIdx.
848 if (std::any_of(ordered_fields.begin(), ordered_fields.end(),
849 [](auto& f) { return f.is_string_inlined; })) {
850 aux_entries.resize(kInlinedStringAuxIdx + 1); // Allocate our slot
851 aux_entries[kInlinedStringAuxIdx] = {kInlinedStringDonatedOffset};
852 }
853
854 // If this message is split, store the split pointer offset in the second
855 // and third auxiliary entries, which are kSplitOffsetAuxIdx and
856 // kSplitSizeAuxIdx.
857 if (std::any_of(ordered_fields.begin(), ordered_fields.end(),
858 [](auto& f) { return f.should_split; })) {
859 static_assert(kSplitOffsetAuxIdx + 1 == kSplitSizeAuxIdx, "");
860 aux_entries.resize(kSplitSizeAuxIdx + 1); // Allocate our 2 slots
861 aux_entries[kSplitOffsetAuxIdx] = {kSplitOffset};
862 aux_entries[kSplitSizeAuxIdx] = {kSplitSizeof};
863 }
864
865 const auto is_non_cold = [](const FieldOptions& options) {
866 return options.presence_probability >= 0.005;
867 };
868 size_t num_non_cold_subtables = 0;
869 if (message_options.should_profile_driven_cluster_aux_subtable) {
870 // We found that clustering non-cold subtables to the top of aux_entries
871 // achieves the best load tests results than other strategies (e.g.,
872 // clustering all non-cold entries).
873 const auto is_non_cold_subtable = [&](const FieldOptions& options) {
874 auto* field = options.field;
875 // In the following code where we assign kSubTable to aux entries, only
876 // the following typed fields are supported.
877 return (field->type() == FieldDescriptor::TYPE_MESSAGE ||
878 field->type() == FieldDescriptor::TYPE_GROUP) &&
879 !field->is_map() && !field->options().weak() &&
880 !HasLazyRep(field, options) && !options.is_implicitly_weak &&
881 options.use_direct_tcparser_table && is_non_cold(options);
882 };
883 for (const FieldOptions& options : ordered_fields) {
884 if (is_non_cold_subtable(options)) {
885 num_non_cold_subtables++;
886 }
887 }
888 }
889
890 size_t subtable_aux_idx_begin = aux_entries.size();
891 size_t subtable_aux_idx = aux_entries.size();
892 aux_entries.resize(aux_entries.size() + num_non_cold_subtables);
893
894 // Fill in mini table entries.
895 for (const auto& options : ordered_fields) {
896 auto* field = options.field;
897 field_entries.push_back({field, options.has_bit_index});
898 auto& entry = field_entries.back();
899 entry.utf8_check_mode =
900 cpp::GetUtf8CheckMode(field, message_options.is_lite);
901 entry.type_card = MakeTypeCardForField(field, entry.hasbit_idx >= 0,
902 options, entry.utf8_check_mode);
903
904 if (field->type() == FieldDescriptor::TYPE_MESSAGE ||
905 field->type() == FieldDescriptor::TYPE_GROUP) {
906 // Message-typed fields have a FieldAux with the default instance pointer.
907 if (field->is_map()) {
908 entry.aux_idx = aux_entries.size();
909 aux_entries.push_back({kMapAuxInfo, {field}});
910 if (message_options.uses_codegen) {
911 // If we don't use codegen we can't add these.
912 auto* map_value = field->message_type()->map_value();
913 if (map_value->message_type() != nullptr) {
914 aux_entries.push_back({kSubTable, {map_value}});
915 } else if (map_value->type() == FieldDescriptor::TYPE_ENUM &&
916 !cpp::HasPreservingUnknownEnumSemantics(map_value)) {
917 aux_entries.push_back({kEnumValidator, {map_value}});
918 }
919 }
920 } else if (field->options().weak()) {
921 // Disable the type card for this entry to force the fallback.
922 entry.type_card = 0;
923 } else if (HasLazyRep(field, options)) {
924 if (message_options.uses_codegen) {
925 entry.aux_idx = aux_entries.size();
926 aux_entries.push_back({kSubMessage, {field}});
927 if (options.lazy_opt == field_layout::kTvEager) {
928 aux_entries.push_back({kMessageVerifyFunc, {field}});
929 } else {
930 aux_entries.push_back({kNothing});
931 }
932 } else {
933 entry.aux_idx = TcParseTableBase::FieldEntry::kNoAuxIdx;
934 }
935 } else {
936 AuxType type = options.is_implicitly_weak ? kSubMessageWeak
937 : options.use_direct_tcparser_table ? kSubTable
938 : kSubMessage;
939 if (message_options.should_profile_driven_cluster_aux_subtable &&
940 type == kSubTable && is_non_cold(options)) {
941 aux_entries[subtable_aux_idx] = {type, {field}};
942 entry.aux_idx = subtable_aux_idx;
943 ++subtable_aux_idx;
944 } else {
945 entry.aux_idx = aux_entries.size();
946 aux_entries.push_back({type, {field}});
947 }
948 }
949 } else if (field->type() == FieldDescriptor::TYPE_ENUM &&
950 !TreatEnumAsInt(field)) {
951 // Enum fields which preserve unknown values (proto3 behavior) are
952 // effectively int32 fields with respect to parsing -- i.e., the value
953 // does not need to be validated at parse time.
954 //
955 // Enum fields which do not preserve unknown values (proto2 behavior) use
956 // a FieldAux to store validation information. If the enum values are
957 // sequential (and within a range we can represent), then the FieldAux
958 // entry represents the range using the minimum value (which must fit in
959 // an int16_t) and count (a uint16_t). Otherwise, the entry holds a
960 // pointer to the generated Name_IsValid function.
961
962 entry.aux_idx = aux_entries.size();
963 aux_entries.push_back({});
964 auto& aux_entry = aux_entries.back();
965
966 if (GetEnumValidationRange(field->enum_type(), aux_entry.enum_range.start,
967 aux_entry.enum_range.size)) {
968 aux_entry.type = kEnumRange;
969 } else {
970 aux_entry.type = kEnumValidator;
971 aux_entry.field = field;
972 }
973
974 } else if ((field->type() == FieldDescriptor::TYPE_STRING ||
975 field->type() == FieldDescriptor::TYPE_BYTES) &&
976 options.is_string_inlined) {
977 ABSL_CHECK(!field->is_repeated());
978 // Inlined strings have an extra marker to represent their donation state.
979 int idx = options.inlined_string_index;
980 // For mini parsing, the donation state index is stored as an `offset`
981 // auxiliary entry.
982 entry.aux_idx = aux_entries.size();
983 aux_entries.push_back({kNumericOffset});
984 aux_entries.back().offset = idx;
985 // For fast table parsing, the donation state index is stored instead of
986 // the aux_idx (this will limit the range to 8 bits).
987 entry.inlined_string_idx = idx;
988 }
989 }
990 ABSL_CHECK_EQ(subtable_aux_idx - subtable_aux_idx_begin,
991 num_non_cold_subtables);
992
993 auto end_group_tag = GetEndGroupTag(descriptor);
994
995 constexpr size_t kMaxFastFields = 32;
996 FastFieldInfo fast_fields[kMaxFastFields];
997 // Bit mask for the fields that are "important". Unimportant fields might be
998 // set but it's ok if we lose them from the fast table. For example, cold
999 // fields.
1000 uint32_t important_fields = 0;
1001 static_assert(sizeof(important_fields) * 8 >= kMaxFastFields, "");
1002 // The largest table we allow has the same number of entries as the
1003 // message has fields, rounded up to the next power of 2 (e.g., a message
1004 // with 5 fields can have a fast table of size 8). A larger table *might*
1005 // cover more fields in certain cases, but a larger table in that case
1006 // would have mostly empty entries; so, we cap the size to avoid
1007 // pathologically sparse tables.
1008 // However, if this message uses group encoding, the tables are sometimes very
1009 // sparse because the fields in the group avoid using the same field
1010 // numbering as the parent message (even though currently, the proto
1011 // compiler allows the overlap, and there is no possible conflict.)
1012 // NOTE: The +1 is to maintain the existing behavior that does not match the
1013 // documented one. When the number of fields is exactly a power of two we
1014 // allow double that.
1015 size_t num_fast_fields =
1016 end_group_tag.has_value()
1017 ? kMaxFastFields
1018 : std::max(size_t{1},
1019 std::min(kMaxFastFields,
1020 absl::bit_ceil(ordered_fields.size() + 1)));
1021 PopulateFastFields(
1022 end_group_tag, field_entries, message_options, ordered_fields,
1023 absl::MakeSpan(fast_fields, num_fast_fields), important_fields);
1024 // If we can halve the table without dropping important fields, do it.
1025 while (num_fast_fields > 1 &&
1026 (important_fields & (important_fields >> num_fast_fields / 2)) == 0) {
1027 // Half the table by merging fields.
1028 num_fast_fields /= 2;
1029 for (size_t i = 0; i < num_fast_fields; ++i) {
1030 if ((important_fields >> i) & 1) continue;
1031 fast_fields[i] = fast_fields[i + num_fast_fields];
1032 }
1033 important_fields |= important_fields >> num_fast_fields;
1034 }
1035
1036 fast_path_fields.assign(fast_fields, fast_fields + num_fast_fields);
1037 table_size_log2 = absl::bit_width(num_fast_fields) - 1;
1038
1039 num_to_entry_table = MakeNumToEntryTable(ordered_fields);
1040 ABSL_CHECK_EQ(field_entries.size(), ordered_fields.size());
1041 field_name_data = GenerateFieldNames(descriptor, field_entries,
1042 message_options, ordered_fields);
1043 }
1044
1045 } // namespace internal
1046 } // namespace protobuf
1047 } // namespace google
1048
1049 #include "google/protobuf/port_undef.inc"
1050