• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <cutils/mspace.h>
18 #include <limits.h>     // for INT_MAX
19 #include <sys/mman.h>
20 #include <errno.h>
21 
22 #include "Dalvik.h"
23 #include "alloc/Heap.h"
24 #include "alloc/HeapInternal.h"
25 #include "alloc/HeapSource.h"
26 #include "alloc/HeapBitmap.h"
27 
28 // TODO: find a real header file for these.
29 extern int dlmalloc_trim(size_t);
30 extern void dlmalloc_walk_free_pages(void(*)(void*, void*, void*), void*);
31 
32 static void snapIdealFootprint(void);
33 static void setIdealFootprint(size_t max);
34 
35 #ifndef PAGE_SIZE
36 #define PAGE_SIZE 4096
37 #endif
38 #define ALIGN_UP_TO_PAGE_SIZE(p) \
39     (((size_t)(p) + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1))
40 #define ALIGN_DOWN_TO_PAGE_SIZE(p) \
41     ((size_t)(p) & ~(PAGE_SIZE - 1))
42 
43 #define HEAP_UTILIZATION_MAX        1024
44 #define DEFAULT_HEAP_UTILIZATION    512     // Range 1..HEAP_UTILIZATION_MAX
45 #define HEAP_IDEAL_FREE             (2 * 1024 * 1024)
46 #define HEAP_MIN_FREE               (HEAP_IDEAL_FREE / 4)
47 
48 #define HS_BOILERPLATE() \
49     do { \
50         assert(gDvm.gcHeap != NULL); \
51         assert(gDvm.gcHeap->heapSource != NULL); \
52         assert(gHs == gDvm.gcHeap->heapSource); \
53     } while (0)
54 
55 #define DEBUG_HEAP_SOURCE 0
56 #if DEBUG_HEAP_SOURCE
57 #define HSTRACE(...)  LOG(LOG_INFO, LOG_TAG "-hs", __VA_ARGS__)
58 #else
59 #define HSTRACE(...)  /**/
60 #endif
61 
62 /*
63 =======================================================
64 =======================================================
65 =======================================================
66 
67 How will this be used?
68 allocating/freeing: Heap.c just wants to say "alloc(n)" and get a ptr
69     - if allocating in large doesn't work, try allocating from small
70 Heap.c will use HeapSource.h; HeapSource.c will do the right thing
71     between small and large
72     - some operations should be abstracted; put in a structure
73 
74 How do we manage the size trade-offs?
75 - keep mspace max footprint clamped to actual footprint
76 - if small-alloc returns null, adjust large vs. small ratio
77     - give small all available slack and retry
78     - success or fail, snap back to actual footprint and give rest to large
79 
80 managed as "small actual" + "large actual" + "delta to allowed total footprint"
81 - when allocating from one source or the other, give the delta to the
82     active source, but snap back afterwards
83 - that may not work so great for a gc heap, because small will always consume.
84     - but we need to use the memory, and the current max is the amount we
85       need to fill before a GC.
86 
87 Find a way to permanently steal pages from the middle of the heap
88     - segment tricks?
89 
90 Allocate String and char[] in a separate heap?
91 
92 Maybe avoid growing small heap, even if there's slack?  Look at
93 live ratio of small heap after a gc; scale it based on that.
94 
95 =======================================================
96 =======================================================
97 =======================================================
98 */
99 
100 typedef struct {
101     /* The mspace to allocate from.
102      */
103     mspace *msp;
104 
105     /* The bitmap that keeps track of where objects are in the heap.
106      */
107     HeapBitmap objectBitmap;
108 
109     /* The largest size that this heap is allowed to grow to.
110      */
111     size_t absoluteMaxSize;
112 
113     /* Number of bytes allocated from this mspace for objects,
114      * including any overhead.  This value is NOT exact, and
115      * should only be used as an input for certain heuristics.
116      */
117     size_t bytesAllocated;
118 
119     /* Number of objects currently allocated from this mspace.
120      */
121     size_t objectsAllocated;
122 } Heap;
123 
124 struct HeapSource {
125     /* Target ideal heap utilization ratio; range 1..HEAP_UTILIZATION_MAX
126      */
127     size_t targetUtilization;
128 
129     /* Requested minimum heap size, or zero if there is no minimum.
130      */
131     size_t minimumSize;
132 
133     /* The starting heap size.
134      */
135     size_t startSize;
136 
137     /* The largest that the heap source as a whole is allowed to grow.
138      */
139     size_t absoluteMaxSize;
140 
141     /* The desired max size of the heap source as a whole.
142      */
143     size_t idealSize;
144 
145     /* The maximum number of bytes allowed to be allocated from the
146      * active heap before a GC is forced.  This is used to "shrink" the
147      * heap in lieu of actual compaction.
148      */
149     size_t softLimit;
150 
151     /* The heaps; heaps[0] is always the active heap,
152      * which new objects should be allocated from.
153      */
154     Heap heaps[HEAP_SOURCE_MAX_HEAP_COUNT];
155 
156     /* The current number of heaps.
157      */
158     size_t numHeaps;
159 
160     /* External allocation count.
161      */
162     size_t externalBytesAllocated;
163 
164     /* The maximum number of external bytes that may be allocated.
165      */
166     size_t externalLimit;
167 
168     /* True if zygote mode was active when the HeapSource was created.
169      */
170     bool sawZygote;
171 };
172 
173 #define hs2heap(hs_) (&((hs_)->heaps[0]))
174 
175 /*
176  * Returns true iff a soft limit is in effect for the active heap.
177  */
178 static inline bool
softLimited(const HeapSource * hs)179 softLimited(const HeapSource *hs)
180 {
181     /* softLimit will be either INT_MAX or the limit for the
182      * active mspace.  idealSize can be greater than softLimit
183      * if there is more than one heap.  If there is only one
184      * heap, a non-INT_MAX softLimit should always be the same
185      * as idealSize.
186      */
187     return hs->softLimit <= hs->idealSize;
188 }
189 
190 /*
191  * Returns the current footprint of all heaps.  If includeActive
192  * is false, don't count the heap at index 0.
193  */
194 static inline size_t
oldHeapOverhead(const HeapSource * hs,bool includeActive)195 oldHeapOverhead(const HeapSource *hs, bool includeActive)
196 {
197     size_t footprint = 0;
198     size_t i;
199 
200     if (includeActive) {
201         i = 0;
202     } else {
203         i = 1;
204     }
205     for (/* i = i */; i < hs->numHeaps; i++) {
206 //TODO: include size of bitmaps?  If so, don't use bitsLen, listen to .max
207         footprint += mspace_footprint(hs->heaps[i].msp);
208     }
209     return footprint;
210 }
211 
212 /*
213  * Returns the heap that <ptr> could have come from, or NULL
214  * if it could not have come from any heap.
215  */
216 static inline Heap *
ptr2heap(const HeapSource * hs,const void * ptr)217 ptr2heap(const HeapSource *hs, const void *ptr)
218 {
219     const size_t numHeaps = hs->numHeaps;
220     size_t i;
221 
222 //TODO: unroll this to HEAP_SOURCE_MAX_HEAP_COUNT
223     if (ptr != NULL) {
224         for (i = 0; i < numHeaps; i++) {
225             const Heap *const heap = &hs->heaps[i];
226 
227             if (dvmHeapBitmapMayContainObject(&heap->objectBitmap, ptr)) {
228                 return (Heap *)heap;
229             }
230         }
231     }
232     return NULL;
233 }
234 
235 /*
236  * Functions to update heapSource->bytesAllocated when an object
237  * is allocated or freed.  mspace_usable_size() will give
238  * us a much more accurate picture of heap utilization than
239  * the requested byte sizes would.
240  *
241  * These aren't exact, and should not be treated as such.
242  */
243 static inline void
countAllocation(Heap * heap,const void * ptr,bool isObj)244 countAllocation(Heap *heap, const void *ptr, bool isObj)
245 {
246     assert(heap->bytesAllocated < mspace_footprint(heap->msp));
247 
248     heap->bytesAllocated += mspace_usable_size(heap->msp, ptr) +
249             HEAP_SOURCE_CHUNK_OVERHEAD;
250     if (isObj) {
251         heap->objectsAllocated++;
252         dvmHeapBitmapSetObjectBit(&heap->objectBitmap, ptr);
253     }
254 
255     assert(heap->bytesAllocated < mspace_footprint(heap->msp));
256 }
257 
258 static inline void
countFree(Heap * heap,const void * ptr,bool isObj)259 countFree(Heap *heap, const void *ptr, bool isObj)
260 {
261     size_t delta;
262 
263     delta = mspace_usable_size(heap->msp, ptr) + HEAP_SOURCE_CHUNK_OVERHEAD;
264     assert(delta > 0);
265     if (delta < heap->bytesAllocated) {
266         heap->bytesAllocated -= delta;
267     } else {
268         heap->bytesAllocated = 0;
269     }
270     if (isObj) {
271         dvmHeapBitmapClearObjectBit(&heap->objectBitmap, ptr);
272         if (heap->objectsAllocated > 0) {
273             heap->objectsAllocated--;
274         }
275     }
276 }
277 
278 static HeapSource *gHs = NULL;
279 
280 static mspace *
createMspace(size_t startSize,size_t absoluteMaxSize,size_t id)281 createMspace(size_t startSize, size_t absoluteMaxSize, size_t id)
282 {
283     mspace *msp;
284     char name[PATH_MAX];
285 
286     /* If two ashmem regions have the same name, only one gets
287      * the name when looking at the maps.
288      */
289     snprintf(name, sizeof(name)-1, "dalvik-heap%s/%zd",
290         gDvm.zygote ? "/zygote" : "", id);
291     name[sizeof(name)-1] = '\0';
292 
293     /* Create an unlocked dlmalloc mspace to use as
294      * a small-object heap source.
295      *
296      * We start off reserving heapSizeStart/2 bytes but
297      * letting the heap grow to heapSizeStart.  This saves
298      * memory in the case where a process uses even less
299      * than the starting size.
300      */
301     LOGV_HEAP("Creating VM heap of size %u\n", startSize);
302     errno = 0;
303     msp = create_contiguous_mspace_with_name(startSize/2,
304             absoluteMaxSize, /*locked=*/false, name);
305     if (msp != NULL) {
306         /* Don't let the heap grow past the starting size without
307          * our intervention.
308          */
309         mspace_set_max_allowed_footprint(msp, startSize);
310     } else {
311         /* There's no guarantee that errno has meaning when the call
312          * fails, but it often does.
313          */
314         LOGE_HEAP("Can't create VM heap of size (%u,%u) (errno=%d)\n",
315             startSize/2, absoluteMaxSize, errno);
316     }
317 
318     return msp;
319 }
320 
321 static bool
addNewHeap(HeapSource * hs,mspace * msp,size_t mspAbsoluteMaxSize)322 addNewHeap(HeapSource *hs, mspace *msp, size_t mspAbsoluteMaxSize)
323 {
324     Heap heap;
325 
326     if (hs->numHeaps >= HEAP_SOURCE_MAX_HEAP_COUNT) {
327         LOGE("Attempt to create too many heaps (%zd >= %zd)\n",
328                 hs->numHeaps, HEAP_SOURCE_MAX_HEAP_COUNT);
329         dvmAbort();
330         return false;
331     }
332 
333     memset(&heap, 0, sizeof(heap));
334 
335     if (msp != NULL) {
336         heap.msp = msp;
337         heap.absoluteMaxSize = mspAbsoluteMaxSize;
338     } else {
339         size_t overhead;
340 
341         overhead = oldHeapOverhead(hs, true);
342         if (overhead + HEAP_MIN_FREE >= hs->absoluteMaxSize) {
343             LOGE_HEAP("No room to create any more heaps "
344                     "(%zd overhead, %zd max)\n",
345                     overhead, hs->absoluteMaxSize);
346             return false;
347         }
348         heap.absoluteMaxSize = hs->absoluteMaxSize - overhead;
349         heap.msp = createMspace(HEAP_MIN_FREE, heap.absoluteMaxSize,
350                 hs->numHeaps);
351         if (heap.msp == NULL) {
352             return false;
353         }
354     }
355     if (!dvmHeapBitmapInit(&heap.objectBitmap,
356                            (void *)ALIGN_DOWN_TO_PAGE_SIZE(heap.msp),
357                            heap.absoluteMaxSize,
358                            "objects"))
359     {
360         LOGE_HEAP("Can't create objectBitmap\n");
361         goto fail;
362     }
363 
364     /* Don't let the soon-to-be-old heap grow any further.
365      */
366     if (hs->numHeaps > 0) {
367         mspace *msp = hs->heaps[0].msp;
368         mspace_set_max_allowed_footprint(msp, mspace_footprint(msp));
369     }
370 
371     /* Put the new heap in the list, at heaps[0].
372      * Shift existing heaps down.
373      */
374     memmove(&hs->heaps[1], &hs->heaps[0], hs->numHeaps * sizeof(hs->heaps[0]));
375     hs->heaps[0] = heap;
376     hs->numHeaps++;
377 
378     return true;
379 
380 fail:
381     if (msp == NULL) {
382         destroy_contiguous_mspace(heap.msp);
383     }
384     return false;
385 }
386 
387 /*
388  * Initializes the heap source; must be called before any other
389  * dvmHeapSource*() functions.  Returns a GcHeap structure
390  * allocated from the heap source.
391  */
392 GcHeap *
dvmHeapSourceStartup(size_t startSize,size_t absoluteMaxSize)393 dvmHeapSourceStartup(size_t startSize, size_t absoluteMaxSize)
394 {
395     GcHeap *gcHeap;
396     HeapSource *hs;
397     Heap *heap;
398     mspace msp;
399 
400     assert(gHs == NULL);
401 
402     if (startSize > absoluteMaxSize) {
403         LOGE("Bad heap parameters (start=%d, max=%d)\n",
404            startSize, absoluteMaxSize);
405         return NULL;
406     }
407 
408     /* Create an unlocked dlmalloc mspace to use as
409      * the small object heap source.
410      */
411     msp = createMspace(startSize, absoluteMaxSize, 0);
412     if (msp == NULL) {
413         return false;
414     }
415 
416     /* Allocate a descriptor from the heap we just created.
417      */
418     gcHeap = mspace_malloc(msp, sizeof(*gcHeap));
419     if (gcHeap == NULL) {
420         LOGE_HEAP("Can't allocate heap descriptor\n");
421         goto fail;
422     }
423     memset(gcHeap, 0, sizeof(*gcHeap));
424 
425     hs = mspace_malloc(msp, sizeof(*hs));
426     if (hs == NULL) {
427         LOGE_HEAP("Can't allocate heap source\n");
428         goto fail;
429     }
430     memset(hs, 0, sizeof(*hs));
431 
432     hs->targetUtilization = DEFAULT_HEAP_UTILIZATION;
433     hs->minimumSize = 0;
434     hs->startSize = startSize;
435     hs->absoluteMaxSize = absoluteMaxSize;
436     hs->idealSize = startSize;
437     hs->softLimit = INT_MAX;    // no soft limit at first
438     hs->numHeaps = 0;
439     hs->sawZygote = gDvm.zygote;
440     if (!addNewHeap(hs, msp, absoluteMaxSize)) {
441         LOGE_HEAP("Can't add initial heap\n");
442         goto fail;
443     }
444 
445     gcHeap->heapSource = hs;
446 
447     countAllocation(hs2heap(hs), gcHeap, false);
448     countAllocation(hs2heap(hs), hs, false);
449 
450     gHs = hs;
451     return gcHeap;
452 
453 fail:
454     destroy_contiguous_mspace(msp);
455     return NULL;
456 }
457 
458 /*
459  * If the HeapSource was created while in zygote mode, this
460  * will create a new heap for post-zygote allocations.
461  * Having a separate heap should maximize the number of pages
462  * that a given app_process shares with the zygote process.
463  */
464 bool
dvmHeapSourceStartupAfterZygote()465 dvmHeapSourceStartupAfterZygote()
466 {
467     HeapSource *hs = gHs; // use a local to avoid the implicit "volatile"
468 
469     HS_BOILERPLATE();
470 
471     assert(!gDvm.zygote);
472 
473     if (hs->sawZygote) {
474         /* Create a new heap for post-zygote allocations.
475          */
476         return addNewHeap(hs, NULL, 0);
477     }
478     return true;
479 }
480 
481 /*
482  * This is called while in zygote mode, right before we fork() for the
483  * first time.  We create a heap for all future zygote process allocations,
484  * in an attempt to avoid touching pages in the zygote heap.  (This would
485  * probably be unnecessary if we had a compacting GC -- the source of our
486  * troubles is small allocations filling in the gaps from larger ones.)
487  */
488 bool
dvmHeapSourceStartupBeforeFork()489 dvmHeapSourceStartupBeforeFork()
490 {
491     HeapSource *hs = gHs; // use a local to avoid the implicit "volatile"
492 
493     HS_BOILERPLATE();
494 
495     assert(gDvm.zygote);
496 
497     if (!gDvm.newZygoteHeapAllocated) {
498         /* Create a new heap for post-fork zygote allocations.  We only
499          * try once, even if it fails.
500          */
501         LOGI("Splitting out new zygote heap\n");
502         gDvm.newZygoteHeapAllocated = true;
503         return addNewHeap(hs, NULL, 0);
504     }
505     return true;
506 }
507 
508 /*
509  * Tears down the heap source and frees any resources associated with it.
510  */
511 void
dvmHeapSourceShutdown(GcHeap * gcHeap)512 dvmHeapSourceShutdown(GcHeap *gcHeap)
513 {
514     if (gcHeap != NULL && gcHeap->heapSource != NULL) {
515         HeapSource *hs;
516         size_t numHeaps;
517         size_t i;
518 
519         hs = gcHeap->heapSource;
520         gHs = NULL;
521 
522         /* Cache numHeaps because hs will be invalid after the last
523          * heap is freed.
524          */
525         numHeaps = hs->numHeaps;
526 
527         for (i = 0; i < numHeaps; i++) {
528             Heap *heap = &hs->heaps[i];
529 
530             dvmHeapBitmapDelete(&heap->objectBitmap);
531             destroy_contiguous_mspace(heap->msp);
532         }
533         /* The last heap is the original one, which contains the
534          * HeapSource object itself.
535          */
536     }
537 }
538 
539 /*
540  * Returns the requested value. If the per-heap stats are requested, fill
541  * them as well.
542  *
543  * Caller must hold the heap lock.
544  */
545 size_t
dvmHeapSourceGetValue(enum HeapSourceValueSpec spec,size_t perHeapStats[],size_t arrayLen)546 dvmHeapSourceGetValue(enum HeapSourceValueSpec spec, size_t perHeapStats[],
547                       size_t arrayLen)
548 {
549     HeapSource *hs = gHs;
550     size_t value = 0;
551     size_t total = 0;
552     size_t i;
553 
554     HS_BOILERPLATE();
555 
556     switch (spec) {
557     case HS_EXTERNAL_BYTES_ALLOCATED:
558         return hs->externalBytesAllocated;
559     case HS_EXTERNAL_LIMIT:
560         return hs->externalLimit;
561     default:
562         // look at all heaps.
563         ;
564     }
565 
566     assert(arrayLen >= hs->numHeaps || perHeapStats == NULL);
567     for (i = 0; i < hs->numHeaps; i++) {
568         Heap *const heap = &hs->heaps[i];
569 
570         switch (spec) {
571         case HS_FOOTPRINT:
572             value = mspace_footprint(heap->msp);
573             break;
574         case HS_ALLOWED_FOOTPRINT:
575             value = mspace_max_allowed_footprint(heap->msp);
576             break;
577         case HS_BYTES_ALLOCATED:
578             value = heap->bytesAllocated;
579             break;
580         case HS_OBJECTS_ALLOCATED:
581             value = heap->objectsAllocated;
582             break;
583         default:
584             // quiet gcc
585             break;
586         }
587         if (perHeapStats) {
588             perHeapStats[i] = value;
589         }
590         total += value;
591     }
592     return total;
593 }
594 
595 /*
596  * Writes shallow copies of the currently-used bitmaps into outBitmaps,
597  * returning the number of bitmaps written.  Returns <0 if the array
598  * was not long enough.
599  */
600 ssize_t
dvmHeapSourceGetObjectBitmaps(HeapBitmap outBitmaps[],size_t maxBitmaps)601 dvmHeapSourceGetObjectBitmaps(HeapBitmap outBitmaps[], size_t maxBitmaps)
602 {
603     HeapSource *hs = gHs;
604 
605     HS_BOILERPLATE();
606 
607     if (maxBitmaps >= hs->numHeaps) {
608         size_t i;
609 
610         for (i = 0; i < hs->numHeaps; i++) {
611             outBitmaps[i] = hs->heaps[i].objectBitmap;
612         }
613         return i;
614     }
615     return -1;
616 }
617 
618 /*
619  * Replaces the object location HeapBitmaps with the elements of
620  * <objectBitmaps>.  The elements of <objectBitmaps> are overwritten
621  * with shallow copies of the old bitmaps.
622  *
623  * Returns false if the number of bitmaps doesn't match the number
624  * of heaps.
625  */
626 bool
dvmHeapSourceReplaceObjectBitmaps(HeapBitmap objectBitmaps[],size_t nBitmaps)627 dvmHeapSourceReplaceObjectBitmaps(HeapBitmap objectBitmaps[], size_t nBitmaps)
628 {
629     HeapSource *hs = gHs;
630     size_t i;
631 
632     HS_BOILERPLATE();
633 
634     if (nBitmaps != hs->numHeaps) {
635         return false;
636     }
637 
638     for (i = 0; i < hs->numHeaps; i++) {
639         Heap *heap = &hs->heaps[i];
640         HeapBitmap swap;
641 
642         swap = heap->objectBitmap;
643         heap->objectBitmap = objectBitmaps[i];
644         objectBitmaps[i] = swap;
645     }
646     return true;
647 }
648 
649 /*
650  * Allocates <n> bytes of zeroed data.
651  */
652 void *
dvmHeapSourceAlloc(size_t n)653 dvmHeapSourceAlloc(size_t n)
654 {
655     HeapSource *hs = gHs;
656     Heap *heap;
657     void *ptr;
658 
659     HS_BOILERPLATE();
660     heap = hs2heap(hs);
661 
662     if (heap->bytesAllocated + n <= hs->softLimit) {
663 // TODO: allocate large blocks (>64k?) as separate mmap regions so that
664 //       they don't increase the high-water mark when they're freed.
665 // TODO: zero out large objects using madvise
666         ptr = mspace_calloc(heap->msp, 1, n);
667         if (ptr != NULL) {
668             countAllocation(heap, ptr, true);
669         }
670     } else {
671         /* This allocation would push us over the soft limit;
672          * act as if the heap is full.
673          */
674         LOGV_HEAP("softLimit of %zd.%03zdMB hit for %zd-byte allocation\n",
675                 FRACTIONAL_MB(hs->softLimit), n);
676         ptr = NULL;
677     }
678     return ptr;
679 }
680 
681 /* Remove any hard limits, try to allocate, and shrink back down.
682  * Last resort when trying to allocate an object.
683  */
684 static void *
heapAllocAndGrow(HeapSource * hs,Heap * heap,size_t n)685 heapAllocAndGrow(HeapSource *hs, Heap *heap, size_t n)
686 {
687     void *ptr;
688     size_t max;
689 
690     /* Grow as much as possible, but don't let the real footprint
691      * plus external allocations go over the absolute max.
692      */
693     max = heap->absoluteMaxSize;
694     if (max > hs->externalBytesAllocated) {
695         max -= hs->externalBytesAllocated;
696 
697         mspace_set_max_allowed_footprint(heap->msp, max);
698         ptr = dvmHeapSourceAlloc(n);
699 
700         /* Shrink back down as small as possible.  Our caller may
701          * readjust max_allowed to a more appropriate value.
702          */
703         mspace_set_max_allowed_footprint(heap->msp,
704                 mspace_footprint(heap->msp));
705     } else {
706         ptr = NULL;
707     }
708 
709     return ptr;
710 }
711 
712 /*
713  * Allocates <n> bytes of zeroed data, growing as much as possible
714  * if necessary.
715  */
716 void *
dvmHeapSourceAllocAndGrow(size_t n)717 dvmHeapSourceAllocAndGrow(size_t n)
718 {
719     HeapSource *hs = gHs;
720     Heap *heap;
721     void *ptr;
722     size_t oldIdealSize;
723 
724     HS_BOILERPLATE();
725     heap = hs2heap(hs);
726 
727     ptr = dvmHeapSourceAlloc(n);
728     if (ptr != NULL) {
729         return ptr;
730     }
731 
732     oldIdealSize = hs->idealSize;
733     if (softLimited(hs)) {
734         /* We're soft-limited.  Try removing the soft limit to
735          * see if we can allocate without actually growing.
736          */
737         hs->softLimit = INT_MAX;
738         ptr = dvmHeapSourceAlloc(n);
739         if (ptr != NULL) {
740             /* Removing the soft limit worked;  fix things up to
741              * reflect the new effective ideal size.
742              */
743             snapIdealFootprint();
744             return ptr;
745         }
746         // softLimit intentionally left at INT_MAX.
747     }
748 
749     /* We're not soft-limited.  Grow the heap to satisfy the request.
750      * If this call fails, no footprints will have changed.
751      */
752     ptr = heapAllocAndGrow(hs, heap, n);
753     if (ptr != NULL) {
754         /* The allocation succeeded.  Fix up the ideal size to
755          * reflect any footprint modifications that had to happen.
756          */
757         snapIdealFootprint();
758     } else {
759         /* We just couldn't do it.  Restore the original ideal size,
760          * fixing up softLimit if necessary.
761          */
762         setIdealFootprint(oldIdealSize);
763     }
764     return ptr;
765 }
766 
767 /*
768  * Frees the memory pointed to by <ptr>, which may be NULL.
769  */
770 void
dvmHeapSourceFree(void * ptr)771 dvmHeapSourceFree(void *ptr)
772 {
773     Heap *heap;
774 
775     HS_BOILERPLATE();
776 
777     heap = ptr2heap(gHs, ptr);
778     if (heap != NULL) {
779         countFree(heap, ptr, true);
780         /* Only free objects that are in the active heap.
781          * Touching old heaps would pull pages into this process.
782          */
783         if (heap == gHs->heaps) {
784             mspace_free(heap->msp, ptr);
785         }
786     }
787 }
788 
789 /*
790  * Returns true iff <ptr> was allocated from the heap source.
791  */
792 bool
dvmHeapSourceContains(const void * ptr)793 dvmHeapSourceContains(const void *ptr)
794 {
795     Heap *heap;
796 
797     HS_BOILERPLATE();
798 
799     heap = ptr2heap(gHs, ptr);
800     if (heap != NULL) {
801         return dvmHeapBitmapIsObjectBitSet(&heap->objectBitmap, ptr) != 0;
802     }
803     return false;
804 }
805 
806 /*
807  * Returns the value of the requested flag.
808  */
809 bool
dvmHeapSourceGetPtrFlag(const void * ptr,enum HeapSourcePtrFlag flag)810 dvmHeapSourceGetPtrFlag(const void *ptr, enum HeapSourcePtrFlag flag)
811 {
812     if (ptr == NULL) {
813         return false;
814     }
815 
816     if (flag == HS_CONTAINS) {
817         return dvmHeapSourceContains(ptr);
818     } else if (flag == HS_ALLOCATED_IN_ZYGOTE) {
819         HeapSource *hs = gHs;
820 
821         HS_BOILERPLATE();
822 
823         if (hs->sawZygote) {
824             Heap *heap;
825 
826             heap = ptr2heap(hs, ptr);
827             if (heap != NULL) {
828                 /* If the object is not in the active heap, we assume that
829                  * it was allocated as part of zygote.
830                  */
831                 return heap != hs->heaps;
832             }
833         }
834         /* The pointer is outside of any known heap, or we are not
835          * running in zygote mode.
836          */
837         return false;
838     }
839 
840     return false;
841 }
842 
843 /*
844  * Returns the number of usable bytes in an allocated chunk; the size
845  * may be larger than the size passed to dvmHeapSourceAlloc().
846  */
847 size_t
dvmHeapSourceChunkSize(const void * ptr)848 dvmHeapSourceChunkSize(const void *ptr)
849 {
850     Heap *heap;
851 
852     HS_BOILERPLATE();
853 
854     heap = ptr2heap(gHs, ptr);
855     if (heap != NULL) {
856         return mspace_usable_size(heap->msp, ptr);
857     }
858     return 0;
859 }
860 
861 /*
862  * Returns the number of bytes that the heap source has allocated
863  * from the system using sbrk/mmap, etc.
864  *
865  * Caller must hold the heap lock.
866  */
867 size_t
dvmHeapSourceFootprint()868 dvmHeapSourceFootprint()
869 {
870     HS_BOILERPLATE();
871 
872 //TODO: include size of bitmaps?
873     return oldHeapOverhead(gHs, true);
874 }
875 
876 /*
877  * Return the real bytes used by old heaps and external memory
878  * plus the soft usage of the current heap.  When a soft limit
879  * is in effect, this is effectively what it's compared against
880  * (though, in practice, it only looks at the current heap).
881  */
882 static size_t
getSoftFootprint(bool includeActive)883 getSoftFootprint(bool includeActive)
884 {
885     HeapSource *hs = gHs;
886     size_t ret;
887 
888     HS_BOILERPLATE();
889 
890     ret = oldHeapOverhead(hs, false) + hs->externalBytesAllocated;
891     if (includeActive) {
892         ret += hs->heaps[0].bytesAllocated;
893     }
894 
895     return ret;
896 }
897 
898 /*
899  * Gets the maximum number of bytes that the heap source is allowed
900  * to allocate from the system.
901  */
902 size_t
dvmHeapSourceGetIdealFootprint()903 dvmHeapSourceGetIdealFootprint()
904 {
905     HeapSource *hs = gHs;
906 
907     HS_BOILERPLATE();
908 
909     return hs->idealSize;
910 }
911 
912 /*
913  * Sets the soft limit, handling any necessary changes to the allowed
914  * footprint of the active heap.
915  */
916 static void
setSoftLimit(HeapSource * hs,size_t softLimit)917 setSoftLimit(HeapSource *hs, size_t softLimit)
918 {
919     /* Compare against the actual footprint, rather than the
920      * max_allowed, because the heap may not have grown all the
921      * way to the allowed size yet.
922      */
923     mspace *msp = hs->heaps[0].msp;
924     size_t currentHeapSize = mspace_footprint(msp);
925     if (softLimit < currentHeapSize) {
926         /* Don't let the heap grow any more, and impose a soft limit.
927          */
928         mspace_set_max_allowed_footprint(msp, currentHeapSize);
929         hs->softLimit = softLimit;
930     } else {
931         /* Let the heap grow to the requested max, and remove any
932          * soft limit, if set.
933          */
934         mspace_set_max_allowed_footprint(msp, softLimit);
935         hs->softLimit = INT_MAX;
936     }
937 }
938 
939 /*
940  * Sets the maximum number of bytes that the heap source is allowed
941  * to allocate from the system.  Clamps to the appropriate maximum
942  * value.
943  */
944 static void
setIdealFootprint(size_t max)945 setIdealFootprint(size_t max)
946 {
947     HeapSource *hs = gHs;
948 #if DEBUG_HEAP_SOURCE
949     HeapSource oldHs = *hs;
950     mspace *msp = hs->heaps[0].msp;
951     size_t oldAllowedFootprint =
952             mspace_max_allowed_footprint(msp);
953 #endif
954 
955     HS_BOILERPLATE();
956 
957     if (max > hs->absoluteMaxSize) {
958         LOGI_HEAP("Clamp target GC heap from %zd.%03zdMB to %u.%03uMB\n",
959                 FRACTIONAL_MB(max),
960                 FRACTIONAL_MB(hs->absoluteMaxSize));
961         max = hs->absoluteMaxSize;
962     } else if (max < hs->minimumSize) {
963         max = hs->minimumSize;
964     }
965 
966     /* Convert max into a size that applies to the active heap.
967      * Old heaps and external allocations will count against the ideal size.
968      */
969     size_t overhead = getSoftFootprint(false);
970     size_t activeMax;
971     if (overhead < max) {
972         activeMax = max - overhead;
973     } else {
974         activeMax = 0;
975     }
976 
977     setSoftLimit(hs, activeMax);
978     hs->idealSize = max;
979 
980     HSTRACE("IDEAL %zd->%zd (%d), soft %zd->%zd (%d), allowed %zd->%zd (%d), "
981             "ext %zd\n",
982             oldHs.idealSize, hs->idealSize, hs->idealSize - oldHs.idealSize,
983             oldHs.softLimit, hs->softLimit, hs->softLimit - oldHs.softLimit,
984             oldAllowedFootprint, mspace_max_allowed_footprint(msp),
985             mspace_max_allowed_footprint(msp) - oldAllowedFootprint,
986             hs->externalBytesAllocated);
987 
988 }
989 
990 /*
991  * Make the ideal footprint equal to the current footprint.
992  */
993 static void
snapIdealFootprint()994 snapIdealFootprint()
995 {
996     HeapSource *hs = gHs;
997 
998     HS_BOILERPLATE();
999 
1000     setIdealFootprint(getSoftFootprint(true));
1001 }
1002 
1003 /*
1004  * Gets the current ideal heap utilization, represented as a number
1005  * between zero and one.
1006  */
dvmGetTargetHeapUtilization()1007 float dvmGetTargetHeapUtilization()
1008 {
1009     HeapSource *hs = gHs;
1010 
1011     HS_BOILERPLATE();
1012 
1013     return (float)hs->targetUtilization / (float)HEAP_UTILIZATION_MAX;
1014 }
1015 
1016 /*
1017  * Sets the new ideal heap utilization, represented as a number
1018  * between zero and one.
1019  */
dvmSetTargetHeapUtilization(float newTarget)1020 void dvmSetTargetHeapUtilization(float newTarget)
1021 {
1022     HeapSource *hs = gHs;
1023     size_t newUtilization;
1024 
1025     HS_BOILERPLATE();
1026 
1027     /* Clamp it to a reasonable range.
1028      */
1029     // TODO: This may need some tuning.
1030     if (newTarget < 0.2) {
1031         newTarget = 0.2;
1032     } else if (newTarget > 0.8) {
1033         newTarget = 0.8;
1034     }
1035 
1036     hs->targetUtilization =
1037             (size_t)(newTarget * (float)HEAP_UTILIZATION_MAX);
1038     LOGV("Set heap target utilization to %zd/%d (%f)\n",
1039             hs->targetUtilization, HEAP_UTILIZATION_MAX, newTarget);
1040 }
1041 
1042 /*
1043  * If set is true, sets the new minimum heap size to size; always
1044  * returns the current (or previous) size.  If size is negative,
1045  * removes the current minimum constraint (if present).
1046  */
1047 size_t
dvmMinimumHeapSize(size_t size,bool set)1048 dvmMinimumHeapSize(size_t size, bool set)
1049 {
1050     HeapSource *hs = gHs;
1051     size_t oldMinimumSize;
1052 
1053     /* gHs caches an entry in gDvm.gcHeap;  we need to hold the
1054      * heap lock if we're going to look at it.  We also need the
1055      * lock for the call to setIdealFootprint().
1056      */
1057     dvmLockHeap();
1058 
1059     HS_BOILERPLATE();
1060 
1061     oldMinimumSize = hs->minimumSize;
1062 
1063     if (set) {
1064         /* Don't worry about external allocations right now.
1065          * setIdealFootprint() will take them into account when
1066          * minimumSize is used, and it's better to hold onto the
1067          * intended minimumSize than to clamp it arbitrarily based
1068          * on the current allocations.
1069          */
1070         if (size > hs->absoluteMaxSize) {
1071             size = hs->absoluteMaxSize;
1072         }
1073         hs->minimumSize = size;
1074         if (size > hs->idealSize) {
1075             /* Force a snap to the minimum value, which we just set
1076              * and which setIdealFootprint() will take into consideration.
1077              */
1078             setIdealFootprint(hs->idealSize);
1079         }
1080         /* Otherwise we'll just keep it in mind the next time
1081          * setIdealFootprint() is called.
1082          */
1083     }
1084 
1085     dvmUnlockHeap();
1086 
1087     return oldMinimumSize;
1088 }
1089 
1090 /*
1091  * Given the size of a live set, returns the ideal heap size given
1092  * the current target utilization and MIN/MAX values.
1093  *
1094  * targetUtilization is in the range 1..HEAP_UTILIZATION_MAX.
1095  */
1096 static size_t
getUtilizationTarget(const HeapSource * hs,size_t liveSize,size_t targetUtilization)1097 getUtilizationTarget(const HeapSource *hs,
1098         size_t liveSize, size_t targetUtilization)
1099 {
1100     size_t targetSize;
1101 
1102     /* Use the current target utilization ratio to determine the
1103      * ideal heap size based on the size of the live set.
1104      */
1105     targetSize = (liveSize / targetUtilization) * HEAP_UTILIZATION_MAX;
1106 
1107     /* Cap the amount of free space, though, so we don't end up
1108      * with, e.g., 8MB of free space when the live set size hits 8MB.
1109      */
1110     if (targetSize > liveSize + HEAP_IDEAL_FREE) {
1111         targetSize = liveSize + HEAP_IDEAL_FREE;
1112     } else if (targetSize < liveSize + HEAP_MIN_FREE) {
1113         targetSize = liveSize + HEAP_MIN_FREE;
1114     }
1115     return targetSize;
1116 }
1117 
1118 /*
1119  * Given the current contents of the active heap, increase the allowed
1120  * heap footprint to match the target utilization ratio.  This
1121  * should only be called immediately after a full mark/sweep.
1122  */
dvmHeapSourceGrowForUtilization()1123 void dvmHeapSourceGrowForUtilization()
1124 {
1125     HeapSource *hs = gHs;
1126     Heap *heap;
1127     size_t targetHeapSize;
1128     size_t currentHeapUsed;
1129     size_t oldIdealSize;
1130     size_t newHeapMax;
1131     size_t overhead;
1132 
1133     HS_BOILERPLATE();
1134     heap = hs2heap(hs);
1135 
1136     /* Use the current target utilization ratio to determine the
1137      * ideal heap size based on the size of the live set.
1138      * Note that only the active heap plays any part in this.
1139      *
1140      * Avoid letting the old heaps influence the target free size,
1141      * because they may be full of objects that aren't actually
1142      * in the working set.  Just look at the allocated size of
1143      * the current heap.
1144      */
1145     currentHeapUsed = heap->bytesAllocated;
1146 #define LET_EXTERNAL_INFLUENCE_UTILIZATION 1
1147 #if LET_EXTERNAL_INFLUENCE_UTILIZATION
1148     /* This is a hack to deal with the side-effects of moving
1149      * bitmap data out of the Dalvik heap.  Since the amount
1150      * of free space after a GC scales with the size of the
1151      * live set, many apps expected the large free space that
1152      * appeared along with megabytes' worth of bitmaps.  When
1153      * the bitmaps were removed, the free size shrank significantly,
1154      * and apps started GCing constantly.  This makes it so the
1155      * post-GC free space is the same size it would have been
1156      * if the bitmaps were still in the Dalvik heap.
1157      */
1158     currentHeapUsed += hs->externalBytesAllocated;
1159 #endif
1160     targetHeapSize =
1161             getUtilizationTarget(hs, currentHeapUsed, hs->targetUtilization);
1162 #if LET_EXTERNAL_INFLUENCE_UTILIZATION
1163     currentHeapUsed -= hs->externalBytesAllocated;
1164     targetHeapSize -= hs->externalBytesAllocated;
1165 #endif
1166 
1167     /* The ideal size includes the old heaps; add overhead so that
1168      * it can be immediately subtracted again in setIdealFootprint().
1169      * If the target heap size would exceed the max, setIdealFootprint()
1170      * will clamp it to a legal value.
1171      */
1172     overhead = getSoftFootprint(false);
1173     oldIdealSize = hs->idealSize;
1174     setIdealFootprint(targetHeapSize + overhead);
1175 
1176     newHeapMax = mspace_max_allowed_footprint(heap->msp);
1177     if (softLimited(hs)) {
1178         LOGD_HEAP("GC old usage %zd.%zd%%; now "
1179                 "%zd.%03zdMB used / %zd.%03zdMB soft max "
1180                 "(%zd.%03zdMB over, "
1181                 "%zd.%03zdMB ext, "
1182                 "%zd.%03zdMB real max)\n",
1183                 FRACTIONAL_PCT(currentHeapUsed, oldIdealSize),
1184                 FRACTIONAL_MB(currentHeapUsed),
1185                 FRACTIONAL_MB(hs->softLimit),
1186                 FRACTIONAL_MB(overhead),
1187                 FRACTIONAL_MB(hs->externalBytesAllocated),
1188                 FRACTIONAL_MB(newHeapMax));
1189     } else {
1190         LOGD_HEAP("GC old usage %zd.%zd%%; now "
1191                 "%zd.%03zdMB used / %zd.%03zdMB real max "
1192                 "(%zd.%03zdMB over, "
1193                 "%zd.%03zdMB ext)\n",
1194                 FRACTIONAL_PCT(currentHeapUsed, oldIdealSize),
1195                 FRACTIONAL_MB(currentHeapUsed),
1196                 FRACTIONAL_MB(newHeapMax),
1197                 FRACTIONAL_MB(overhead),
1198                 FRACTIONAL_MB(hs->externalBytesAllocated));
1199     }
1200 }
1201 
1202 /*
1203  * Return free pages to the system.
1204  * TODO: move this somewhere else, especially the native heap part.
1205  */
1206 
releasePagesInRange(void * start,void * end,void * nbytes)1207 static void releasePagesInRange(void *start, void *end, void *nbytes)
1208 {
1209     /* Linux requires that the madvise() start address is page-aligned.
1210     * We also align the end address.
1211     */
1212     start = (void *)ALIGN_UP_TO_PAGE_SIZE(start);
1213     end = (void *)((size_t)end & ~(PAGE_SIZE - 1));
1214     if (start < end) {
1215         size_t length = (char *)end - (char *)start;
1216         madvise(start, length, MADV_DONTNEED);
1217         *(size_t *)nbytes += length;
1218     }
1219 }
1220 
1221 /*
1222  * Return unused memory to the system if possible.
1223  */
1224 void
dvmHeapSourceTrim(size_t bytesTrimmed[],size_t arrayLen)1225 dvmHeapSourceTrim(size_t bytesTrimmed[], size_t arrayLen)
1226 {
1227     HeapSource *hs = gHs;
1228     size_t nativeBytes, heapBytes;
1229     size_t i;
1230 
1231     HS_BOILERPLATE();
1232 
1233     assert(arrayLen >= hs->numHeaps);
1234 
1235     heapBytes = 0;
1236     for (i = 0; i < hs->numHeaps; i++) {
1237         Heap *heap = &hs->heaps[i];
1238 
1239         /* Return the wilderness chunk to the system.
1240          */
1241         mspace_trim(heap->msp, 0);
1242 
1243         /* Return any whole free pages to the system.
1244          */
1245         bytesTrimmed[i] = 0;
1246         mspace_walk_free_pages(heap->msp, releasePagesInRange,
1247                                &bytesTrimmed[i]);
1248         heapBytes += bytesTrimmed[i];
1249     }
1250 
1251     /* Same for the native heap.
1252      */
1253     dlmalloc_trim(0);
1254     nativeBytes = 0;
1255     dlmalloc_walk_free_pages(releasePagesInRange, &nativeBytes);
1256 
1257     LOGD_HEAP("madvised %zd (GC) + %zd (native) = %zd total bytes\n",
1258             heapBytes, nativeBytes, heapBytes + nativeBytes);
1259 }
1260 
1261 /*
1262  * Walks over the heap source and passes every allocated and
1263  * free chunk to the callback.
1264  */
1265 void
dvmHeapSourceWalk(void (* callback)(const void * chunkptr,size_t chunklen,const void * userptr,size_t userlen,void * arg),void * arg)1266 dvmHeapSourceWalk(void(*callback)(const void *chunkptr, size_t chunklen,
1267                                       const void *userptr, size_t userlen,
1268                                       void *arg),
1269                   void *arg)
1270 {
1271     HeapSource *hs = gHs;
1272     size_t i;
1273 
1274     HS_BOILERPLATE();
1275 
1276     /* Walk the heaps from oldest to newest.
1277      */
1278 //TODO: do this in address order
1279     for (i = hs->numHeaps; i > 0; --i) {
1280         mspace_walk_heap(hs->heaps[i-1].msp, callback, arg);
1281     }
1282 }
1283 
1284 /*
1285  * Gets the number of heaps available in the heap source.
1286  *
1287  * Caller must hold the heap lock, because gHs caches a field
1288  * in gDvm.gcHeap.
1289  */
1290 size_t
dvmHeapSourceGetNumHeaps()1291 dvmHeapSourceGetNumHeaps()
1292 {
1293     HeapSource *hs = gHs;
1294 
1295     HS_BOILERPLATE();
1296 
1297     return hs->numHeaps;
1298 }
1299 
1300 
1301 /*
1302  * External allocation tracking
1303  *
1304  * In some situations, memory outside of the heap is tied to the
1305  * lifetime of objects in the heap.  Since that memory is kept alive
1306  * by heap objects, it should provide memory pressure that can influence
1307  * GCs.
1308  */
1309 
1310 
1311 static bool
externalAllocPossible(const HeapSource * hs,size_t n)1312 externalAllocPossible(const HeapSource *hs, size_t n)
1313 {
1314     const Heap *heap;
1315     size_t currentHeapSize;
1316 
1317     /* Make sure that this allocation is even possible.
1318      * Don't let the external size plus the actual heap size
1319      * go over the absolute max.  This essentially treats
1320      * external allocations as part of the active heap.
1321      *
1322      * Note that this will fail "mysteriously" if there's
1323      * a small softLimit but a large heap footprint.
1324      */
1325     heap = hs2heap(hs);
1326     currentHeapSize = mspace_max_allowed_footprint(heap->msp);
1327     if (currentHeapSize + hs->externalBytesAllocated + n <=
1328             heap->absoluteMaxSize)
1329     {
1330         return true;
1331     }
1332     HSTRACE("externalAllocPossible(): "
1333             "footprint %zu + extAlloc %zu + n %zu >= max %zu (space for %zu)\n",
1334             currentHeapSize, hs->externalBytesAllocated, n,
1335             heap->absoluteMaxSize,
1336             heap->absoluteMaxSize -
1337                     (currentHeapSize + hs->externalBytesAllocated));
1338     return false;
1339 }
1340 
1341 #define EXTERNAL_TARGET_UTILIZATION 820  // 80%
1342 
1343 /*
1344  * Tries to update the internal count of externally-allocated memory.
1345  * If there's enough room for that memory, returns true.  If not, returns
1346  * false and does not update the count.
1347  *
1348  * The caller must ensure externalAllocPossible(hs, n) == true.
1349  */
1350 static bool
externalAlloc(HeapSource * hs,size_t n,bool grow)1351 externalAlloc(HeapSource *hs, size_t n, bool grow)
1352 {
1353     Heap *heap;
1354     size_t currentHeapSize;
1355     size_t newTotal;
1356     size_t max;
1357     bool grew;
1358 
1359     assert(hs->externalLimit >= hs->externalBytesAllocated);
1360 
1361     HSTRACE("externalAlloc(%zd%s)\n", n, grow ? ", grow" : "");
1362     assert(externalAllocPossible(hs, n));  // The caller must ensure this.
1363 
1364     /* External allocations have their own "free space" that they
1365      * can allocate from without causing a GC.
1366      */
1367     if (hs->externalBytesAllocated + n <= hs->externalLimit) {
1368         hs->externalBytesAllocated += n;
1369 #if defined(WITH_PROFILER) && PROFILE_EXTERNAL_ALLOCATIONS
1370         if (gDvm.allocProf.enabled) {
1371             Thread* self = dvmThreadSelf();
1372             gDvm.allocProf.externalAllocCount++;
1373             gDvm.allocProf.externalAllocSize += n;
1374             if (self != NULL) {
1375                 self->allocProf.externalAllocCount++;
1376                 self->allocProf.externalAllocSize += n;
1377             }
1378         }
1379 #endif
1380         return true;
1381     }
1382     if (!grow) {
1383         return false;
1384     }
1385 
1386     /* GROW */
1387     hs->externalBytesAllocated += n;
1388     hs->externalLimit = getUtilizationTarget(hs,
1389             hs->externalBytesAllocated, EXTERNAL_TARGET_UTILIZATION);
1390     HSTRACE("EXTERNAL grow limit to %zd\n", hs->externalLimit);
1391     return true;
1392 }
1393 
1394 static void
gcForExternalAlloc(bool collectSoftReferences)1395 gcForExternalAlloc(bool collectSoftReferences)
1396 {
1397 #ifdef WITH_PROFILER  // even if !PROFILE_EXTERNAL_ALLOCATIONS
1398     if (gDvm.allocProf.enabled) {
1399         Thread* self = dvmThreadSelf();
1400         gDvm.allocProf.gcCount++;
1401         if (self != NULL) {
1402             self->allocProf.gcCount++;
1403         }
1404     }
1405 #endif
1406     dvmCollectGarbageInternal(collectSoftReferences);
1407 }
1408 
1409 /*
1410  * Updates the internal count of externally-allocated memory.  If there's
1411  * enough room for that memory, returns true.  If not, returns false and
1412  * does not update the count.
1413  *
1414  * May cause a GC as a side-effect.
1415  */
1416 bool
dvmTrackExternalAllocation(size_t n)1417 dvmTrackExternalAllocation(size_t n)
1418 {
1419     HeapSource *hs = gHs;
1420     size_t overhead;
1421     bool ret = false;
1422 
1423     /* gHs caches an entry in gDvm.gcHeap;  we need to hold the
1424      * heap lock if we're going to look at it.
1425      */
1426     dvmLockHeap();
1427 
1428     HS_BOILERPLATE();
1429     assert(hs->externalLimit >= hs->externalBytesAllocated);
1430 
1431     if (!externalAllocPossible(hs, n)) {
1432         LOGE_HEAP("%zd-byte external allocation "
1433                 "too large for this process.\n", n);
1434         goto out;
1435     }
1436 
1437     /* Try "allocating" using the existing "free space".
1438      */
1439     HSTRACE("EXTERNAL alloc %zu (%zu < %zu)\n",
1440             n, hs->externalBytesAllocated, hs->externalLimit);
1441     if (externalAlloc(hs, n, false)) {
1442         ret = true;
1443         goto out;
1444     }
1445 
1446     /* The "allocation" failed.  Free up some space by doing
1447      * a full garbage collection.  This may grow the heap source
1448      * if the live set is sufficiently large.
1449      */
1450     HSTRACE("EXTERNAL alloc %zd: GC 1\n", n);
1451     gcForExternalAlloc(false);  // don't collect SoftReferences
1452     if (externalAlloc(hs, n, false)) {
1453         ret = true;
1454         goto out;
1455     }
1456 
1457     /* Even that didn't work;  this is an exceptional state.
1458      * Try harder, growing the heap source if necessary.
1459      */
1460     HSTRACE("EXTERNAL alloc %zd: frag\n", n);
1461     ret = externalAlloc(hs, n, true);
1462     dvmHeapSizeChanged();
1463     if (ret) {
1464         goto out;
1465     }
1466 
1467     /* We couldn't even grow enough to satisfy the request.
1468      * Try one last GC, collecting SoftReferences this time.
1469      */
1470     HSTRACE("EXTERNAL alloc %zd: GC 2\n", n);
1471     gcForExternalAlloc(true);  // collect SoftReferences
1472     ret = externalAlloc(hs, n, true);
1473     dvmHeapSizeChanged();
1474     if (!ret) {
1475         LOGE_HEAP("Out of external memory on a %zu-byte allocation.\n", n);
1476     }
1477 
1478 #if defined(WITH_PROFILER) && PROFILE_EXTERNAL_ALLOCATIONS
1479     if (gDvm.allocProf.enabled) {
1480         Thread* self = dvmThreadSelf();
1481         gDvm.allocProf.failedExternalAllocCount++;
1482         gDvm.allocProf.failedExternalAllocSize += n;
1483         if (self != NULL) {
1484             self->allocProf.failedExternalAllocCount++;
1485             self->allocProf.failedExternalAllocSize += n;
1486         }
1487     }
1488 #endif
1489 
1490 out:
1491     dvmUnlockHeap();
1492 
1493     return ret;
1494 }
1495 
1496 /*
1497  * Reduces the internal count of externally-allocated memory.
1498  */
1499 void
dvmTrackExternalFree(size_t n)1500 dvmTrackExternalFree(size_t n)
1501 {
1502     HeapSource *hs = gHs;
1503     size_t newIdealSize;
1504     size_t newExternalLimit;
1505     size_t oldExternalBytesAllocated;
1506 
1507     HSTRACE("EXTERNAL free %zu (%zu < %zu)\n",
1508             n, hs->externalBytesAllocated, hs->externalLimit);
1509 
1510     /* gHs caches an entry in gDvm.gcHeap;  we need to hold the
1511      * heap lock if we're going to look at it.
1512      */
1513     dvmLockHeap();
1514 
1515     HS_BOILERPLATE();
1516     assert(hs->externalLimit >= hs->externalBytesAllocated);
1517 
1518     oldExternalBytesAllocated = hs->externalBytesAllocated;
1519     if (n <= hs->externalBytesAllocated) {
1520         hs->externalBytesAllocated -= n;
1521     } else {
1522         n = hs->externalBytesAllocated;
1523         hs->externalBytesAllocated = 0;
1524     }
1525 
1526 #if defined(WITH_PROFILER) && PROFILE_EXTERNAL_ALLOCATIONS
1527     if (gDvm.allocProf.enabled) {
1528         Thread* self = dvmThreadSelf();
1529         gDvm.allocProf.externalFreeCount++;
1530         gDvm.allocProf.externalFreeSize += n;
1531         if (self != NULL) {
1532             self->allocProf.externalFreeCount++;
1533             self->allocProf.externalFreeSize += n;
1534         }
1535     }
1536 #endif
1537 
1538     /* Shrink as quickly as we can.
1539      */
1540     newExternalLimit = getUtilizationTarget(hs,
1541             hs->externalBytesAllocated, EXTERNAL_TARGET_UTILIZATION);
1542     if (newExternalLimit < oldExternalBytesAllocated) {
1543         /* Make sure that the remaining free space is at least
1544          * big enough to allocate something of the size that was
1545          * just freed.  This makes it more likely that
1546          *     externalFree(N); externalAlloc(N);
1547          * will work without causing a GC.
1548          */
1549         HSTRACE("EXTERNAL free preserved %zu extra free bytes\n",
1550                 oldExternalBytesAllocated - newExternalLimit);
1551         newExternalLimit = oldExternalBytesAllocated;
1552     }
1553     if (newExternalLimit < hs->externalLimit) {
1554         hs->externalLimit = newExternalLimit;
1555     }
1556 
1557     dvmUnlockHeap();
1558 }
1559 
1560 /*
1561  * Returns the number of externally-allocated bytes being tracked by
1562  * dvmTrackExternalAllocation/Free().
1563  */
1564 size_t
dvmGetExternalBytesAllocated()1565 dvmGetExternalBytesAllocated()
1566 {
1567     const HeapSource *hs = gHs;
1568     size_t ret;
1569 
1570     /* gHs caches an entry in gDvm.gcHeap;  we need to hold the
1571      * heap lock if we're going to look at it.  We also need the
1572      * lock for the call to setIdealFootprint().
1573      */
1574     dvmLockHeap();
1575     HS_BOILERPLATE();
1576     ret = hs->externalBytesAllocated;
1577     dvmUnlockHeap();
1578 
1579     return ret;
1580 }
1581