• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QEMU DMA emulation
3  *
4  * Copyright (c) 2003-2004 Vassili Karpov (malc)
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw.h"
25 #include "isa.h"
26 
27 /* #define DEBUG_DMA */
28 
29 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
30 #ifdef DEBUG_DMA
31 #define lwarn(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
34 #else
35 #define lwarn(...)
36 #define linfo(...)
37 #define ldebug(...)
38 #endif
39 
40 #define LENOFA(a) ((int) (sizeof(a)/sizeof(a[0])))
41 
42 struct dma_regs {
43     int now[2];
44     uint16_t base[2];
45     uint8_t mode;
46     uint8_t page;
47     uint8_t pageh;
48     uint8_t dack;
49     uint8_t eop;
50     DMA_transfer_handler transfer_handler;
51     void *opaque;
52 };
53 
54 #define ADDR 0
55 #define COUNT 1
56 
57 static struct dma_cont {
58     uint8_t status;
59     uint8_t command;
60     uint8_t mask;
61     uint8_t flip_flop;
62     int dshift;
63     struct dma_regs regs[4];
64 } dma_controllers[2];
65 
66 enum {
67     CMD_MEMORY_TO_MEMORY = 0x01,
68     CMD_FIXED_ADDRESS    = 0x02,
69     CMD_BLOCK_CONTROLLER = 0x04,
70     CMD_COMPRESSED_TIME  = 0x08,
71     CMD_CYCLIC_PRIORITY  = 0x10,
72     CMD_EXTENDED_WRITE   = 0x20,
73     CMD_LOW_DREQ         = 0x40,
74     CMD_LOW_DACK         = 0x80,
75     CMD_NOT_SUPPORTED    = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
76     | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
77     | CMD_LOW_DREQ | CMD_LOW_DACK
78 
79 };
80 
81 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
82 
write_page(void * opaque,uint32_t nport,uint32_t data)83 static void write_page (void *opaque, uint32_t nport, uint32_t data)
84 {
85     struct dma_cont *d = opaque;
86     int ichan;
87 
88     ichan = channels[nport & 7];
89     if (-1 == ichan) {
90         dolog ("invalid channel %#x %#x\n", nport, data);
91         return;
92     }
93     d->regs[ichan].page = data;
94 }
95 
write_pageh(void * opaque,uint32_t nport,uint32_t data)96 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
97 {
98     struct dma_cont *d = opaque;
99     int ichan;
100 
101     ichan = channels[nport & 7];
102     if (-1 == ichan) {
103         dolog ("invalid channel %#x %#x\n", nport, data);
104         return;
105     }
106     d->regs[ichan].pageh = data;
107 }
108 
read_page(void * opaque,uint32_t nport)109 static uint32_t read_page (void *opaque, uint32_t nport)
110 {
111     struct dma_cont *d = opaque;
112     int ichan;
113 
114     ichan = channels[nport & 7];
115     if (-1 == ichan) {
116         dolog ("invalid channel read %#x\n", nport);
117         return 0;
118     }
119     return d->regs[ichan].page;
120 }
121 
read_pageh(void * opaque,uint32_t nport)122 static uint32_t read_pageh (void *opaque, uint32_t nport)
123 {
124     struct dma_cont *d = opaque;
125     int ichan;
126 
127     ichan = channels[nport & 7];
128     if (-1 == ichan) {
129         dolog ("invalid channel read %#x\n", nport);
130         return 0;
131     }
132     return d->regs[ichan].pageh;
133 }
134 
init_chan(struct dma_cont * d,int ichan)135 static inline void init_chan (struct dma_cont *d, int ichan)
136 {
137     struct dma_regs *r;
138 
139     r = d->regs + ichan;
140     r->now[ADDR] = r->base[ADDR] << d->dshift;
141     r->now[COUNT] = 0;
142 }
143 
getff(struct dma_cont * d)144 static inline int getff (struct dma_cont *d)
145 {
146     int ff;
147 
148     ff = d->flip_flop;
149     d->flip_flop = !ff;
150     return ff;
151 }
152 
read_chan(void * opaque,uint32_t nport)153 static uint32_t read_chan (void *opaque, uint32_t nport)
154 {
155     struct dma_cont *d = opaque;
156     int ichan, nreg, iport, ff, val, dir;
157     struct dma_regs *r;
158 
159     iport = (nport >> d->dshift) & 0x0f;
160     ichan = iport >> 1;
161     nreg = iport & 1;
162     r = d->regs + ichan;
163 
164     dir = ((r->mode >> 5) & 1) ? -1 : 1;
165     ff = getff (d);
166     if (nreg)
167         val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
168     else
169         val = r->now[ADDR] + r->now[COUNT] * dir;
170 
171     ldebug ("read_chan %#x -> %d\n", iport, val);
172     return (val >> (d->dshift + (ff << 3))) & 0xff;
173 }
174 
write_chan(void * opaque,uint32_t nport,uint32_t data)175 static void write_chan (void *opaque, uint32_t nport, uint32_t data)
176 {
177     struct dma_cont *d = opaque;
178     int iport, ichan, nreg;
179     struct dma_regs *r;
180 
181     iport = (nport >> d->dshift) & 0x0f;
182     ichan = iport >> 1;
183     nreg = iport & 1;
184     r = d->regs + ichan;
185     if (getff (d)) {
186         r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
187         init_chan (d, ichan);
188     } else {
189         r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
190     }
191 }
192 
write_cont(void * opaque,uint32_t nport,uint32_t data)193 static void write_cont (void *opaque, uint32_t nport, uint32_t data)
194 {
195     struct dma_cont *d = opaque;
196     int iport, ichan = 0;
197 
198     iport = (nport >> d->dshift) & 0x0f;
199     switch (iport) {
200     case 0x08:                  /* command */
201         if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
202             dolog ("command %#x not supported\n", data);
203             return;
204         }
205         d->command = data;
206         break;
207 
208     case 0x09:
209         ichan = data & 3;
210         if (data & 4) {
211             d->status |= 1 << (ichan + 4);
212         }
213         else {
214             d->status &= ~(1 << (ichan + 4));
215         }
216         d->status &= ~(1 << ichan);
217         break;
218 
219     case 0x0a:                  /* single mask */
220         if (data & 4)
221             d->mask |= 1 << (data & 3);
222         else
223             d->mask &= ~(1 << (data & 3));
224         break;
225 
226     case 0x0b:                  /* mode */
227         {
228             ichan = data & 3;
229 #ifdef DEBUG_DMA
230             {
231                 int op, ai, dir, opmode;
232                 op = (data >> 2) & 3;
233                 ai = (data >> 4) & 1;
234                 dir = (data >> 5) & 1;
235                 opmode = (data >> 6) & 3;
236 
237                 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
238                        ichan, op, ai, dir, opmode);
239             }
240 #endif
241             d->regs[ichan].mode = data;
242             break;
243         }
244 
245     case 0x0c:                  /* clear flip flop */
246         d->flip_flop = 0;
247         break;
248 
249     case 0x0d:                  /* reset */
250         d->flip_flop = 0;
251         d->mask = ~0;
252         d->status = 0;
253         d->command = 0;
254         break;
255 
256     case 0x0e:                  /* clear mask for all channels */
257         d->mask = 0;
258         break;
259 
260     case 0x0f:                  /* write mask for all channels */
261         d->mask = data;
262         break;
263 
264     default:
265         dolog ("unknown iport %#x\n", iport);
266         break;
267     }
268 
269 #ifdef DEBUG_DMA
270     if (0xc != iport) {
271         linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
272                nport, ichan, data);
273     }
274 #endif
275 }
276 
read_cont(void * opaque,uint32_t nport)277 static uint32_t read_cont (void *opaque, uint32_t nport)
278 {
279     struct dma_cont *d = opaque;
280     int iport, val;
281 
282     iport = (nport >> d->dshift) & 0x0f;
283     switch (iport) {
284     case 0x08:                  /* status */
285         val = d->status;
286         d->status &= 0xf0;
287         break;
288     case 0x0f:                  /* mask */
289         val = d->mask;
290         break;
291     default:
292         val = 0;
293         break;
294     }
295 
296     ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
297     return val;
298 }
299 
DMA_get_channel_mode(int nchan)300 int DMA_get_channel_mode (int nchan)
301 {
302     return dma_controllers[nchan > 3].regs[nchan & 3].mode;
303 }
304 
DMA_hold_DREQ(int nchan)305 void DMA_hold_DREQ (int nchan)
306 {
307     int ncont, ichan;
308 
309     ncont = nchan > 3;
310     ichan = nchan & 3;
311     linfo ("held cont=%d chan=%d\n", ncont, ichan);
312     dma_controllers[ncont].status |= 1 << (ichan + 4);
313 }
314 
DMA_release_DREQ(int nchan)315 void DMA_release_DREQ (int nchan)
316 {
317     int ncont, ichan;
318 
319     ncont = nchan > 3;
320     ichan = nchan & 3;
321     linfo ("released cont=%d chan=%d\n", ncont, ichan);
322     dma_controllers[ncont].status &= ~(1 << (ichan + 4));
323 }
324 
channel_run(int ncont,int ichan)325 static void channel_run (int ncont, int ichan)
326 {
327     int n;
328     struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
329 #ifdef DEBUG_DMA
330     int dir, opmode;
331 
332     dir = (r->mode >> 5) & 1;
333     opmode = (r->mode >> 6) & 3;
334 
335     if (dir) {
336         dolog ("DMA in address decrement mode\n");
337     }
338     if (opmode != 1) {
339         dolog ("DMA not in single mode select %#x\n", opmode);
340     }
341 #endif
342 
343     r = dma_controllers[ncont].regs + ichan;
344     n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
345                              r->now[COUNT], (r->base[COUNT] + 1) << ncont);
346     r->now[COUNT] = n;
347     ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
348 }
349 
DMA_run(void)350 void DMA_run (void)
351 {
352     struct dma_cont *d;
353     int icont, ichan;
354 
355     d = dma_controllers;
356 
357     for (icont = 0; icont < 2; icont++, d++) {
358         for (ichan = 0; ichan < 4; ichan++) {
359             int mask;
360 
361             mask = 1 << ichan;
362 
363             if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4))))
364                 channel_run (icont, ichan);
365         }
366     }
367 }
368 
DMA_register_channel(int nchan,DMA_transfer_handler transfer_handler,void * opaque)369 void DMA_register_channel (int nchan,
370                            DMA_transfer_handler transfer_handler,
371                            void *opaque)
372 {
373     struct dma_regs *r;
374     int ichan, ncont;
375 
376     ncont = nchan > 3;
377     ichan = nchan & 3;
378 
379     r = dma_controllers[ncont].regs + ichan;
380     r->transfer_handler = transfer_handler;
381     r->opaque = opaque;
382 }
383 
DMA_read_memory(int nchan,void * buf,int pos,int len)384 int DMA_read_memory (int nchan, void *buf, int pos, int len)
385 {
386     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
387     target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
388 
389     if (r->mode & 0x20) {
390         int i;
391         uint8_t *p = buf;
392 
393         cpu_physical_memory_read (addr - pos - len, buf, len);
394         /* What about 16bit transfers? */
395         for (i = 0; i < len >> 1; i++) {
396             uint8_t b = p[len - i - 1];
397             p[i] = b;
398         }
399     }
400     else
401         cpu_physical_memory_read (addr + pos, buf, len);
402 
403     return len;
404 }
405 
DMA_write_memory(int nchan,void * buf,int pos,int len)406 int DMA_write_memory (int nchan, void *buf, int pos, int len)
407 {
408     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
409     target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
410 
411     if (r->mode & 0x20) {
412         int i;
413         uint8_t *p = buf;
414 
415         cpu_physical_memory_write (addr - pos - len, buf, len);
416         /* What about 16bit transfers? */
417         for (i = 0; i < len; i++) {
418             uint8_t b = p[len - i - 1];
419             p[i] = b;
420         }
421     }
422     else
423         cpu_physical_memory_write (addr + pos, buf, len);
424 
425     return len;
426 }
427 
428 /* request the emulator to transfer a new DMA memory block ASAP */
DMA_schedule(int nchan)429 void DMA_schedule(int nchan)
430 {
431     CPUState *env = cpu_single_env;
432     if (env)
433         cpu_interrupt(env, CPU_INTERRUPT_EXIT);
434 }
435 
dma_reset(void * opaque)436 static void dma_reset(void *opaque)
437 {
438     struct dma_cont *d = opaque;
439     write_cont (d, (0x0d << d->dshift), 0);
440 }
441 
dma_phony_handler(void * opaque,int nchan,int dma_pos,int dma_len)442 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
443 {
444     dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
445            nchan, dma_pos, dma_len);
446     return dma_pos;
447 }
448 
449 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
dma_init2(struct dma_cont * d,int base,int dshift,int page_base,int pageh_base)450 static void dma_init2(struct dma_cont *d, int base, int dshift,
451                       int page_base, int pageh_base)
452 {
453     static const int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 };
454     int i;
455 
456     d->dshift = dshift;
457     for (i = 0; i < 8; i++) {
458         register_ioport_write (base + (i << dshift), 1, 1, write_chan, d);
459         register_ioport_read (base + (i << dshift), 1, 1, read_chan, d);
460     }
461     for (i = 0; i < LENOFA (page_port_list); i++) {
462         register_ioport_write (page_base + page_port_list[i], 1, 1,
463                                write_page, d);
464         register_ioport_read (page_base + page_port_list[i], 1, 1,
465                               read_page, d);
466         if (pageh_base >= 0) {
467             register_ioport_write (pageh_base + page_port_list[i], 1, 1,
468                                    write_pageh, d);
469             register_ioport_read (pageh_base + page_port_list[i], 1, 1,
470                                   read_pageh, d);
471         }
472     }
473     for (i = 0; i < 8; i++) {
474         register_ioport_write (base + ((i + 8) << dshift), 1, 1,
475                                write_cont, d);
476         register_ioport_read (base + ((i + 8) << dshift), 1, 1,
477                               read_cont, d);
478     }
479     qemu_register_reset(dma_reset, d);
480     dma_reset(d);
481     for (i = 0; i < LENOFA (d->regs); ++i) {
482         d->regs[i].transfer_handler = dma_phony_handler;
483     }
484 }
485 
dma_save(QEMUFile * f,void * opaque)486 static void dma_save (QEMUFile *f, void *opaque)
487 {
488     struct dma_cont *d = opaque;
489     int i;
490 
491     /* qemu_put_8s (f, &d->status); */
492     qemu_put_8s (f, &d->command);
493     qemu_put_8s (f, &d->mask);
494     qemu_put_8s (f, &d->flip_flop);
495     qemu_put_be32 (f, d->dshift);
496 
497     for (i = 0; i < 4; ++i) {
498         struct dma_regs *r = &d->regs[i];
499         qemu_put_be32 (f, r->now[0]);
500         qemu_put_be32 (f, r->now[1]);
501         qemu_put_be16s (f, &r->base[0]);
502         qemu_put_be16s (f, &r->base[1]);
503         qemu_put_8s (f, &r->mode);
504         qemu_put_8s (f, &r->page);
505         qemu_put_8s (f, &r->pageh);
506         qemu_put_8s (f, &r->dack);
507         qemu_put_8s (f, &r->eop);
508     }
509 }
510 
dma_load(QEMUFile * f,void * opaque,int version_id)511 static int dma_load (QEMUFile *f, void *opaque, int version_id)
512 {
513     struct dma_cont *d = opaque;
514     int i;
515 
516     if (version_id != 1)
517         return -EINVAL;
518 
519     /* qemu_get_8s (f, &d->status); */
520     qemu_get_8s (f, &d->command);
521     qemu_get_8s (f, &d->mask);
522     qemu_get_8s (f, &d->flip_flop);
523     d->dshift=qemu_get_be32 (f);
524 
525     for (i = 0; i < 4; ++i) {
526         struct dma_regs *r = &d->regs[i];
527         r->now[0]=qemu_get_be32 (f);
528         r->now[1]=qemu_get_be32 (f);
529         qemu_get_be16s (f, &r->base[0]);
530         qemu_get_be16s (f, &r->base[1]);
531         qemu_get_8s (f, &r->mode);
532         qemu_get_8s (f, &r->page);
533         qemu_get_8s (f, &r->pageh);
534         qemu_get_8s (f, &r->dack);
535         qemu_get_8s (f, &r->eop);
536     }
537     return 0;
538 }
539 
DMA_init(int high_page_enable)540 void DMA_init (int high_page_enable)
541 {
542     dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
543               high_page_enable ? 0x480 : -1);
544     dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
545               high_page_enable ? 0x488 : -1);
546     register_savevm ("dma", 0, 1, dma_save, dma_load, &dma_controllers[0]);
547     register_savevm ("dma", 1, 1, dma_save, dma_load, &dma_controllers[1]);
548 }
549