• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Basic functions for dealing with memory.
2 //!
3 //! This module contains functions for querying the size and alignment of
4 //! types, initializing and manipulating memory.
5 
6 #![stable(feature = "rust1", since = "1.0.0")]
7 
8 use crate::clone;
9 use crate::cmp;
10 use crate::fmt;
11 use crate::hash;
12 use crate::intrinsics;
13 use crate::marker::{Copy, DiscriminantKind, Sized};
14 use crate::ptr;
15 
16 mod manually_drop;
17 #[stable(feature = "manually_drop", since = "1.20.0")]
18 pub use manually_drop::ManuallyDrop;
19 
20 mod maybe_uninit;
21 #[stable(feature = "maybe_uninit", since = "1.36.0")]
22 pub use maybe_uninit::MaybeUninit;
23 
24 mod transmutability;
25 #[unstable(feature = "transmutability", issue = "99571")]
26 pub use transmutability::{Assume, BikeshedIntrinsicFrom};
27 
28 #[stable(feature = "rust1", since = "1.0.0")]
29 #[doc(inline)]
30 pub use crate::intrinsics::transmute;
31 
32 /// Takes ownership and "forgets" about the value **without running its destructor**.
33 ///
34 /// Any resources the value manages, such as heap memory or a file handle, will linger
35 /// forever in an unreachable state. However, it does not guarantee that pointers
36 /// to this memory will remain valid.
37 ///
38 /// * If you want to leak memory, see [`Box::leak`].
39 /// * If you want to obtain a raw pointer to the memory, see [`Box::into_raw`].
40 /// * If you want to dispose of a value properly, running its destructor, see
41 /// [`mem::drop`].
42 ///
43 /// # Safety
44 ///
45 /// `forget` is not marked as `unsafe`, because Rust's safety guarantees
46 /// do not include a guarantee that destructors will always run. For example,
47 /// a program can create a reference cycle using [`Rc`][rc], or call
48 /// [`process::exit`][exit] to exit without running destructors. Thus, allowing
49 /// `mem::forget` from safe code does not fundamentally change Rust's safety
50 /// guarantees.
51 ///
52 /// That said, leaking resources such as memory or I/O objects is usually undesirable.
53 /// The need comes up in some specialized use cases for FFI or unsafe code, but even
54 /// then, [`ManuallyDrop`] is typically preferred.
55 ///
56 /// Because forgetting a value is allowed, any `unsafe` code you write must
57 /// allow for this possibility. You cannot return a value and expect that the
58 /// caller will necessarily run the value's destructor.
59 ///
60 /// [rc]: ../../std/rc/struct.Rc.html
61 /// [exit]: ../../std/process/fn.exit.html
62 ///
63 /// # Examples
64 ///
65 /// The canonical safe use of `mem::forget` is to circumvent a value's destructor
66 /// implemented by the `Drop` trait. For example, this will leak a `File`, i.e. reclaim
67 /// the space taken by the variable but never close the underlying system resource:
68 ///
69 /// ```no_run
70 /// use std::mem;
71 /// use std::fs::File;
72 ///
73 /// let file = File::open("foo.txt").unwrap();
74 /// mem::forget(file);
75 /// ```
76 ///
77 /// This is useful when the ownership of the underlying resource was previously
78 /// transferred to code outside of Rust, for example by transmitting the raw
79 /// file descriptor to C code.
80 ///
81 /// # Relationship with `ManuallyDrop`
82 ///
83 /// While `mem::forget` can also be used to transfer *memory* ownership, doing so is error-prone.
84 /// [`ManuallyDrop`] should be used instead. Consider, for example, this code:
85 ///
86 /// ```
87 /// use std::mem;
88 ///
89 /// let mut v = vec![65, 122];
90 /// // Build a `String` using the contents of `v`
91 /// let s = unsafe { String::from_raw_parts(v.as_mut_ptr(), v.len(), v.capacity()) };
92 /// // leak `v` because its memory is now managed by `s`
93 /// mem::forget(v);  // ERROR - v is invalid and must not be passed to a function
94 /// assert_eq!(s, "Az");
95 /// // `s` is implicitly dropped and its memory deallocated.
96 /// ```
97 ///
98 /// There are two issues with the above example:
99 ///
100 /// * If more code were added between the construction of `String` and the invocation of
101 ///   `mem::forget()`, a panic within it would cause a double free because the same memory
102 ///   is handled by both `v` and `s`.
103 /// * After calling `v.as_mut_ptr()` and transmitting the ownership of the data to `s`,
104 ///   the `v` value is invalid. Even when a value is just moved to `mem::forget` (which won't
105 ///   inspect it), some types have strict requirements on their values that
106 ///   make them invalid when dangling or no longer owned. Using invalid values in any
107 ///   way, including passing them to or returning them from functions, constitutes
108 ///   undefined behavior and may break the assumptions made by the compiler.
109 ///
110 /// Switching to `ManuallyDrop` avoids both issues:
111 ///
112 /// ```
113 /// use std::mem::ManuallyDrop;
114 ///
115 /// let v = vec![65, 122];
116 /// // Before we disassemble `v` into its raw parts, make sure it
117 /// // does not get dropped!
118 /// let mut v = ManuallyDrop::new(v);
119 /// // Now disassemble `v`. These operations cannot panic, so there cannot be a leak.
120 /// let (ptr, len, cap) = (v.as_mut_ptr(), v.len(), v.capacity());
121 /// // Finally, build a `String`.
122 /// let s = unsafe { String::from_raw_parts(ptr, len, cap) };
123 /// assert_eq!(s, "Az");
124 /// // `s` is implicitly dropped and its memory deallocated.
125 /// ```
126 ///
127 /// `ManuallyDrop` robustly prevents double-free because we disable `v`'s destructor
128 /// before doing anything else. `mem::forget()` doesn't allow this because it consumes its
129 /// argument, forcing us to call it only after extracting anything we need from `v`. Even
130 /// if a panic were introduced between construction of `ManuallyDrop` and building the
131 /// string (which cannot happen in the code as shown), it would result in a leak and not a
132 /// double free. In other words, `ManuallyDrop` errs on the side of leaking instead of
133 /// erring on the side of (double-)dropping.
134 ///
135 /// Also, `ManuallyDrop` prevents us from having to "touch" `v` after transferring the
136 /// ownership to `s` — the final step of interacting with `v` to dispose of it without
137 /// running its destructor is entirely avoided.
138 ///
139 /// [`Box`]: ../../std/boxed/struct.Box.html
140 /// [`Box::leak`]: ../../std/boxed/struct.Box.html#method.leak
141 /// [`Box::into_raw`]: ../../std/boxed/struct.Box.html#method.into_raw
142 /// [`mem::drop`]: drop
143 /// [ub]: ../../reference/behavior-considered-undefined.html
144 #[inline]
145 #[rustc_const_stable(feature = "const_forget", since = "1.46.0")]
146 #[stable(feature = "rust1", since = "1.0.0")]
147 #[cfg_attr(not(test), rustc_diagnostic_item = "mem_forget")]
forget<T>(t: T)148 pub const fn forget<T>(t: T) {
149     let _ = ManuallyDrop::new(t);
150 }
151 
152 /// Like [`forget`], but also accepts unsized values.
153 ///
154 /// This function is just a shim intended to be removed when the `unsized_locals` feature gets
155 /// stabilized.
156 #[inline]
157 #[unstable(feature = "forget_unsized", issue = "none")]
forget_unsized<T: ?Sized>(t: T)158 pub fn forget_unsized<T: ?Sized>(t: T) {
159     intrinsics::forget(t)
160 }
161 
162 /// Returns the size of a type in bytes.
163 ///
164 /// More specifically, this is the offset in bytes between successive elements
165 /// in an array with that item type including alignment padding. Thus, for any
166 /// type `T` and length `n`, `[T; n]` has a size of `n * size_of::<T>()`.
167 ///
168 /// In general, the size of a type is not stable across compilations, but
169 /// specific types such as primitives are.
170 ///
171 /// The following table gives the size for primitives.
172 ///
173 /// Type | `size_of::<Type>()`
174 /// ---- | ---------------
175 /// () | 0
176 /// bool | 1
177 /// u8 | 1
178 /// u16 | 2
179 /// u32 | 4
180 /// u64 | 8
181 /// u128 | 16
182 /// i8 | 1
183 /// i16 | 2
184 /// i32 | 4
185 /// i64 | 8
186 /// i128 | 16
187 /// f32 | 4
188 /// f64 | 8
189 /// char | 4
190 ///
191 /// Furthermore, `usize` and `isize` have the same size.
192 ///
193 /// The types [`*const T`], `&T`, [`Box<T>`], [`Option<&T>`], and `Option<Box<T>>` all have
194 /// the same size. If `T` is `Sized`, all of those types have the same size as `usize`.
195 ///
196 /// The mutability of a pointer does not change its size. As such, `&T` and `&mut T`
197 /// have the same size. Likewise for `*const T` and `*mut T`.
198 ///
199 /// # Size of `#[repr(C)]` items
200 ///
201 /// The `C` representation for items has a defined layout. With this layout,
202 /// the size of items is also stable as long as all fields have a stable size.
203 ///
204 /// ## Size of Structs
205 ///
206 /// For `struct`s, the size is determined by the following algorithm.
207 ///
208 /// For each field in the struct ordered by declaration order:
209 ///
210 /// 1. Add the size of the field.
211 /// 2. Round up the current size to the nearest multiple of the next field's [alignment].
212 ///
213 /// Finally, round the size of the struct to the nearest multiple of its [alignment].
214 /// The alignment of the struct is usually the largest alignment of all its
215 /// fields; this can be changed with the use of `repr(align(N))`.
216 ///
217 /// Unlike `C`, zero sized structs are not rounded up to one byte in size.
218 ///
219 /// ## Size of Enums
220 ///
221 /// Enums that carry no data other than the discriminant have the same size as C enums
222 /// on the platform they are compiled for.
223 ///
224 /// ## Size of Unions
225 ///
226 /// The size of a union is the size of its largest field.
227 ///
228 /// Unlike `C`, zero sized unions are not rounded up to one byte in size.
229 ///
230 /// # Examples
231 ///
232 /// ```
233 /// use std::mem;
234 ///
235 /// // Some primitives
236 /// assert_eq!(4, mem::size_of::<i32>());
237 /// assert_eq!(8, mem::size_of::<f64>());
238 /// assert_eq!(0, mem::size_of::<()>());
239 ///
240 /// // Some arrays
241 /// assert_eq!(8, mem::size_of::<[i32; 2]>());
242 /// assert_eq!(12, mem::size_of::<[i32; 3]>());
243 /// assert_eq!(0, mem::size_of::<[i32; 0]>());
244 ///
245 ///
246 /// // Pointer size equality
247 /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<*const i32>());
248 /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Box<i32>>());
249 /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Option<&i32>>());
250 /// assert_eq!(mem::size_of::<Box<i32>>(), mem::size_of::<Option<Box<i32>>>());
251 /// ```
252 ///
253 /// Using `#[repr(C)]`.
254 ///
255 /// ```
256 /// use std::mem;
257 ///
258 /// #[repr(C)]
259 /// struct FieldStruct {
260 ///     first: u8,
261 ///     second: u16,
262 ///     third: u8
263 /// }
264 ///
265 /// // The size of the first field is 1, so add 1 to the size. Size is 1.
266 /// // The alignment of the second field is 2, so add 1 to the size for padding. Size is 2.
267 /// // The size of the second field is 2, so add 2 to the size. Size is 4.
268 /// // The alignment of the third field is 1, so add 0 to the size for padding. Size is 4.
269 /// // The size of the third field is 1, so add 1 to the size. Size is 5.
270 /// // Finally, the alignment of the struct is 2 (because the largest alignment amongst its
271 /// // fields is 2), so add 1 to the size for padding. Size is 6.
272 /// assert_eq!(6, mem::size_of::<FieldStruct>());
273 ///
274 /// #[repr(C)]
275 /// struct TupleStruct(u8, u16, u8);
276 ///
277 /// // Tuple structs follow the same rules.
278 /// assert_eq!(6, mem::size_of::<TupleStruct>());
279 ///
280 /// // Note that reordering the fields can lower the size. We can remove both padding bytes
281 /// // by putting `third` before `second`.
282 /// #[repr(C)]
283 /// struct FieldStructOptimized {
284 ///     first: u8,
285 ///     third: u8,
286 ///     second: u16
287 /// }
288 ///
289 /// assert_eq!(4, mem::size_of::<FieldStructOptimized>());
290 ///
291 /// // Union size is the size of the largest field.
292 /// #[repr(C)]
293 /// union ExampleUnion {
294 ///     smaller: u8,
295 ///     larger: u16
296 /// }
297 ///
298 /// assert_eq!(2, mem::size_of::<ExampleUnion>());
299 /// ```
300 ///
301 /// [alignment]: align_of
302 /// [`*const T`]: primitive@pointer
303 /// [`Box<T>`]: ../../std/boxed/struct.Box.html
304 /// [`Option<&T>`]: crate::option::Option
305 ///
306 #[inline(always)]
307 #[must_use]
308 #[stable(feature = "rust1", since = "1.0.0")]
309 #[rustc_promotable]
310 #[rustc_const_stable(feature = "const_mem_size_of", since = "1.24.0")]
311 #[cfg_attr(not(test), rustc_diagnostic_item = "mem_size_of")]
size_of<T>() -> usize312 pub const fn size_of<T>() -> usize {
313     intrinsics::size_of::<T>()
314 }
315 
316 /// Returns the size of the pointed-to value in bytes.
317 ///
318 /// This is usually the same as [`size_of::<T>()`]. However, when `T` *has* no
319 /// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object],
320 /// then `size_of_val` can be used to get the dynamically-known size.
321 ///
322 /// [trait object]: ../../book/ch17-02-trait-objects.html
323 ///
324 /// # Examples
325 ///
326 /// ```
327 /// use std::mem;
328 ///
329 /// assert_eq!(4, mem::size_of_val(&5i32));
330 ///
331 /// let x: [u8; 13] = [0; 13];
332 /// let y: &[u8] = &x;
333 /// assert_eq!(13, mem::size_of_val(y));
334 /// ```
335 ///
336 /// [`size_of::<T>()`]: size_of
337 #[inline]
338 #[must_use]
339 #[stable(feature = "rust1", since = "1.0.0")]
340 #[rustc_const_unstable(feature = "const_size_of_val", issue = "46571")]
341 #[cfg_attr(not(test), rustc_diagnostic_item = "mem_size_of_val")]
size_of_val<T: ?Sized>(val: &T) -> usize342 pub const fn size_of_val<T: ?Sized>(val: &T) -> usize {
343     // SAFETY: `val` is a reference, so it's a valid raw pointer
344     unsafe { intrinsics::size_of_val(val) }
345 }
346 
347 /// Returns the size of the pointed-to value in bytes.
348 ///
349 /// This is usually the same as [`size_of::<T>()`]. However, when `T` *has* no
350 /// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object],
351 /// then `size_of_val_raw` can be used to get the dynamically-known size.
352 ///
353 /// # Safety
354 ///
355 /// This function is only safe to call if the following conditions hold:
356 ///
357 /// - If `T` is `Sized`, this function is always safe to call.
358 /// - If the unsized tail of `T` is:
359 ///     - a [slice], then the length of the slice tail must be an initialized
360 ///       integer, and the size of the *entire value*
361 ///       (dynamic tail length + statically sized prefix) must fit in `isize`.
362 ///     - a [trait object], then the vtable part of the pointer must point
363 ///       to a valid vtable acquired by an unsizing coercion, and the size
364 ///       of the *entire value* (dynamic tail length + statically sized prefix)
365 ///       must fit in `isize`.
366 ///     - an (unstable) [extern type], then this function is always safe to
367 ///       call, but may panic or otherwise return the wrong value, as the
368 ///       extern type's layout is not known. This is the same behavior as
369 ///       [`size_of_val`] on a reference to a type with an extern type tail.
370 ///     - otherwise, it is conservatively not allowed to call this function.
371 ///
372 /// [`size_of::<T>()`]: size_of
373 /// [trait object]: ../../book/ch17-02-trait-objects.html
374 /// [extern type]: ../../unstable-book/language-features/extern-types.html
375 ///
376 /// # Examples
377 ///
378 /// ```
379 /// #![feature(layout_for_ptr)]
380 /// use std::mem;
381 ///
382 /// assert_eq!(4, mem::size_of_val(&5i32));
383 ///
384 /// let x: [u8; 13] = [0; 13];
385 /// let y: &[u8] = &x;
386 /// assert_eq!(13, unsafe { mem::size_of_val_raw(y) });
387 /// ```
388 #[inline]
389 #[must_use]
390 #[unstable(feature = "layout_for_ptr", issue = "69835")]
391 #[rustc_const_unstable(feature = "const_size_of_val_raw", issue = "46571")]
size_of_val_raw<T: ?Sized>(val: *const T) -> usize392 pub const unsafe fn size_of_val_raw<T: ?Sized>(val: *const T) -> usize {
393     // SAFETY: the caller must provide a valid raw pointer
394     unsafe { intrinsics::size_of_val(val) }
395 }
396 
397 /// Returns the [ABI]-required minimum alignment of a type in bytes.
398 ///
399 /// Every reference to a value of the type `T` must be a multiple of this number.
400 ///
401 /// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
402 ///
403 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
404 ///
405 /// # Examples
406 ///
407 /// ```
408 /// # #![allow(deprecated)]
409 /// use std::mem;
410 ///
411 /// assert_eq!(4, mem::min_align_of::<i32>());
412 /// ```
413 #[inline]
414 #[must_use]
415 #[stable(feature = "rust1", since = "1.0.0")]
416 #[deprecated(note = "use `align_of` instead", since = "1.2.0")]
min_align_of<T>() -> usize417 pub fn min_align_of<T>() -> usize {
418     intrinsics::min_align_of::<T>()
419 }
420 
421 /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to in
422 /// bytes.
423 ///
424 /// Every reference to a value of the type `T` must be a multiple of this number.
425 ///
426 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
427 ///
428 /// # Examples
429 ///
430 /// ```
431 /// # #![allow(deprecated)]
432 /// use std::mem;
433 ///
434 /// assert_eq!(4, mem::min_align_of_val(&5i32));
435 /// ```
436 #[inline]
437 #[must_use]
438 #[stable(feature = "rust1", since = "1.0.0")]
439 #[deprecated(note = "use `align_of_val` instead", since = "1.2.0")]
min_align_of_val<T: ?Sized>(val: &T) -> usize440 pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
441     // SAFETY: val is a reference, so it's a valid raw pointer
442     unsafe { intrinsics::min_align_of_val(val) }
443 }
444 
445 /// Returns the [ABI]-required minimum alignment of a type in bytes.
446 ///
447 /// Every reference to a value of the type `T` must be a multiple of this number.
448 ///
449 /// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
450 ///
451 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
452 ///
453 /// # Examples
454 ///
455 /// ```
456 /// use std::mem;
457 ///
458 /// assert_eq!(4, mem::align_of::<i32>());
459 /// ```
460 #[inline(always)]
461 #[must_use]
462 #[stable(feature = "rust1", since = "1.0.0")]
463 #[rustc_promotable]
464 #[rustc_const_stable(feature = "const_align_of", since = "1.24.0")]
align_of<T>() -> usize465 pub const fn align_of<T>() -> usize {
466     intrinsics::min_align_of::<T>()
467 }
468 
469 /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to in
470 /// bytes.
471 ///
472 /// Every reference to a value of the type `T` must be a multiple of this number.
473 ///
474 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
475 ///
476 /// # Examples
477 ///
478 /// ```
479 /// use std::mem;
480 ///
481 /// assert_eq!(4, mem::align_of_val(&5i32));
482 /// ```
483 #[inline]
484 #[must_use]
485 #[stable(feature = "rust1", since = "1.0.0")]
486 #[rustc_const_unstable(feature = "const_align_of_val", issue = "46571")]
487 #[allow(deprecated)]
align_of_val<T: ?Sized>(val: &T) -> usize488 pub const fn align_of_val<T: ?Sized>(val: &T) -> usize {
489     // SAFETY: val is a reference, so it's a valid raw pointer
490     unsafe { intrinsics::min_align_of_val(val) }
491 }
492 
493 /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to in
494 /// bytes.
495 ///
496 /// Every reference to a value of the type `T` must be a multiple of this number.
497 ///
498 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
499 ///
500 /// # Safety
501 ///
502 /// This function is only safe to call if the following conditions hold:
503 ///
504 /// - If `T` is `Sized`, this function is always safe to call.
505 /// - If the unsized tail of `T` is:
506 ///     - a [slice], then the length of the slice tail must be an initialized
507 ///       integer, and the size of the *entire value*
508 ///       (dynamic tail length + statically sized prefix) must fit in `isize`.
509 ///     - a [trait object], then the vtable part of the pointer must point
510 ///       to a valid vtable acquired by an unsizing coercion, and the size
511 ///       of the *entire value* (dynamic tail length + statically sized prefix)
512 ///       must fit in `isize`.
513 ///     - an (unstable) [extern type], then this function is always safe to
514 ///       call, but may panic or otherwise return the wrong value, as the
515 ///       extern type's layout is not known. This is the same behavior as
516 ///       [`align_of_val`] on a reference to a type with an extern type tail.
517 ///     - otherwise, it is conservatively not allowed to call this function.
518 ///
519 /// [trait object]: ../../book/ch17-02-trait-objects.html
520 /// [extern type]: ../../unstable-book/language-features/extern-types.html
521 ///
522 /// # Examples
523 ///
524 /// ```
525 /// #![feature(layout_for_ptr)]
526 /// use std::mem;
527 ///
528 /// assert_eq!(4, unsafe { mem::align_of_val_raw(&5i32) });
529 /// ```
530 #[inline]
531 #[must_use]
532 #[unstable(feature = "layout_for_ptr", issue = "69835")]
533 #[rustc_const_unstable(feature = "const_align_of_val_raw", issue = "46571")]
align_of_val_raw<T: ?Sized>(val: *const T) -> usize534 pub const unsafe fn align_of_val_raw<T: ?Sized>(val: *const T) -> usize {
535     // SAFETY: the caller must provide a valid raw pointer
536     unsafe { intrinsics::min_align_of_val(val) }
537 }
538 
539 /// Returns `true` if dropping values of type `T` matters.
540 ///
541 /// This is purely an optimization hint, and may be implemented conservatively:
542 /// it may return `true` for types that don't actually need to be dropped.
543 /// As such always returning `true` would be a valid implementation of
544 /// this function. However if this function actually returns `false`, then you
545 /// can be certain dropping `T` has no side effect.
546 ///
547 /// Low level implementations of things like collections, which need to manually
548 /// drop their data, should use this function to avoid unnecessarily
549 /// trying to drop all their contents when they are destroyed. This might not
550 /// make a difference in release builds (where a loop that has no side-effects
551 /// is easily detected and eliminated), but is often a big win for debug builds.
552 ///
553 /// Note that [`drop_in_place`] already performs this check, so if your workload
554 /// can be reduced to some small number of [`drop_in_place`] calls, using this is
555 /// unnecessary. In particular note that you can [`drop_in_place`] a slice, and that
556 /// will do a single needs_drop check for all the values.
557 ///
558 /// Types like Vec therefore just `drop_in_place(&mut self[..])` without using
559 /// `needs_drop` explicitly. Types like [`HashMap`], on the other hand, have to drop
560 /// values one at a time and should use this API.
561 ///
562 /// [`drop_in_place`]: crate::ptr::drop_in_place
563 /// [`HashMap`]: ../../std/collections/struct.HashMap.html
564 ///
565 /// # Examples
566 ///
567 /// Here's an example of how a collection might make use of `needs_drop`:
568 ///
569 /// ```
570 /// use std::{mem, ptr};
571 ///
572 /// pub struct MyCollection<T> {
573 /// #   data: [T; 1],
574 ///     /* ... */
575 /// }
576 /// # impl<T> MyCollection<T> {
577 /// #   fn iter_mut(&mut self) -> &mut [T] { &mut self.data }
578 /// #   fn free_buffer(&mut self) {}
579 /// # }
580 ///
581 /// impl<T> Drop for MyCollection<T> {
582 ///     fn drop(&mut self) {
583 ///         unsafe {
584 ///             // drop the data
585 ///             if mem::needs_drop::<T>() {
586 ///                 for x in self.iter_mut() {
587 ///                     ptr::drop_in_place(x);
588 ///                 }
589 ///             }
590 ///             self.free_buffer();
591 ///         }
592 ///     }
593 /// }
594 /// ```
595 #[inline]
596 #[must_use]
597 #[stable(feature = "needs_drop", since = "1.21.0")]
598 #[rustc_const_stable(feature = "const_mem_needs_drop", since = "1.36.0")]
599 #[rustc_diagnostic_item = "needs_drop"]
needs_drop<T: ?Sized>() -> bool600 pub const fn needs_drop<T: ?Sized>() -> bool {
601     intrinsics::needs_drop::<T>()
602 }
603 
604 /// Returns the value of type `T` represented by the all-zero byte-pattern.
605 ///
606 /// This means that, for example, the padding byte in `(u8, u16)` is not
607 /// necessarily zeroed.
608 ///
609 /// There is no guarantee that an all-zero byte-pattern represents a valid value
610 /// of some type `T`. For example, the all-zero byte-pattern is not a valid value
611 /// for reference types (`&T`, `&mut T`) and functions pointers. Using `zeroed`
612 /// on such types causes immediate [undefined behavior][ub] because [the Rust
613 /// compiler assumes][inv] that there always is a valid value in a variable it
614 /// considers initialized.
615 ///
616 /// This has the same effect as [`MaybeUninit::zeroed().assume_init()`][zeroed].
617 /// It is useful for FFI sometimes, but should generally be avoided.
618 ///
619 /// [zeroed]: MaybeUninit::zeroed
620 /// [ub]: ../../reference/behavior-considered-undefined.html
621 /// [inv]: MaybeUninit#initialization-invariant
622 ///
623 /// # Examples
624 ///
625 /// Correct usage of this function: initializing an integer with zero.
626 ///
627 /// ```
628 /// use std::mem;
629 ///
630 /// let x: i32 = unsafe { mem::zeroed() };
631 /// assert_eq!(0, x);
632 /// ```
633 ///
634 /// *Incorrect* usage of this function: initializing a reference with zero.
635 ///
636 /// ```rust,no_run
637 /// # #![allow(invalid_value)]
638 /// use std::mem;
639 ///
640 /// let _x: &i32 = unsafe { mem::zeroed() }; // Undefined behavior!
641 /// let _y: fn() = unsafe { mem::zeroed() }; // And again!
642 /// ```
643 #[inline(always)]
644 #[must_use]
645 #[stable(feature = "rust1", since = "1.0.0")]
646 #[allow(deprecated_in_future)]
647 #[allow(deprecated)]
648 #[rustc_diagnostic_item = "mem_zeroed"]
649 #[track_caller]
zeroed<T>() -> T650 pub unsafe fn zeroed<T>() -> T {
651     // SAFETY: the caller must guarantee that an all-zero value is valid for `T`.
652     unsafe {
653         intrinsics::assert_zero_valid::<T>();
654         MaybeUninit::zeroed().assume_init()
655     }
656 }
657 
658 /// Bypasses Rust's normal memory-initialization checks by pretending to
659 /// produce a value of type `T`, while doing nothing at all.
660 ///
661 /// **This function is deprecated.** Use [`MaybeUninit<T>`] instead.
662 /// It also might be slower than using `MaybeUninit<T>` due to mitigations that were put in place to
663 /// limit the potential harm caused by incorrect use of this function in legacy code.
664 ///
665 /// The reason for deprecation is that the function basically cannot be used
666 /// correctly: it has the same effect as [`MaybeUninit::uninit().assume_init()`][uninit].
667 /// As the [`assume_init` documentation][assume_init] explains,
668 /// [the Rust compiler assumes][inv] that values are properly initialized.
669 ///
670 /// Truly uninitialized memory like what gets returned here
671 /// is special in that the compiler knows that it does not have a fixed value.
672 /// This makes it undefined behavior to have uninitialized data in a variable even
673 /// if that variable has an integer type.
674 ///
675 /// Therefore, it is immediate undefined behavior to call this function on nearly all types,
676 /// including integer types and arrays of integer types, and even if the result is unused.
677 ///
678 /// [uninit]: MaybeUninit::uninit
679 /// [assume_init]: MaybeUninit::assume_init
680 /// [inv]: MaybeUninit#initialization-invariant
681 #[inline(always)]
682 #[must_use]
683 #[deprecated(since = "1.39.0", note = "use `mem::MaybeUninit` instead")]
684 #[stable(feature = "rust1", since = "1.0.0")]
685 #[allow(deprecated_in_future)]
686 #[allow(deprecated)]
687 #[rustc_diagnostic_item = "mem_uninitialized"]
688 #[track_caller]
uninitialized<T>() -> T689 pub unsafe fn uninitialized<T>() -> T {
690     // SAFETY: the caller must guarantee that an uninitialized value is valid for `T`.
691     unsafe {
692         intrinsics::assert_mem_uninitialized_valid::<T>();
693         let mut val = MaybeUninit::<T>::uninit();
694 
695         // Fill memory with 0x01, as an imperfect mitigation for old code that uses this function on
696         // bool, nonnull, and noundef types. But don't do this if we actively want to detect UB.
697         if !cfg!(any(miri, sanitize = "memory")) {
698             val.as_mut_ptr().write_bytes(0x01, 1);
699         }
700 
701         val.assume_init()
702     }
703 }
704 
705 /// Swaps the values at two mutable locations, without deinitializing either one.
706 ///
707 /// * If you want to swap with a default or dummy value, see [`take`].
708 /// * If you want to swap with a passed value, returning the old value, see [`replace`].
709 ///
710 /// # Examples
711 ///
712 /// ```
713 /// use std::mem;
714 ///
715 /// let mut x = 5;
716 /// let mut y = 42;
717 ///
718 /// mem::swap(&mut x, &mut y);
719 ///
720 /// assert_eq!(42, x);
721 /// assert_eq!(5, y);
722 /// ```
723 #[inline]
724 #[stable(feature = "rust1", since = "1.0.0")]
725 #[rustc_const_unstable(feature = "const_swap", issue = "83163")]
swap<T>(x: &mut T, y: &mut T)726 pub const fn swap<T>(x: &mut T, y: &mut T) {
727     // NOTE(eddyb) SPIR-V's Logical addressing model doesn't allow for arbitrary
728     // reinterpretation of values as (chunkable) byte arrays, and the loop in the
729     // block optimization in `swap_slice` is hard to rewrite back
730     // into the (unoptimized) direct swapping implementation, so we disable it.
731     // FIXME(eddyb) the block optimization also prevents MIR optimizations from
732     // understanding `mem::replace`, `Option::take`, etc. - a better overall
733     // solution might be to make `ptr::swap_nonoverlapping` into an intrinsic, which
734     // a backend can choose to implement using the block optimization, or not.
735     #[cfg(not(any(target_arch = "spirv")))]
736     {
737         // For types that are larger multiples of their alignment, the simple way
738         // tends to copy the whole thing to stack rather than doing it one part
739         // at a time, so instead treat them as one-element slices and piggy-back
740         // the slice optimizations that will split up the swaps.
741         if size_of::<T>() / align_of::<T>() > 4 {
742             // SAFETY: exclusive references always point to one non-overlapping
743             // element and are non-null and properly aligned.
744             return unsafe { ptr::swap_nonoverlapping(x, y, 1) };
745         }
746     }
747 
748     // If a scalar consists of just a small number of alignment units, let
749     // the codegen just swap those pieces directly, as it's likely just a
750     // few instructions and anything else is probably overcomplicated.
751     //
752     // Most importantly, this covers primitives and simd types that tend to
753     // have size=align where doing anything else can be a pessimization.
754     // (This will also be used for ZSTs, though any solution works for them.)
755     swap_simple(x, y);
756 }
757 
758 /// Same as [`swap`] semantically, but always uses the simple implementation.
759 ///
760 /// Used elsewhere in `mem` and `ptr` at the bottom layer of calls.
761 #[rustc_const_unstable(feature = "const_swap", issue = "83163")]
762 #[inline]
swap_simple<T>(x: &mut T, y: &mut T)763 pub(crate) const fn swap_simple<T>(x: &mut T, y: &mut T) {
764     // We arrange for this to typically be called with small types,
765     // so this reads-and-writes approach is actually better than using
766     // copy_nonoverlapping as it easily puts things in LLVM registers
767     // directly and doesn't end up inlining allocas.
768     // And LLVM actually optimizes it to 3×memcpy if called with
769     // a type larger than it's willing to keep in a register.
770     // Having typed reads and writes in MIR here is also good as
771     // it lets MIRI and CTFE understand them better, including things
772     // like enforcing type validity for them.
773     // Importantly, read+copy_nonoverlapping+write introduces confusing
774     // asymmetry to the behaviour where one value went through read+write
775     // whereas the other was copied over by the intrinsic (see #94371).
776 
777     // SAFETY: exclusive references are always valid to read/write,
778     // including being aligned, and nothing here panics so it's drop-safe.
779     unsafe {
780         let a = ptr::read(x);
781         let b = ptr::read(y);
782         ptr::write(x, b);
783         ptr::write(y, a);
784     }
785 }
786 
787 /// Replaces `dest` with the default value of `T`, returning the previous `dest` value.
788 ///
789 /// * If you want to replace the values of two variables, see [`swap`].
790 /// * If you want to replace with a passed value instead of the default value, see [`replace`].
791 ///
792 /// # Examples
793 ///
794 /// A simple example:
795 ///
796 /// ```
797 /// use std::mem;
798 ///
799 /// let mut v: Vec<i32> = vec![1, 2];
800 ///
801 /// let old_v = mem::take(&mut v);
802 /// assert_eq!(vec![1, 2], old_v);
803 /// assert!(v.is_empty());
804 /// ```
805 ///
806 /// `take` allows taking ownership of a struct field by replacing it with an "empty" value.
807 /// Without `take` you can run into issues like these:
808 ///
809 /// ```compile_fail,E0507
810 /// struct Buffer<T> { buf: Vec<T> }
811 ///
812 /// impl<T> Buffer<T> {
813 ///     fn get_and_reset(&mut self) -> Vec<T> {
814 ///         // error: cannot move out of dereference of `&mut`-pointer
815 ///         let buf = self.buf;
816 ///         self.buf = Vec::new();
817 ///         buf
818 ///     }
819 /// }
820 /// ```
821 ///
822 /// Note that `T` does not necessarily implement [`Clone`], so it can't even clone and reset
823 /// `self.buf`. But `take` can be used to disassociate the original value of `self.buf` from
824 /// `self`, allowing it to be returned:
825 ///
826 /// ```
827 /// use std::mem;
828 ///
829 /// # struct Buffer<T> { buf: Vec<T> }
830 /// impl<T> Buffer<T> {
831 ///     fn get_and_reset(&mut self) -> Vec<T> {
832 ///         mem::take(&mut self.buf)
833 ///     }
834 /// }
835 ///
836 /// let mut buffer = Buffer { buf: vec![0, 1] };
837 /// assert_eq!(buffer.buf.len(), 2);
838 ///
839 /// assert_eq!(buffer.get_and_reset(), vec![0, 1]);
840 /// assert_eq!(buffer.buf.len(), 0);
841 /// ```
842 #[inline]
843 #[stable(feature = "mem_take", since = "1.40.0")]
take<T: Default>(dest: &mut T) -> T844 pub fn take<T: Default>(dest: &mut T) -> T {
845     replace(dest, T::default())
846 }
847 
848 /// Moves `src` into the referenced `dest`, returning the previous `dest` value.
849 ///
850 /// Neither value is dropped.
851 ///
852 /// * If you want to replace the values of two variables, see [`swap`].
853 /// * If you want to replace with a default value, see [`take`].
854 ///
855 /// # Examples
856 ///
857 /// A simple example:
858 ///
859 /// ```
860 /// use std::mem;
861 ///
862 /// let mut v: Vec<i32> = vec![1, 2];
863 ///
864 /// let old_v = mem::replace(&mut v, vec![3, 4, 5]);
865 /// assert_eq!(vec![1, 2], old_v);
866 /// assert_eq!(vec![3, 4, 5], v);
867 /// ```
868 ///
869 /// `replace` allows consumption of a struct field by replacing it with another value.
870 /// Without `replace` you can run into issues like these:
871 ///
872 /// ```compile_fail,E0507
873 /// struct Buffer<T> { buf: Vec<T> }
874 ///
875 /// impl<T> Buffer<T> {
876 ///     fn replace_index(&mut self, i: usize, v: T) -> T {
877 ///         // error: cannot move out of dereference of `&mut`-pointer
878 ///         let t = self.buf[i];
879 ///         self.buf[i] = v;
880 ///         t
881 ///     }
882 /// }
883 /// ```
884 ///
885 /// Note that `T` does not necessarily implement [`Clone`], so we can't even clone `self.buf[i]` to
886 /// avoid the move. But `replace` can be used to disassociate the original value at that index from
887 /// `self`, allowing it to be returned:
888 ///
889 /// ```
890 /// # #![allow(dead_code)]
891 /// use std::mem;
892 ///
893 /// # struct Buffer<T> { buf: Vec<T> }
894 /// impl<T> Buffer<T> {
895 ///     fn replace_index(&mut self, i: usize, v: T) -> T {
896 ///         mem::replace(&mut self.buf[i], v)
897 ///     }
898 /// }
899 ///
900 /// let mut buffer = Buffer { buf: vec![0, 1] };
901 /// assert_eq!(buffer.buf[0], 0);
902 ///
903 /// assert_eq!(buffer.replace_index(0, 2), 0);
904 /// assert_eq!(buffer.buf[0], 2);
905 /// ```
906 #[inline]
907 #[stable(feature = "rust1", since = "1.0.0")]
908 #[must_use = "if you don't need the old value, you can just assign the new value directly"]
909 #[rustc_const_unstable(feature = "const_replace", issue = "83164")]
910 #[cfg_attr(not(test), rustc_diagnostic_item = "mem_replace")]
replace<T>(dest: &mut T, src: T) -> T911 pub const fn replace<T>(dest: &mut T, src: T) -> T {
912     // SAFETY: We read from `dest` but directly write `src` into it afterwards,
913     // such that the old value is not duplicated. Nothing is dropped and
914     // nothing here can panic.
915     unsafe {
916         let result = ptr::read(dest);
917         ptr::write(dest, src);
918         result
919     }
920 }
921 
922 /// Disposes of a value.
923 ///
924 /// This does so by calling the argument's implementation of [`Drop`][drop].
925 ///
926 /// This effectively does nothing for types which implement `Copy`, e.g.
927 /// integers. Such values are copied and _then_ moved into the function, so the
928 /// value persists after this function call.
929 ///
930 /// This function is not magic; it is literally defined as
931 ///
932 /// ```
933 /// pub fn drop<T>(_x: T) { }
934 /// ```
935 ///
936 /// Because `_x` is moved into the function, it is automatically dropped before
937 /// the function returns.
938 ///
939 /// [drop]: Drop
940 ///
941 /// # Examples
942 ///
943 /// Basic usage:
944 ///
945 /// ```
946 /// let v = vec![1, 2, 3];
947 ///
948 /// drop(v); // explicitly drop the vector
949 /// ```
950 ///
951 /// Since [`RefCell`] enforces the borrow rules at runtime, `drop` can
952 /// release a [`RefCell`] borrow:
953 ///
954 /// ```
955 /// use std::cell::RefCell;
956 ///
957 /// let x = RefCell::new(1);
958 ///
959 /// let mut mutable_borrow = x.borrow_mut();
960 /// *mutable_borrow = 1;
961 ///
962 /// drop(mutable_borrow); // relinquish the mutable borrow on this slot
963 ///
964 /// let borrow = x.borrow();
965 /// println!("{}", *borrow);
966 /// ```
967 ///
968 /// Integers and other types implementing [`Copy`] are unaffected by `drop`.
969 ///
970 /// ```
971 /// # #![allow(dropping_copy_types)]
972 /// #[derive(Copy, Clone)]
973 /// struct Foo(u8);
974 ///
975 /// let x = 1;
976 /// let y = Foo(2);
977 /// drop(x); // a copy of `x` is moved and dropped
978 /// drop(y); // a copy of `y` is moved and dropped
979 ///
980 /// println!("x: {}, y: {}", x, y.0); // still available
981 /// ```
982 ///
983 /// [`RefCell`]: crate::cell::RefCell
984 #[inline]
985 #[stable(feature = "rust1", since = "1.0.0")]
986 #[cfg_attr(not(test), rustc_diagnostic_item = "mem_drop")]
drop<T>(_x: T)987 pub fn drop<T>(_x: T) {}
988 
989 /// Bitwise-copies a value.
990 ///
991 /// This function is not magic; it is literally defined as
992 /// ```
993 /// pub fn copy<T: Copy>(x: &T) -> T { *x }
994 /// ```
995 ///
996 /// It is useful when you want to pass a function pointer to a combinator, rather than defining a new closure.
997 ///
998 /// Example:
999 /// ```
1000 /// #![feature(mem_copy_fn)]
1001 /// use core::mem::copy;
1002 /// let result_from_ffi_function: Result<(), &i32> = Err(&1);
1003 /// let result_copied: Result<(), i32> = result_from_ffi_function.map_err(copy);
1004 /// ```
1005 #[inline]
1006 #[unstable(feature = "mem_copy_fn", issue = "98262")]
copy<T: Copy>(x: &T) -> T1007 pub const fn copy<T: Copy>(x: &T) -> T {
1008     *x
1009 }
1010 
1011 /// Interprets `src` as having type `&Dst`, and then reads `src` without moving
1012 /// the contained value.
1013 ///
1014 /// This function will unsafely assume the pointer `src` is valid for [`size_of::<Dst>`][size_of]
1015 /// bytes by transmuting `&Src` to `&Dst` and then reading the `&Dst` (except that this is done
1016 /// in a way that is correct even when `&Dst` has stricter alignment requirements than `&Src`).
1017 /// It will also unsafely create a copy of the contained value instead of moving out of `src`.
1018 ///
1019 /// It is not a compile-time error if `Src` and `Dst` have different sizes, but it
1020 /// is highly encouraged to only invoke this function where `Src` and `Dst` have the
1021 /// same size. This function triggers [undefined behavior][ub] if `Dst` is larger than
1022 /// `Src`.
1023 ///
1024 /// [ub]: ../../reference/behavior-considered-undefined.html
1025 ///
1026 /// # Examples
1027 ///
1028 /// ```
1029 /// use std::mem;
1030 ///
1031 /// #[repr(packed)]
1032 /// struct Foo {
1033 ///     bar: u8,
1034 /// }
1035 ///
1036 /// let foo_array = [10u8];
1037 ///
1038 /// unsafe {
1039 ///     // Copy the data from 'foo_array' and treat it as a 'Foo'
1040 ///     let mut foo_struct: Foo = mem::transmute_copy(&foo_array);
1041 ///     assert_eq!(foo_struct.bar, 10);
1042 ///
1043 ///     // Modify the copied data
1044 ///     foo_struct.bar = 20;
1045 ///     assert_eq!(foo_struct.bar, 20);
1046 /// }
1047 ///
1048 /// // The contents of 'foo_array' should not have changed
1049 /// assert_eq!(foo_array, [10]);
1050 /// ```
1051 #[inline]
1052 #[must_use]
1053 #[stable(feature = "rust1", since = "1.0.0")]
1054 #[rustc_const_unstable(feature = "const_transmute_copy", issue = "83165")]
transmute_copy<Src, Dst>(src: &Src) -> Dst1055 pub const unsafe fn transmute_copy<Src, Dst>(src: &Src) -> Dst {
1056     assert!(
1057         size_of::<Src>() >= size_of::<Dst>(),
1058         "cannot transmute_copy if Dst is larger than Src"
1059     );
1060 
1061     // If Dst has a higher alignment requirement, src might not be suitably aligned.
1062     if align_of::<Dst>() > align_of::<Src>() {
1063         // SAFETY: `src` is a reference which is guaranteed to be valid for reads.
1064         // The caller must guarantee that the actual transmutation is safe.
1065         unsafe { ptr::read_unaligned(src as *const Src as *const Dst) }
1066     } else {
1067         // SAFETY: `src` is a reference which is guaranteed to be valid for reads.
1068         // We just checked that `src as *const Dst` was properly aligned.
1069         // The caller must guarantee that the actual transmutation is safe.
1070         unsafe { ptr::read(src as *const Src as *const Dst) }
1071     }
1072 }
1073 
1074 /// Opaque type representing the discriminant of an enum.
1075 ///
1076 /// See the [`discriminant`] function in this module for more information.
1077 #[stable(feature = "discriminant_value", since = "1.21.0")]
1078 pub struct Discriminant<T>(<T as DiscriminantKind>::Discriminant);
1079 
1080 // N.B. These trait implementations cannot be derived because we don't want any bounds on T.
1081 
1082 #[stable(feature = "discriminant_value", since = "1.21.0")]
1083 impl<T> Copy for Discriminant<T> {}
1084 
1085 #[stable(feature = "discriminant_value", since = "1.21.0")]
1086 impl<T> clone::Clone for Discriminant<T> {
clone(&self) -> Self1087     fn clone(&self) -> Self {
1088         *self
1089     }
1090 }
1091 
1092 #[stable(feature = "discriminant_value", since = "1.21.0")]
1093 impl<T> cmp::PartialEq for Discriminant<T> {
eq(&self, rhs: &Self) -> bool1094     fn eq(&self, rhs: &Self) -> bool {
1095         self.0 == rhs.0
1096     }
1097 }
1098 
1099 #[stable(feature = "discriminant_value", since = "1.21.0")]
1100 impl<T> cmp::Eq for Discriminant<T> {}
1101 
1102 #[stable(feature = "discriminant_value", since = "1.21.0")]
1103 impl<T> hash::Hash for Discriminant<T> {
hash<H: hash::Hasher>(&self, state: &mut H)1104     fn hash<H: hash::Hasher>(&self, state: &mut H) {
1105         self.0.hash(state);
1106     }
1107 }
1108 
1109 #[stable(feature = "discriminant_value", since = "1.21.0")]
1110 impl<T> fmt::Debug for Discriminant<T> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1111     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1112         fmt.debug_tuple("Discriminant").field(&self.0).finish()
1113     }
1114 }
1115 
1116 /// Returns a value uniquely identifying the enum variant in `v`.
1117 ///
1118 /// If `T` is not an enum, calling this function will not result in undefined behavior, but the
1119 /// return value is unspecified.
1120 ///
1121 /// # Stability
1122 ///
1123 /// The discriminant of an enum variant may change if the enum definition changes. A discriminant
1124 /// of some variant will not change between compilations with the same compiler. See the [Reference]
1125 /// for more information.
1126 ///
1127 /// [Reference]: ../../reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
1128 ///
1129 /// # Examples
1130 ///
1131 /// This can be used to compare enums that carry data, while disregarding
1132 /// the actual data:
1133 ///
1134 /// ```
1135 /// use std::mem;
1136 ///
1137 /// enum Foo { A(&'static str), B(i32), C(i32) }
1138 ///
1139 /// assert_eq!(mem::discriminant(&Foo::A("bar")), mem::discriminant(&Foo::A("baz")));
1140 /// assert_eq!(mem::discriminant(&Foo::B(1)), mem::discriminant(&Foo::B(2)));
1141 /// assert_ne!(mem::discriminant(&Foo::B(3)), mem::discriminant(&Foo::C(3)));
1142 /// ```
1143 ///
1144 /// ## Accessing the numeric value of the discriminant
1145 ///
1146 /// Note that it is *undefined behavior* to [`transmute`] from [`Discriminant`] to a primitive!
1147 ///
1148 /// If an enum has only unit variants, then the numeric value of the discriminant can be accessed
1149 /// with an [`as`] cast:
1150 ///
1151 /// ```
1152 /// enum Enum {
1153 ///     Foo,
1154 ///     Bar,
1155 ///     Baz,
1156 /// }
1157 ///
1158 /// assert_eq!(0, Enum::Foo as isize);
1159 /// assert_eq!(1, Enum::Bar as isize);
1160 /// assert_eq!(2, Enum::Baz as isize);
1161 /// ```
1162 ///
1163 /// If an enum has opted-in to having a [primitive representation] for its discriminant,
1164 /// then it's possible to use pointers to read the memory location storing the discriminant.
1165 /// That **cannot** be done for enums using the [default representation], however, as it's
1166 /// undefined what layout the discriminant has and where it's stored — it might not even be
1167 /// stored at all!
1168 ///
1169 /// [`as`]: ../../std/keyword.as.html
1170 /// [primitive representation]: ../../reference/type-layout.html#primitive-representations
1171 /// [default representation]: ../../reference/type-layout.html#the-default-representation
1172 /// ```
1173 /// #[repr(u8)]
1174 /// enum Enum {
1175 ///     Unit,
1176 ///     Tuple(bool),
1177 ///     Struct { a: bool },
1178 /// }
1179 ///
1180 /// impl Enum {
1181 ///     fn discriminant(&self) -> u8 {
1182 ///         // SAFETY: Because `Self` is marked `repr(u8)`, its layout is a `repr(C)` `union`
1183 ///         // between `repr(C)` structs, each of which has the `u8` discriminant as its first
1184 ///         // field, so we can read the discriminant without offsetting the pointer.
1185 ///         unsafe { *<*const _>::from(self).cast::<u8>() }
1186 ///     }
1187 /// }
1188 ///
1189 /// let unit_like = Enum::Unit;
1190 /// let tuple_like = Enum::Tuple(true);
1191 /// let struct_like = Enum::Struct { a: false };
1192 /// assert_eq!(0, unit_like.discriminant());
1193 /// assert_eq!(1, tuple_like.discriminant());
1194 /// assert_eq!(2, struct_like.discriminant());
1195 ///
1196 /// // ⚠️ This is undefined behavior. Don't do this. ⚠️
1197 /// // assert_eq!(0, unsafe { std::mem::transmute::<_, u8>(std::mem::discriminant(&unit_like)) });
1198 /// ```
1199 #[stable(feature = "discriminant_value", since = "1.21.0")]
1200 #[rustc_const_unstable(feature = "const_discriminant", issue = "69821")]
1201 #[cfg_attr(not(test), rustc_diagnostic_item = "mem_discriminant")]
1202 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
discriminant<T>(v: &T) -> Discriminant<T>1203 pub const fn discriminant<T>(v: &T) -> Discriminant<T> {
1204     Discriminant(intrinsics::discriminant_value(v))
1205 }
1206 
1207 /// Returns the number of variants in the enum type `T`.
1208 ///
1209 /// If `T` is not an enum, calling this function will not result in undefined behavior, but the
1210 /// return value is unspecified. Equally, if `T` is an enum with more variants than `usize::MAX`
1211 /// the return value is unspecified. Uninhabited variants will be counted.
1212 ///
1213 /// Note that an enum may be expanded with additional variants in the future
1214 /// as a non-breaking change, for example if it is marked `#[non_exhaustive]`,
1215 /// which will change the result of this function.
1216 ///
1217 /// # Examples
1218 ///
1219 /// ```
1220 /// # #![feature(never_type)]
1221 /// # #![feature(variant_count)]
1222 ///
1223 /// use std::mem;
1224 ///
1225 /// enum Void {}
1226 /// enum Foo { A(&'static str), B(i32), C(i32) }
1227 ///
1228 /// assert_eq!(mem::variant_count::<Void>(), 0);
1229 /// assert_eq!(mem::variant_count::<Foo>(), 3);
1230 ///
1231 /// assert_eq!(mem::variant_count::<Option<!>>(), 2);
1232 /// assert_eq!(mem::variant_count::<Result<!, !>>(), 2);
1233 /// ```
1234 #[inline(always)]
1235 #[must_use]
1236 #[unstable(feature = "variant_count", issue = "73662")]
1237 #[rustc_const_unstable(feature = "variant_count", issue = "73662")]
1238 #[rustc_diagnostic_item = "mem_variant_count"]
variant_count<T>() -> usize1239 pub const fn variant_count<T>() -> usize {
1240     intrinsics::variant_count::<T>()
1241 }
1242 
1243 /// Provides associated constants for various useful properties of types,
1244 /// to give them a canonical form in our code and make them easier to read.
1245 ///
1246 /// This is here only to simplify all the ZST checks we need in the library.
1247 /// It's not on a stabilization track right now.
1248 #[doc(hidden)]
1249 #[unstable(feature = "sized_type_properties", issue = "none")]
1250 pub trait SizedTypeProperties: Sized {
1251     /// `true` if this type requires no storage.
1252     /// `false` if its [size](size_of) is greater than zero.
1253     ///
1254     /// # Examples
1255     ///
1256     /// ```
1257     /// #![feature(sized_type_properties)]
1258     /// use core::mem::SizedTypeProperties;
1259     ///
1260     /// fn do_something_with<T>() {
1261     ///     if T::IS_ZST {
1262     ///         // ... special approach ...
1263     ///     } else {
1264     ///         // ... the normal thing ...
1265     ///     }
1266     /// }
1267     ///
1268     /// struct MyUnit;
1269     /// assert!(MyUnit::IS_ZST);
1270     ///
1271     /// // For negative checks, consider using UFCS to emphasize the negation
1272     /// assert!(!<i32>::IS_ZST);
1273     /// // As it can sometimes hide in the type otherwise
1274     /// assert!(!String::IS_ZST);
1275     /// ```
1276     #[doc(hidden)]
1277     #[unstable(feature = "sized_type_properties", issue = "none")]
1278     const IS_ZST: bool = size_of::<Self>() == 0;
1279 }
1280 #[doc(hidden)]
1281 #[unstable(feature = "sized_type_properties", issue = "none")]
1282 impl<T> SizedTypeProperties for T {}
1283 
1284 /// Expands to the offset in bytes of a field from the beginning of the given type.
1285 ///
1286 /// Only structs, unions and tuples are supported.
1287 ///
1288 /// Nested field accesses may be used, but not array indexes like in `C`'s `offsetof`.
1289 ///
1290 /// Note that the output of this macro is not stable, except for `#[repr(C)]` types.
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```
1295 /// #![feature(offset_of)]
1296 ///
1297 /// use std::mem;
1298 /// #[repr(C)]
1299 /// struct FieldStruct {
1300 ///     first: u8,
1301 ///     second: u16,
1302 ///     third: u8
1303 /// }
1304 ///
1305 /// assert_eq!(mem::offset_of!(FieldStruct, first), 0);
1306 /// assert_eq!(mem::offset_of!(FieldStruct, second), 2);
1307 /// assert_eq!(mem::offset_of!(FieldStruct, third), 4);
1308 ///
1309 /// #[repr(C)]
1310 /// struct NestedA {
1311 ///     b: NestedB
1312 /// }
1313 ///
1314 /// #[repr(C)]
1315 /// struct NestedB(u8);
1316 ///
1317 /// assert_eq!(mem::offset_of!(NestedA, b.0), 0);
1318 /// ```
1319 #[unstable(feature = "offset_of", issue = "106655")]
1320 #[allow_internal_unstable(builtin_syntax, hint_must_use)]
1321 pub macro offset_of($Container:ty, $($fields:tt).+ $(,)?) {
1322     // The `{}` is for better error messages
1323     crate::hint::must_use({builtin # offset_of($Container, $($fields).+)})
1324 }
1325