1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2006, Jouni Malinen <j@w1.fi>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
11 *
12 * See README and COPYING for more details.
13 *
14 * This file implements the Peer State Machine as defined in RFC 4137. The used
15 * states and state transitions match mostly with the RFC. However, there are
16 * couple of additional transitions for working around small issues noticed
17 * during testing. These exceptions are explained in comments within the
18 * functions in this file. The method functions, m.func(), are similar to the
19 * ones used in RFC 4137, but some small changes have used here to optimize
20 * operations and to add functionality needed for fast re-authentication
21 * (session resumption).
22 */
23
24 #include "includes.h"
25
26 #include "common.h"
27 #include "eap_i.h"
28 #include "config_ssid.h"
29 #include "tls.h"
30 #include "crypto.h"
31 #include "pcsc_funcs.h"
32 #include "wpa_ctrl.h"
33 #include "state_machine.h"
34
35 #define STATE_MACHINE_DATA struct eap_sm
36 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
37
38 #define EAP_MAX_AUTH_ROUNDS 50
39
40
41 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
42 EapType method);
43 static u8 * eap_sm_buildNak(struct eap_sm *sm, int id, size_t *len);
44 static void eap_sm_processIdentity(struct eap_sm *sm, const u8 *req);
45 static void eap_sm_processNotify(struct eap_sm *sm, const u8 *req);
46 static u8 * eap_sm_buildNotify(int id, size_t *len);
47 static void eap_sm_parseEapReq(struct eap_sm *sm, const u8 *req, size_t len);
48 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
49 static const char * eap_sm_method_state_txt(EapMethodState state);
50 static const char * eap_sm_decision_txt(EapDecision decision);
51 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
52
53
54
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)55 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
56 {
57 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
58 }
59
60
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)61 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
62 Boolean value)
63 {
64 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
65 }
66
67
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)68 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
69 {
70 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
71 }
72
73
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)74 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
75 unsigned int value)
76 {
77 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
78 }
79
80
eapol_get_eapReqData(struct eap_sm * sm,size_t * len)81 static u8 * eapol_get_eapReqData(struct eap_sm *sm, size_t *len)
82 {
83 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx, len);
84 }
85
86
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)87 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
88 {
89 if (sm->m == NULL || sm->eap_method_priv == NULL)
90 return;
91
92 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
93 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
94 sm->m->deinit(sm, sm->eap_method_priv);
95 sm->eap_method_priv = NULL;
96 sm->m = NULL;
97 }
98
99
100 /*
101 * This state initializes state machine variables when the machine is
102 * activated (portEnabled = TRUE). This is also used when re-starting
103 * authentication (eapRestart == TRUE).
104 */
SM_STATE(EAP,INITIALIZE)105 SM_STATE(EAP, INITIALIZE)
106 {
107 SM_ENTRY(EAP, INITIALIZE);
108 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
109 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
110 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
111 "fast reauthentication");
112 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
113 } else {
114 eap_deinit_prev_method(sm, "INITIALIZE");
115 }
116 sm->selectedMethod = EAP_TYPE_NONE;
117 sm->methodState = METHOD_NONE;
118 sm->allowNotifications = TRUE;
119 sm->decision = DECISION_FAIL;
120 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
121 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
122 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
123 os_free(sm->eapKeyData);
124 sm->eapKeyData = NULL;
125 sm->eapKeyAvailable = FALSE;
126 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
127 sm->lastId = -1; /* new session - make sure this does not match with
128 * the first EAP-Packet */
129 /*
130 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
131 * seemed to be able to trigger cases where both were set and if EAPOL
132 * state machine uses eapNoResp first, it may end up not sending a real
133 * reply correctly. This occurred when the workaround in FAIL state set
134 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
135 * something else(?)
136 */
137 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
138 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
139 sm->num_rounds = 0;
140 }
141
142
143 /*
144 * This state is reached whenever service from the lower layer is interrupted
145 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
146 * occurs when the port becomes enabled.
147 */
SM_STATE(EAP,DISABLED)148 SM_STATE(EAP, DISABLED)
149 {
150 SM_ENTRY(EAP, DISABLED);
151 sm->num_rounds = 0;
152 }
153
154
155 /*
156 * The state machine spends most of its time here, waiting for something to
157 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
158 * SEND_RESPONSE states.
159 */
SM_STATE(EAP,IDLE)160 SM_STATE(EAP, IDLE)
161 {
162 SM_ENTRY(EAP, IDLE);
163 }
164
165
166 /*
167 * This state is entered when an EAP packet is received (eapReq == TRUE) to
168 * parse the packet header.
169 */
SM_STATE(EAP,RECEIVED)170 SM_STATE(EAP, RECEIVED)
171 {
172 const u8 *eapReqData;
173 size_t eapReqDataLen;
174
175 SM_ENTRY(EAP, RECEIVED);
176 eapReqData = eapol_get_eapReqData(sm, &eapReqDataLen);
177 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
178 eap_sm_parseEapReq(sm, eapReqData, eapReqDataLen);
179 sm->num_rounds++;
180 }
181
182
183 /*
184 * This state is entered when a request for a new type comes in. Either the
185 * correct method is started, or a Nak response is built.
186 */
SM_STATE(EAP,GET_METHOD)187 SM_STATE(EAP, GET_METHOD)
188 {
189 int reinit;
190 EapType method;
191
192 SM_ENTRY(EAP, GET_METHOD);
193
194 if (sm->reqMethod == EAP_TYPE_EXPANDED)
195 method = sm->reqVendorMethod;
196 else
197 method = sm->reqMethod;
198
199 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
200 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
201 sm->reqVendor, method);
202 goto nak;
203 }
204
205 /*
206 * RFC 4137 does not define specific operation for fast
207 * re-authentication (session resumption). The design here is to allow
208 * the previously used method data to be maintained for
209 * re-authentication if the method support session resumption.
210 * Otherwise, the previously used method data is freed and a new method
211 * is allocated here.
212 */
213 if (sm->fast_reauth &&
214 sm->m && sm->m->vendor == sm->reqVendor &&
215 sm->m->method == method &&
216 sm->m->has_reauth_data &&
217 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
218 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
219 " for fast re-authentication");
220 reinit = 1;
221 } else {
222 eap_deinit_prev_method(sm, "GET_METHOD");
223 reinit = 0;
224 }
225
226 sm->selectedMethod = sm->reqMethod;
227 if (sm->m == NULL)
228 sm->m = eap_sm_get_eap_methods(sm->reqVendor, method);
229 if (!sm->m) {
230 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
231 "vendor %d method %d",
232 sm->reqVendor, method);
233 goto nak;
234 }
235
236 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
237 "vendor %u method %u (%s)",
238 sm->reqVendor, method, sm->m->name);
239 if (reinit)
240 sm->eap_method_priv = sm->m->init_for_reauth(
241 sm, sm->eap_method_priv);
242 else
243 sm->eap_method_priv = sm->m->init(sm);
244
245 if (sm->eap_method_priv == NULL) {
246 struct wpa_ssid *config = eap_get_config(sm);
247 wpa_msg(sm->msg_ctx, MSG_INFO,
248 "EAP: Failed to initialize EAP method: vendor %u "
249 "method %u (%s)",
250 sm->reqVendor, method, sm->m->name);
251 sm->m = NULL;
252 sm->methodState = METHOD_NONE;
253 sm->selectedMethod = EAP_TYPE_NONE;
254 if (sm->reqMethod == EAP_TYPE_TLS && config &&
255 (config->pending_req_pin ||
256 config->pending_req_passphrase)) {
257 /*
258 * Return without generating Nak in order to allow
259 * entering of PIN code or passphrase to retry the
260 * current EAP packet.
261 */
262 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
263 "request - skip Nak");
264 return;
265 }
266
267 goto nak;
268 }
269
270 sm->methodState = METHOD_INIT;
271 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
272 "EAP vendor %u method %u (%s) selected",
273 sm->reqVendor, method, sm->m->name);
274 return;
275
276 nak:
277 os_free(sm->eapRespData);
278 sm->eapRespData = NULL;
279 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId, &sm->eapRespDataLen);
280 }
281
282
283 /*
284 * The method processing happens here. The request from the authenticator is
285 * processed, and an appropriate response packet is built.
286 */
SM_STATE(EAP,METHOD)287 SM_STATE(EAP, METHOD)
288 {
289 u8 *eapReqData;
290 size_t eapReqDataLen;
291 struct eap_method_ret ret;
292
293 SM_ENTRY(EAP, METHOD);
294 if (sm->m == NULL) {
295 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
296 return;
297 }
298
299 eapReqData = eapol_get_eapReqData(sm, &eapReqDataLen);
300
301 /*
302 * Get ignore, methodState, decision, allowNotifications, and
303 * eapRespData. RFC 4137 uses three separate method procedure (check,
304 * process, and buildResp) in this state. These have been combined into
305 * a single function call to m->process() in order to optimize EAP
306 * method implementation interface a bit. These procedures are only
307 * used from within this METHOD state, so there is no need to keep
308 * these as separate C functions.
309 *
310 * The RFC 4137 procedures return values as follows:
311 * ignore = m.check(eapReqData)
312 * (methodState, decision, allowNotifications) = m.process(eapReqData)
313 * eapRespData = m.buildResp(reqId)
314 */
315 os_memset(&ret, 0, sizeof(ret));
316 ret.ignore = sm->ignore;
317 ret.methodState = sm->methodState;
318 ret.decision = sm->decision;
319 ret.allowNotifications = sm->allowNotifications;
320 os_free(sm->eapRespData);
321 sm->eapRespData = NULL;
322 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
323 eapReqData, eapReqDataLen,
324 &sm->eapRespDataLen);
325 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
326 "methodState=%s decision=%s",
327 ret.ignore ? "TRUE" : "FALSE",
328 eap_sm_method_state_txt(ret.methodState),
329 eap_sm_decision_txt(ret.decision));
330
331 sm->ignore = ret.ignore;
332 if (sm->ignore)
333 return;
334 sm->methodState = ret.methodState;
335 sm->decision = ret.decision;
336 sm->allowNotifications = ret.allowNotifications;
337
338 if (sm->m->isKeyAvailable && sm->m->getKey &&
339 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
340 os_free(sm->eapKeyData);
341 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
342 &sm->eapKeyDataLen);
343 }
344 }
345
346
347 /*
348 * This state signals the lower layer that a response packet is ready to be
349 * sent.
350 */
SM_STATE(EAP,SEND_RESPONSE)351 SM_STATE(EAP, SEND_RESPONSE)
352 {
353 SM_ENTRY(EAP, SEND_RESPONSE);
354 os_free(sm->lastRespData);
355 if (sm->eapRespData) {
356 if (sm->workaround)
357 os_memcpy(sm->last_md5, sm->req_md5, 16);
358 sm->lastId = sm->reqId;
359 sm->lastRespData = os_malloc(sm->eapRespDataLen);
360 if (sm->lastRespData) {
361 os_memcpy(sm->lastRespData, sm->eapRespData,
362 sm->eapRespDataLen);
363 sm->lastRespDataLen = sm->eapRespDataLen;
364 }
365 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
366 } else
367 sm->lastRespData = NULL;
368 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
369 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
370 }
371
372
373 /*
374 * This state signals the lower layer that the request was discarded, and no
375 * response packet will be sent at this time.
376 */
SM_STATE(EAP,DISCARD)377 SM_STATE(EAP, DISCARD)
378 {
379 SM_ENTRY(EAP, DISCARD);
380 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
381 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
382 }
383
384
385 /*
386 * Handles requests for Identity method and builds a response.
387 */
SM_STATE(EAP,IDENTITY)388 SM_STATE(EAP, IDENTITY)
389 {
390 const u8 *eapReqData;
391 size_t eapReqDataLen;
392
393 SM_ENTRY(EAP, IDENTITY);
394 eapReqData = eapol_get_eapReqData(sm, &eapReqDataLen);
395 eap_sm_processIdentity(sm, eapReqData);
396 os_free(sm->eapRespData);
397 sm->eapRespData = NULL;
398 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId,
399 &sm->eapRespDataLen, 0);
400 }
401
402
403 /*
404 * Handles requests for Notification method and builds a response.
405 */
SM_STATE(EAP,NOTIFICATION)406 SM_STATE(EAP, NOTIFICATION)
407 {
408 const u8 *eapReqData;
409 size_t eapReqDataLen;
410
411 SM_ENTRY(EAP, NOTIFICATION);
412 eapReqData = eapol_get_eapReqData(sm, &eapReqDataLen);
413 eap_sm_processNotify(sm, eapReqData);
414 os_free(sm->eapRespData);
415 sm->eapRespData = NULL;
416 sm->eapRespData = eap_sm_buildNotify(sm->reqId, &sm->eapRespDataLen);
417 }
418
419
420 /*
421 * This state retransmits the previous response packet.
422 */
SM_STATE(EAP,RETRANSMIT)423 SM_STATE(EAP, RETRANSMIT)
424 {
425 SM_ENTRY(EAP, RETRANSMIT);
426 os_free(sm->eapRespData);
427 if (sm->lastRespData) {
428 sm->eapRespData = os_malloc(sm->lastRespDataLen);
429 if (sm->eapRespData) {
430 os_memcpy(sm->eapRespData, sm->lastRespData,
431 sm->lastRespDataLen);
432 sm->eapRespDataLen = sm->lastRespDataLen;
433 }
434 } else
435 sm->eapRespData = NULL;
436 }
437
438
439 /*
440 * This state is entered in case of a successful completion of authentication
441 * and state machine waits here until port is disabled or EAP authentication is
442 * restarted.
443 */
SM_STATE(EAP,SUCCESS)444 SM_STATE(EAP, SUCCESS)
445 {
446 SM_ENTRY(EAP, SUCCESS);
447 if (sm->eapKeyData != NULL)
448 sm->eapKeyAvailable = TRUE;
449 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
450
451 /*
452 * RFC 4137 does not clear eapReq here, but this seems to be required
453 * to avoid processing the same request twice when state machine is
454 * initialized.
455 */
456 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
457
458 /*
459 * RFC 4137 does not set eapNoResp here, but this seems to be required
460 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
461 * addition, either eapResp or eapNoResp is required to be set after
462 * processing the received EAP frame.
463 */
464 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
465
466 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
467 "EAP authentication completed successfully");
468 }
469
470
471 /*
472 * This state is entered in case of a failure and state machine waits here
473 * until port is disabled or EAP authentication is restarted.
474 */
SM_STATE(EAP,FAILURE)475 SM_STATE(EAP, FAILURE)
476 {
477 SM_ENTRY(EAP, FAILURE);
478 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
479
480 /*
481 * RFC 4137 does not clear eapReq here, but this seems to be required
482 * to avoid processing the same request twice when state machine is
483 * initialized.
484 */
485 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
486
487 /*
488 * RFC 4137 does not set eapNoResp here. However, either eapResp or
489 * eapNoResp is required to be set after processing the received EAP
490 * frame.
491 */
492 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
493
494 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
495 "EAP authentication failed");
496 }
497
498
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)499 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
500 {
501 /*
502 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
503 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
504 * RFC 4137 require that reqId == lastId. In addition, it looks like
505 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
506 *
507 * Accept this kind of Id if EAP workarounds are enabled. These are
508 * unauthenticated plaintext messages, so this should have minimal
509 * security implications (bit easier to fake EAP-Success/Failure).
510 */
511 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
512 reqId == ((lastId + 2) & 0xff))) {
513 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
514 "identifier field in EAP Success: "
515 "reqId=%d lastId=%d (these are supposed to be "
516 "same)", reqId, lastId);
517 return 1;
518 }
519 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
520 "lastId=%d", reqId, lastId);
521 return 0;
522 }
523
524
525 /*
526 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
527 */
SM_STEP(EAP)528 SM_STEP(EAP)
529 {
530 int duplicate;
531
532 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
533 eapol_get_bool(sm, EAPOL_portEnabled))
534 SM_ENTER_GLOBAL(EAP, INITIALIZE);
535 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
536 SM_ENTER_GLOBAL(EAP, DISABLED);
537 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
538 /* RFC 4137 does not place any limit on number of EAP messages
539 * in an authentication session. However, some error cases have
540 * ended up in a state were EAP messages were sent between the
541 * peer and server in a loop (e.g., TLS ACK frame in both
542 * direction). Since this is quite undesired outcome, limit the
543 * total number of EAP round-trips and abort authentication if
544 * this limit is exceeded.
545 */
546 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
547 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
548 "authentication rounds - abort",
549 EAP_MAX_AUTH_ROUNDS);
550 sm->num_rounds++;
551 SM_ENTER_GLOBAL(EAP, FAILURE);
552 }
553 } else switch (sm->EAP_state) {
554 case EAP_INITIALIZE:
555 SM_ENTER(EAP, IDLE);
556 break;
557 case EAP_DISABLED:
558 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
559 !sm->force_disabled)
560 SM_ENTER(EAP, INITIALIZE);
561 break;
562 case EAP_IDLE:
563 /*
564 * The first three transitions are from RFC 4137. The last two
565 * are local additions to handle special cases with LEAP and
566 * PEAP server not sending EAP-Success in some cases.
567 */
568 if (eapol_get_bool(sm, EAPOL_eapReq))
569 SM_ENTER(EAP, RECEIVED);
570 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
571 sm->decision != DECISION_FAIL) ||
572 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
573 sm->decision == DECISION_UNCOND_SUCC))
574 SM_ENTER(EAP, SUCCESS);
575 else if (eapol_get_bool(sm, EAPOL_altReject) ||
576 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
577 sm->decision != DECISION_UNCOND_SUCC) ||
578 (eapol_get_bool(sm, EAPOL_altAccept) &&
579 sm->methodState != METHOD_CONT &&
580 sm->decision == DECISION_FAIL))
581 SM_ENTER(EAP, FAILURE);
582 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
583 sm->leap_done && sm->decision != DECISION_FAIL &&
584 sm->methodState == METHOD_DONE)
585 SM_ENTER(EAP, SUCCESS);
586 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
587 sm->peap_done && sm->decision != DECISION_FAIL &&
588 sm->methodState == METHOD_DONE)
589 SM_ENTER(EAP, SUCCESS);
590 break;
591 case EAP_RECEIVED:
592 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
593 if (sm->workaround && duplicate &&
594 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
595 /*
596 * RFC 4137 uses (reqId == lastId) as the only
597 * verification for duplicate EAP requests. However,
598 * this misses cases where the AS is incorrectly using
599 * the same id again; and unfortunately, such
600 * implementations exist. Use MD5 hash as an extra
601 * verification for the packets being duplicate to
602 * workaround these issues.
603 */
604 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again,"
605 " but EAP packets were not identical");
606 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this "
607 "is not a duplicate packet");
608 duplicate = 0;
609 }
610
611 /*
612 * Two special cases below for LEAP are local additions to work
613 * around odd LEAP behavior (EAP-Success in the middle of
614 * authentication and then swapped roles). Other transitions
615 * are based on RFC 4137.
616 */
617 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
618 (sm->reqId == sm->lastId ||
619 eap_success_workaround(sm, sm->reqId, sm->lastId)))
620 SM_ENTER(EAP, SUCCESS);
621 else if (sm->methodState != METHOD_CONT &&
622 ((sm->rxFailure &&
623 sm->decision != DECISION_UNCOND_SUCC) ||
624 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
625 (sm->selectedMethod != EAP_TYPE_LEAP ||
626 sm->methodState != METHOD_MAY_CONT))) &&
627 (sm->reqId == sm->lastId ||
628 eap_success_workaround(sm, sm->reqId, sm->lastId)))
629 SM_ENTER(EAP, FAILURE);
630 else if (sm->rxReq && duplicate)
631 SM_ENTER(EAP, RETRANSMIT);
632 else if (sm->rxReq && !duplicate &&
633 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
634 sm->allowNotifications)
635 SM_ENTER(EAP, NOTIFICATION);
636 else if (sm->rxReq && !duplicate &&
637 sm->selectedMethod == EAP_TYPE_NONE &&
638 sm->reqMethod == EAP_TYPE_IDENTITY)
639 SM_ENTER(EAP, IDENTITY);
640 else if (sm->rxReq && !duplicate &&
641 sm->selectedMethod == EAP_TYPE_NONE &&
642 sm->reqMethod != EAP_TYPE_IDENTITY &&
643 sm->reqMethod != EAP_TYPE_NOTIFICATION)
644 SM_ENTER(EAP, GET_METHOD);
645 else if (sm->rxReq && !duplicate &&
646 sm->reqMethod == sm->selectedMethod &&
647 sm->methodState != METHOD_DONE)
648 SM_ENTER(EAP, METHOD);
649 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
650 (sm->rxSuccess || sm->rxResp))
651 SM_ENTER(EAP, METHOD);
652 else
653 SM_ENTER(EAP, DISCARD);
654 break;
655 case EAP_GET_METHOD:
656 if (sm->selectedMethod == sm->reqMethod)
657 SM_ENTER(EAP, METHOD);
658 else
659 SM_ENTER(EAP, SEND_RESPONSE);
660 break;
661 case EAP_METHOD:
662 if (sm->ignore)
663 SM_ENTER(EAP, DISCARD);
664 else
665 SM_ENTER(EAP, SEND_RESPONSE);
666 break;
667 case EAP_SEND_RESPONSE:
668 SM_ENTER(EAP, IDLE);
669 break;
670 case EAP_DISCARD:
671 SM_ENTER(EAP, IDLE);
672 break;
673 case EAP_IDENTITY:
674 SM_ENTER(EAP, SEND_RESPONSE);
675 break;
676 case EAP_NOTIFICATION:
677 SM_ENTER(EAP, SEND_RESPONSE);
678 break;
679 case EAP_RETRANSMIT:
680 SM_ENTER(EAP, SEND_RESPONSE);
681 break;
682 case EAP_SUCCESS:
683 break;
684 case EAP_FAILURE:
685 break;
686 }
687 }
688
689
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)690 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
691 EapType method)
692 {
693 struct wpa_ssid *config = eap_get_config(sm);
694
695 if (!wpa_config_allowed_eap_method(config, vendor, method)) {
696 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
697 "vendor %u method %u", vendor, method);
698 return FALSE;
699 }
700 if (eap_sm_get_eap_methods(vendor, method))
701 return TRUE;
702 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
703 "vendor %u method %u", vendor, method);
704 return FALSE;
705 }
706
707
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,size_t * len,const struct eap_method * methods,size_t count)708 static u8 * eap_sm_build_expanded_nak(struct eap_sm *sm, int id, size_t *len,
709 const struct eap_method *methods,
710 size_t count)
711 {
712 struct wpa_ssid *config = eap_get_config(sm);
713 struct eap_hdr *resp;
714 u8 *pos;
715 int found = 0;
716 const struct eap_method *m;
717
718 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
719
720 /* RFC 3748 - 5.3.2: Expanded Nak */
721 *len = sizeof(struct eap_hdr) + 8;
722 resp = os_malloc(*len + 8 * (count + 1));
723 if (resp == NULL)
724 return NULL;
725
726 resp->code = EAP_CODE_RESPONSE;
727 resp->identifier = id;
728 pos = (u8 *) (resp + 1);
729 *pos++ = EAP_TYPE_EXPANDED;
730 WPA_PUT_BE24(pos, EAP_VENDOR_IETF);
731 pos += 3;
732 WPA_PUT_BE32(pos, EAP_TYPE_NAK);
733 pos += 4;
734
735 for (m = methods; m; m = m->next) {
736 if (sm->reqVendor == m->vendor &&
737 sm->reqVendorMethod == m->method)
738 continue; /* do not allow the current method again */
739 if (wpa_config_allowed_eap_method(config, m->vendor,
740 m->method)) {
741 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
742 "vendor=%u method=%u",
743 m->vendor, m->method);
744 *pos++ = EAP_TYPE_EXPANDED;
745 WPA_PUT_BE24(pos, m->vendor);
746 pos += 3;
747 WPA_PUT_BE32(pos, m->method);
748 pos += 4;
749
750 (*len) += 8;
751 found++;
752 }
753 }
754 if (!found) {
755 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
756 *pos++ = EAP_TYPE_EXPANDED;
757 WPA_PUT_BE24(pos, EAP_VENDOR_IETF);
758 pos += 3;
759 WPA_PUT_BE32(pos, EAP_TYPE_NONE);
760 pos += 4;
761
762 (*len) += 8;
763 }
764
765 resp->length = host_to_be16(*len);
766
767 return (u8 *) resp;
768 }
769
770
eap_sm_buildNak(struct eap_sm * sm,int id,size_t * len)771 static u8 * eap_sm_buildNak(struct eap_sm *sm, int id, size_t *len)
772 {
773 struct wpa_ssid *config = eap_get_config(sm);
774 struct eap_hdr *resp;
775 u8 *pos;
776 int found = 0, expanded_found = 0;
777 size_t count;
778 const struct eap_method *methods, *m;
779
780 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
781 "vendor=%u method=%u not allowed)", sm->reqMethod,
782 sm->reqVendor, sm->reqVendorMethod);
783 methods = eap_peer_get_methods(&count);
784 if (methods == NULL)
785 return NULL;
786 if (sm->reqMethod == EAP_TYPE_EXPANDED)
787 return eap_sm_build_expanded_nak(sm, id, len, methods, count);
788
789 /* RFC 3748 - 5.3.1: Legacy Nak */
790 *len = sizeof(struct eap_hdr) + 1;
791 resp = os_malloc(*len + count + 1);
792 if (resp == NULL)
793 return NULL;
794
795 resp->code = EAP_CODE_RESPONSE;
796 resp->identifier = id;
797 pos = (u8 *) (resp + 1);
798 *pos++ = EAP_TYPE_NAK;
799
800 for (m = methods; m; m = m->next) {
801 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
802 continue; /* do not allow the current method again */
803 if (wpa_config_allowed_eap_method(config, m->vendor,
804 m->method)) {
805 if (m->vendor != EAP_VENDOR_IETF) {
806 if (expanded_found)
807 continue;
808 expanded_found = 1;
809 *pos++ = EAP_TYPE_EXPANDED;
810 } else
811 *pos++ = m->method;
812 (*len)++;
813 found++;
814 }
815 }
816 if (!found) {
817 *pos = EAP_TYPE_NONE;
818 (*len)++;
819 }
820 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods",
821 ((u8 *) (resp + 1)) + 1, found);
822
823 resp->length = host_to_be16(*len);
824
825 return (u8 *) resp;
826 }
827
828
eap_sm_processIdentity(struct eap_sm * sm,const u8 * req)829 static void eap_sm_processIdentity(struct eap_sm *sm, const u8 *req)
830 {
831 const struct eap_hdr *hdr = (const struct eap_hdr *) req;
832 const u8 *pos = (const u8 *) (hdr + 1);
833 pos++;
834
835 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
836 "EAP authentication started");
837
838 /*
839 * RFC 3748 - 5.1: Identity
840 * Data field may contain a displayable message in UTF-8. If this
841 * includes NUL-character, only the data before that should be
842 * displayed. Some EAP implementasitons may piggy-back additional
843 * options after the NUL.
844 */
845 /* TODO: could save displayable message so that it can be shown to the
846 * user in case of interaction is required */
847 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
848 pos, be_to_host16(hdr->length) - 5);
849 }
850
851
852 #ifdef PCSC_FUNCS
eap_sm_imsi_identity(struct eap_sm * sm,struct wpa_ssid * ssid)853 static int eap_sm_imsi_identity(struct eap_sm *sm, struct wpa_ssid *ssid)
854 {
855 int aka = 0;
856 char imsi[100];
857 size_t imsi_len;
858 struct eap_method_type *m = ssid->eap_methods;
859 int i;
860
861 imsi_len = sizeof(imsi);
862 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
863 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
864 return -1;
865 }
866
867 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
868
869 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
870 m[i].method != EAP_TYPE_NONE); i++) {
871 if (m[i].vendor == EAP_VENDOR_IETF &&
872 m[i].method == EAP_TYPE_AKA) {
873 aka = 1;
874 break;
875 }
876 }
877
878 os_free(ssid->identity);
879 ssid->identity = os_malloc(1 + imsi_len);
880 if (ssid->identity == NULL) {
881 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
882 "IMSI-based identity");
883 return -1;
884 }
885
886 ssid->identity[0] = aka ? '0' : '1';
887 os_memcpy(ssid->identity + 1, imsi, imsi_len);
888 ssid->identity_len = 1 + imsi_len;
889
890 return 0;
891 }
892 #endif /* PCSC_FUNCS */
893
894
eap_sm_set_scard_pin(struct eap_sm * sm,struct wpa_ssid * ssid)895 static int eap_sm_set_scard_pin(struct eap_sm *sm, struct wpa_ssid *ssid)
896 {
897 #ifdef PCSC_FUNCS
898 if (scard_set_pin(sm->scard_ctx, ssid->pin)) {
899 /*
900 * Make sure the same PIN is not tried again in order to avoid
901 * blocking SIM.
902 */
903 os_free(ssid->pin);
904 ssid->pin = NULL;
905
906 wpa_printf(MSG_WARNING, "PIN validation failed");
907 eap_sm_request_pin(sm);
908 return -1;
909 }
910 return 0;
911 #else /* PCSC_FUNCS */
912 return -1;
913 #endif /* PCSC_FUNCS */
914 }
915
eap_sm_get_scard_identity(struct eap_sm * sm,struct wpa_ssid * ssid)916 static int eap_sm_get_scard_identity(struct eap_sm *sm, struct wpa_ssid *ssid)
917 {
918 #ifdef PCSC_FUNCS
919 if (eap_sm_set_scard_pin(sm, ssid))
920 return -1;
921
922 return eap_sm_imsi_identity(sm, ssid);
923 #else /* PCSC_FUNCS */
924 return -1;
925 #endif /* PCSC_FUNCS */
926 }
927
928
929 /**
930 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
931 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
932 * @id: EAP identifier for the packet
933 * @len: Pointer to a variable that will be set to the length of the response
934 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
935 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
936 * failure
937 *
938 * This function allocates and builds an EAP-Identity/Response packet for the
939 * current network. The caller is responsible for freeing the returned data.
940 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,size_t * len,int encrypted)941 u8 * eap_sm_buildIdentity(struct eap_sm *sm, int id, size_t *len,
942 int encrypted)
943 {
944 struct wpa_ssid *config = eap_get_config(sm);
945 struct eap_hdr *resp;
946 u8 *pos;
947 const u8 *identity;
948 size_t identity_len;
949
950 if (config == NULL) {
951 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
952 "was not available");
953 return NULL;
954 }
955
956 if (sm->m && sm->m->get_identity &&
957 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
958 &identity_len)) != NULL) {
959 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
960 "identity", identity, identity_len);
961 } else if (!encrypted && config->anonymous_identity) {
962 identity = config->anonymous_identity;
963 identity_len = config->anonymous_identity_len;
964 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
965 identity, identity_len);
966 } else {
967 identity = config->identity;
968 identity_len = config->identity_len;
969 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
970 identity, identity_len);
971 }
972
973 if (identity == NULL) {
974 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
975 "configuration was not available");
976 if (config->pcsc) {
977 if (eap_sm_get_scard_identity(sm, config) < 0)
978 return NULL;
979 identity = config->identity;
980 identity_len = config->identity_len;
981 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
982 "IMSI", identity, identity_len);
983 } else {
984 eap_sm_request_identity(sm);
985 return NULL;
986 }
987 } else if (config->pcsc) {
988 if (eap_sm_set_scard_pin(sm, config) < 0)
989 return NULL;
990 }
991
992 *len = sizeof(struct eap_hdr) + 1 + identity_len;
993 resp = os_malloc(*len);
994 if (resp == NULL)
995 return NULL;
996
997 resp->code = EAP_CODE_RESPONSE;
998 resp->identifier = id;
999 resp->length = host_to_be16(*len);
1000 pos = (u8 *) (resp + 1);
1001 *pos++ = EAP_TYPE_IDENTITY;
1002 os_memcpy(pos, identity, identity_len);
1003
1004 return (u8 *) resp;
1005 }
1006
1007
eap_sm_processNotify(struct eap_sm * sm,const u8 * req)1008 static void eap_sm_processNotify(struct eap_sm *sm, const u8 *req)
1009 {
1010 const struct eap_hdr *hdr = (const struct eap_hdr *) req;
1011 const u8 *pos;
1012 char *msg;
1013 size_t i, msg_len;
1014
1015 pos = (const u8 *) (hdr + 1);
1016 pos++;
1017
1018 msg_len = be_to_host16(hdr->length);
1019 if (msg_len < 5)
1020 return;
1021 msg_len -= 5;
1022 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1023 pos, msg_len);
1024
1025 msg = os_malloc(msg_len + 1);
1026 if (msg == NULL)
1027 return;
1028 for (i = 0; i < msg_len; i++)
1029 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1030 msg[msg_len] = '\0';
1031 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1032 WPA_EVENT_EAP_NOTIFICATION, msg);
1033 os_free(msg);
1034 }
1035
1036
eap_sm_buildNotify(int id,size_t * len)1037 static u8 * eap_sm_buildNotify(int id, size_t *len)
1038 {
1039 struct eap_hdr *resp;
1040 u8 *pos;
1041
1042 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1043 *len = sizeof(struct eap_hdr) + 1;
1044 resp = os_malloc(*len);
1045 if (resp == NULL)
1046 return NULL;
1047
1048 resp->code = EAP_CODE_RESPONSE;
1049 resp->identifier = id;
1050 resp->length = host_to_be16(*len);
1051 pos = (u8 *) (resp + 1);
1052 *pos = EAP_TYPE_NOTIFICATION;
1053
1054 return (u8 *) resp;
1055 }
1056
1057
eap_sm_parseEapReq(struct eap_sm * sm,const u8 * req,size_t len)1058 static void eap_sm_parseEapReq(struct eap_sm *sm, const u8 *req, size_t len)
1059 {
1060 const struct eap_hdr *hdr;
1061 size_t plen;
1062 const u8 *pos;
1063
1064 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1065 sm->reqId = 0;
1066 sm->reqMethod = EAP_TYPE_NONE;
1067 sm->reqVendor = EAP_VENDOR_IETF;
1068 sm->reqVendorMethod = EAP_TYPE_NONE;
1069
1070 if (req == NULL || len < sizeof(*hdr))
1071 return;
1072
1073 hdr = (const struct eap_hdr *) req;
1074 plen = be_to_host16(hdr->length);
1075 if (plen > len) {
1076 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1077 "(len=%lu plen=%lu)",
1078 (unsigned long) len, (unsigned long) plen);
1079 return;
1080 }
1081
1082 sm->reqId = hdr->identifier;
1083
1084 if (sm->workaround) {
1085 md5_vector(1, (const u8 **) &req, &plen, sm->req_md5);
1086 }
1087
1088 switch (hdr->code) {
1089 case EAP_CODE_REQUEST:
1090 if (plen < sizeof(*hdr) + 1) {
1091 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1092 "no Type field");
1093 return;
1094 }
1095 sm->rxReq = TRUE;
1096 pos = (const u8 *) (hdr + 1);
1097 sm->reqMethod = *pos++;
1098 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1099 if (plen < sizeof(*hdr) + 8) {
1100 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1101 "expanded EAP-Packet (plen=%lu)",
1102 (unsigned long) plen);
1103 return;
1104 }
1105 sm->reqVendor = WPA_GET_BE24(pos);
1106 pos += 3;
1107 sm->reqVendorMethod = WPA_GET_BE32(pos);
1108 }
1109 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1110 "method=%u vendor=%u vendorMethod=%u",
1111 sm->reqId, sm->reqMethod, sm->reqVendor,
1112 sm->reqVendorMethod);
1113 break;
1114 case EAP_CODE_RESPONSE:
1115 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1116 /*
1117 * LEAP differs from RFC 4137 by using reversed roles
1118 * for mutual authentication and because of this, we
1119 * need to accept EAP-Response frames if LEAP is used.
1120 */
1121 if (plen < sizeof(*hdr) + 1) {
1122 wpa_printf(MSG_DEBUG, "EAP: Too short "
1123 "EAP-Response - no Type field");
1124 return;
1125 }
1126 sm->rxResp = TRUE;
1127 pos = (const u8 *) (hdr + 1);
1128 sm->reqMethod = *pos;
1129 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1130 "LEAP method=%d id=%d",
1131 sm->reqMethod, sm->reqId);
1132 break;
1133 }
1134 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1135 break;
1136 case EAP_CODE_SUCCESS:
1137 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1138 sm->rxSuccess = TRUE;
1139 break;
1140 case EAP_CODE_FAILURE:
1141 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1142 sm->rxFailure = TRUE;
1143 break;
1144 default:
1145 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1146 "code %d", hdr->code);
1147 break;
1148 }
1149 }
1150
1151
1152 /**
1153 * eap_sm_init - Allocate and initialize EAP state machine
1154 * @eapol_ctx: Context data to be used with eapol_cb calls
1155 * @eapol_cb: Pointer to EAPOL callback functions
1156 * @msg_ctx: Context data for wpa_msg() calls
1157 * @conf: EAP configuration
1158 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1159 *
1160 * This function allocates and initializes an EAP state machine. In addition,
1161 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1162 * will be in use until eap_sm_deinit() is used to deinitialize this EAP state
1163 * machine. Consequently, the caller must make sure that this data structure
1164 * remains alive while the EAP state machine is active.
1165 */
eap_sm_init(void * eapol_ctx,struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1166 struct eap_sm * eap_sm_init(void *eapol_ctx, struct eapol_callbacks *eapol_cb,
1167 void *msg_ctx, struct eap_config *conf)
1168 {
1169 struct eap_sm *sm;
1170 struct tls_config tlsconf;
1171
1172 sm = os_zalloc(sizeof(*sm));
1173 if (sm == NULL)
1174 return NULL;
1175 sm->eapol_ctx = eapol_ctx;
1176 sm->eapol_cb = eapol_cb;
1177 sm->msg_ctx = msg_ctx;
1178 sm->ClientTimeout = 60;
1179
1180 os_memset(&tlsconf, 0, sizeof(tlsconf));
1181 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1182 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1183 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1184 sm->ssl_ctx = tls_init(&tlsconf);
1185 if (sm->ssl_ctx == NULL) {
1186 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1187 "context.");
1188 os_free(sm);
1189 return NULL;
1190 }
1191
1192 return sm;
1193 }
1194
1195
1196 /**
1197 * eap_sm_deinit - Deinitialize and free an EAP state machine
1198 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1199 *
1200 * This function deinitializes EAP state machine and frees all allocated
1201 * resources.
1202 */
eap_sm_deinit(struct eap_sm * sm)1203 void eap_sm_deinit(struct eap_sm *sm)
1204 {
1205 if (sm == NULL)
1206 return;
1207 eap_deinit_prev_method(sm, "EAP deinit");
1208 eap_sm_abort(sm);
1209 tls_deinit(sm->ssl_ctx);
1210 os_free(sm);
1211 }
1212
1213
1214 /**
1215 * eap_sm_step - Step EAP state machine
1216 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1217 * Returns: 1 if EAP state was changed or 0 if not
1218 *
1219 * This function advances EAP state machine to a new state to match with the
1220 * current variables. This should be called whenever variables used by the EAP
1221 * state machine have changed.
1222 */
eap_sm_step(struct eap_sm * sm)1223 int eap_sm_step(struct eap_sm *sm)
1224 {
1225 int res = 0;
1226 do {
1227 sm->changed = FALSE;
1228 SM_STEP_RUN(EAP);
1229 if (sm->changed)
1230 res = 1;
1231 } while (sm->changed);
1232 return res;
1233 }
1234
1235
1236 /**
1237 * eap_sm_abort - Abort EAP authentication
1238 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1239 *
1240 * Release system resources that have been allocated for the authentication
1241 * session without fully deinitializing the EAP state machine.
1242 */
eap_sm_abort(struct eap_sm * sm)1243 void eap_sm_abort(struct eap_sm *sm)
1244 {
1245 os_free(sm->lastRespData);
1246 sm->lastRespData = NULL;
1247 os_free(sm->eapRespData);
1248 sm->eapRespData = NULL;
1249 os_free(sm->eapKeyData);
1250 sm->eapKeyData = NULL;
1251
1252 /* This is not clearly specified in the EAP statemachines draft, but
1253 * it seems necessary to make sure that some of the EAPOL variables get
1254 * cleared for the next authentication. */
1255 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1256 }
1257
1258
1259 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)1260 static const char * eap_sm_state_txt(int state)
1261 {
1262 switch (state) {
1263 case EAP_INITIALIZE:
1264 return "INITIALIZE";
1265 case EAP_DISABLED:
1266 return "DISABLED";
1267 case EAP_IDLE:
1268 return "IDLE";
1269 case EAP_RECEIVED:
1270 return "RECEIVED";
1271 case EAP_GET_METHOD:
1272 return "GET_METHOD";
1273 case EAP_METHOD:
1274 return "METHOD";
1275 case EAP_SEND_RESPONSE:
1276 return "SEND_RESPONSE";
1277 case EAP_DISCARD:
1278 return "DISCARD";
1279 case EAP_IDENTITY:
1280 return "IDENTITY";
1281 case EAP_NOTIFICATION:
1282 return "NOTIFICATION";
1283 case EAP_RETRANSMIT:
1284 return "RETRANSMIT";
1285 case EAP_SUCCESS:
1286 return "SUCCESS";
1287 case EAP_FAILURE:
1288 return "FAILURE";
1289 default:
1290 return "UNKNOWN";
1291 }
1292 }
1293 #endif /* CONFIG_CTRL_IFACE */
1294
1295
1296 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)1297 static const char * eap_sm_method_state_txt(EapMethodState state)
1298 {
1299 switch (state) {
1300 case METHOD_NONE:
1301 return "NONE";
1302 case METHOD_INIT:
1303 return "INIT";
1304 case METHOD_CONT:
1305 return "CONT";
1306 case METHOD_MAY_CONT:
1307 return "MAY_CONT";
1308 case METHOD_DONE:
1309 return "DONE";
1310 default:
1311 return "UNKNOWN";
1312 }
1313 }
1314
1315
eap_sm_decision_txt(EapDecision decision)1316 static const char * eap_sm_decision_txt(EapDecision decision)
1317 {
1318 switch (decision) {
1319 case DECISION_FAIL:
1320 return "FAIL";
1321 case DECISION_COND_SUCC:
1322 return "COND_SUCC";
1323 case DECISION_UNCOND_SUCC:
1324 return "UNCOND_SUCC";
1325 default:
1326 return "UNKNOWN";
1327 }
1328 }
1329 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1330
1331
1332 #ifdef CONFIG_CTRL_IFACE
1333
1334 /**
1335 * eap_sm_get_status - Get EAP state machine status
1336 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1337 * @buf: Buffer for status information
1338 * @buflen: Maximum buffer length
1339 * @verbose: Whether to include verbose status information
1340 * Returns: Number of bytes written to buf.
1341 *
1342 * Query EAP state machine for status information. This function fills in a
1343 * text area with current status information from the EAPOL state machine. If
1344 * the buffer (buf) is not large enough, status information will be truncated
1345 * to fit the buffer.
1346 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)1347 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1348 {
1349 int len, ret;
1350
1351 if (sm == NULL)
1352 return 0;
1353
1354 len = os_snprintf(buf, buflen,
1355 "EAP state=%s\n",
1356 eap_sm_state_txt(sm->EAP_state));
1357 if (len < 0 || (size_t) len >= buflen)
1358 return 0;
1359
1360 if (sm->selectedMethod != EAP_TYPE_NONE) {
1361 const char *name;
1362 if (sm->m) {
1363 name = sm->m->name;
1364 } else {
1365 const struct eap_method *m =
1366 eap_sm_get_eap_methods(EAP_VENDOR_IETF,
1367 sm->selectedMethod);
1368 if (m)
1369 name = m->name;
1370 else
1371 name = "?";
1372 }
1373 ret = os_snprintf(buf + len, buflen - len,
1374 "selectedMethod=%d (EAP-%s)\n",
1375 sm->selectedMethod, name);
1376 if (ret < 0 || (size_t) ret >= buflen - len)
1377 return len;
1378 len += ret;
1379
1380 if (sm->m && sm->m->get_status) {
1381 len += sm->m->get_status(sm, sm->eap_method_priv,
1382 buf + len, buflen - len,
1383 verbose);
1384 }
1385 }
1386
1387 if (verbose) {
1388 ret = os_snprintf(buf + len, buflen - len,
1389 "reqMethod=%d\n"
1390 "methodState=%s\n"
1391 "decision=%s\n"
1392 "ClientTimeout=%d\n",
1393 sm->reqMethod,
1394 eap_sm_method_state_txt(sm->methodState),
1395 eap_sm_decision_txt(sm->decision),
1396 sm->ClientTimeout);
1397 if (ret < 0 || (size_t) ret >= buflen - len)
1398 return len;
1399 len += ret;
1400 }
1401
1402 return len;
1403 }
1404 #endif /* CONFIG_CTRL_IFACE */
1405
1406
1407 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1408 typedef enum {
1409 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
1410 TYPE_PASSPHRASE
1411 } eap_ctrl_req_type;
1412
eap_sm_request(struct eap_sm * sm,eap_ctrl_req_type type,const char * msg,size_t msglen)1413 static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
1414 const char *msg, size_t msglen)
1415 {
1416 struct wpa_ssid *config;
1417 char *buf;
1418 size_t buflen;
1419 int len;
1420 char *field;
1421 char *txt, *tmp;
1422
1423 if (sm == NULL)
1424 return;
1425 config = eap_get_config(sm);
1426 if (config == NULL)
1427 return;
1428
1429 switch (type) {
1430 case TYPE_IDENTITY:
1431 field = "IDENTITY";
1432 txt = "Identity";
1433 config->pending_req_identity++;
1434 break;
1435 case TYPE_PASSWORD:
1436 field = "PASSWORD";
1437 txt = "Password";
1438 config->pending_req_password++;
1439 break;
1440 case TYPE_NEW_PASSWORD:
1441 field = "NEW_PASSWORD";
1442 txt = "New Password";
1443 config->pending_req_new_password++;
1444 break;
1445 case TYPE_PIN:
1446 field = "PIN";
1447 txt = "PIN";
1448 config->pending_req_pin++;
1449 break;
1450 case TYPE_OTP:
1451 field = "OTP";
1452 if (msg) {
1453 tmp = os_malloc(msglen + 3);
1454 if (tmp == NULL)
1455 return;
1456 tmp[0] = '[';
1457 os_memcpy(tmp + 1, msg, msglen);
1458 tmp[msglen + 1] = ']';
1459 tmp[msglen + 2] = '\0';
1460 txt = tmp;
1461 os_free(config->pending_req_otp);
1462 config->pending_req_otp = tmp;
1463 config->pending_req_otp_len = msglen + 3;
1464 } else {
1465 if (config->pending_req_otp == NULL)
1466 return;
1467 txt = config->pending_req_otp;
1468 }
1469 break;
1470 case TYPE_PASSPHRASE:
1471 field = "PASSPHRASE";
1472 txt = "Private key passphrase";
1473 config->pending_req_passphrase++;
1474 break;
1475 default:
1476 return;
1477 }
1478
1479 buflen = 100 + os_strlen(txt) + config->ssid_len;
1480 buf = os_malloc(buflen);
1481 if (buf == NULL)
1482 return;
1483 len = os_snprintf(buf, buflen,
1484 WPA_CTRL_REQ "%s-%d:%s needed for SSID ",
1485 field, config->id, txt);
1486 if (len < 0 || (size_t) len >= buflen) {
1487 os_free(buf);
1488 return;
1489 }
1490 if (config->ssid && buflen > len + config->ssid_len) {
1491 os_memcpy(buf + len, config->ssid, config->ssid_len);
1492 len += config->ssid_len;
1493 buf[len] = '\0';
1494 }
1495 buf[buflen - 1] = '\0';
1496 wpa_msg(sm->msg_ctx, MSG_INFO, "%s", buf);
1497 os_free(buf);
1498 }
1499 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1500 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1501 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1502
1503
1504 /**
1505 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1506 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1507 *
1508 * EAP methods can call this function to request identity information for the
1509 * current network. This is normally called when the identity is not included
1510 * in the network configuration. The request will be sent to monitor programs
1511 * through the control interface.
1512 */
eap_sm_request_identity(struct eap_sm * sm)1513 void eap_sm_request_identity(struct eap_sm *sm)
1514 {
1515 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
1516 }
1517
1518
1519 /**
1520 * eap_sm_request_password - Request password from user (ctrl_iface)
1521 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1522 *
1523 * EAP methods can call this function to request password information for the
1524 * current network. This is normally called when the password is not included
1525 * in the network configuration. The request will be sent to monitor programs
1526 * through the control interface.
1527 */
eap_sm_request_password(struct eap_sm * sm)1528 void eap_sm_request_password(struct eap_sm *sm)
1529 {
1530 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
1531 }
1532
1533
1534 /**
1535 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1536 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1537 *
1538 * EAP methods can call this function to request new password information for
1539 * the current network. This is normally called when the EAP method indicates
1540 * that the current password has expired and password change is required. The
1541 * request will be sent to monitor programs through the control interface.
1542 */
eap_sm_request_new_password(struct eap_sm * sm)1543 void eap_sm_request_new_password(struct eap_sm *sm)
1544 {
1545 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
1546 }
1547
1548
1549 /**
1550 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1551 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1552 *
1553 * EAP methods can call this function to request SIM or smart card PIN
1554 * information for the current network. This is normally called when the PIN is
1555 * not included in the network configuration. The request will be sent to
1556 * monitor programs through the control interface.
1557 */
eap_sm_request_pin(struct eap_sm * sm)1558 void eap_sm_request_pin(struct eap_sm *sm)
1559 {
1560 eap_sm_request(sm, TYPE_PIN, NULL, 0);
1561 }
1562
1563
1564 /**
1565 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1566 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1567 * @msg: Message to be displayed to the user when asking for OTP
1568 * @msg_len: Length of the user displayable message
1569 *
1570 * EAP methods can call this function to request open time password (OTP) for
1571 * the current network. The request will be sent to monitor programs through
1572 * the control interface.
1573 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)1574 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1575 {
1576 eap_sm_request(sm, TYPE_OTP, msg, msg_len);
1577 }
1578
1579
1580 /**
1581 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1582 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1583 *
1584 * EAP methods can call this function to request passphrase for a private key
1585 * for the current network. This is normally called when the passphrase is not
1586 * included in the network configuration. The request will be sent to monitor
1587 * programs through the control interface.
1588 */
eap_sm_request_passphrase(struct eap_sm * sm)1589 void eap_sm_request_passphrase(struct eap_sm *sm)
1590 {
1591 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
1592 }
1593
1594
1595 /**
1596 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1597 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1598 *
1599 * Notify EAP state machines that a monitor was attached to the control
1600 * interface to trigger re-sending of pending requests for user input.
1601 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)1602 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1603 {
1604 struct wpa_ssid *config = eap_get_config(sm);
1605
1606 if (config == NULL)
1607 return;
1608
1609 /* Re-send any pending requests for user data since a new control
1610 * interface was added. This handles cases where the EAP authentication
1611 * starts immediately after system startup when the user interface is
1612 * not yet running. */
1613 if (config->pending_req_identity)
1614 eap_sm_request_identity(sm);
1615 if (config->pending_req_password)
1616 eap_sm_request_password(sm);
1617 if (config->pending_req_new_password)
1618 eap_sm_request_new_password(sm);
1619 if (config->pending_req_otp)
1620 eap_sm_request_otp(sm, NULL, 0);
1621 if (config->pending_req_pin)
1622 eap_sm_request_pin(sm);
1623 if (config->pending_req_passphrase)
1624 eap_sm_request_passphrase(sm);
1625 }
1626
1627
eap_allowed_phase2_type(int vendor,int type)1628 static int eap_allowed_phase2_type(int vendor, int type)
1629 {
1630 if (vendor != EAP_VENDOR_IETF)
1631 return 0;
1632 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1633 type != EAP_TYPE_FAST;
1634 }
1635
1636
1637 /**
1638 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1639 * @name: EAP method name, e.g., MD5
1640 * @vendor: Buffer for returning EAP Vendor-Id
1641 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1642 *
1643 * This function maps EAP type names into EAP type numbers that are allowed for
1644 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1645 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1646 */
eap_get_phase2_type(const char * name,int * vendor)1647 u32 eap_get_phase2_type(const char *name, int *vendor)
1648 {
1649 int v;
1650 u8 type = eap_get_type(name, &v);
1651 if (eap_allowed_phase2_type(v, type)) {
1652 *vendor = v;
1653 return type;
1654 }
1655 *vendor = EAP_VENDOR_IETF;
1656 return EAP_TYPE_NONE;
1657 }
1658
1659
1660 /**
1661 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1662 * @config: Pointer to a network configuration
1663 * @count: Pointer to a variable to be filled with number of returned EAP types
1664 * Returns: Pointer to allocated type list or %NULL on failure
1665 *
1666 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1667 * the given network configuration.
1668 */
eap_get_phase2_types(struct wpa_ssid * config,size_t * count)1669 struct eap_method_type * eap_get_phase2_types(struct wpa_ssid *config,
1670 size_t *count)
1671 {
1672 struct eap_method_type *buf;
1673 u32 method;
1674 int vendor;
1675 size_t mcount;
1676 const struct eap_method *methods, *m;
1677
1678 methods = eap_peer_get_methods(&mcount);
1679 if (methods == NULL)
1680 return NULL;
1681 *count = 0;
1682 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1683 if (buf == NULL)
1684 return NULL;
1685
1686 for (m = methods; m; m = m->next) {
1687 vendor = m->vendor;
1688 method = m->method;
1689 if (eap_allowed_phase2_type(vendor, method)) {
1690 if (vendor == EAP_VENDOR_IETF &&
1691 method == EAP_TYPE_TLS && config &&
1692 config->private_key2 == NULL)
1693 continue;
1694 buf[*count].vendor = vendor;
1695 buf[*count].method = method;
1696 (*count)++;
1697 }
1698 }
1699
1700 return buf;
1701 }
1702
1703
1704 /**
1705 * eap_set_fast_reauth - Update fast_reauth setting
1706 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1707 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1708 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)1709 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1710 {
1711 sm->fast_reauth = enabled;
1712 }
1713
1714
1715 /**
1716 * eap_set_workaround - Update EAP workarounds setting
1717 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1718 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1719 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)1720 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1721 {
1722 sm->workaround = workaround;
1723 }
1724
1725
1726 /**
1727 * eap_get_config - Get current network configuration
1728 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1729 * Returns: Pointer to the current network configuration or %NULL if not found
1730 *
1731 * EAP peer methods should avoid using this function if they can use other
1732 * access functions, like eap_get_config_identity() and
1733 * eap_get_config_password(), that do not require direct access to
1734 * struct wpa_ssid.
1735 */
eap_get_config(struct eap_sm * sm)1736 struct wpa_ssid * eap_get_config(struct eap_sm *sm)
1737 {
1738 return sm->eapol_cb->get_config(sm->eapol_ctx);
1739 }
1740
1741
1742 /**
1743 * eap_get_config_password - Get identity from the network configuration
1744 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1745 * @len: Buffer for the length of the identity
1746 * Returns: Pointer to the identity or %NULL if not found
1747 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)1748 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1749 {
1750 struct wpa_ssid *config = eap_get_config(sm);
1751 if (config == NULL)
1752 return NULL;
1753 *len = config->identity_len;
1754 return config->identity;
1755 }
1756
1757
1758 /**
1759 * eap_get_config_password - Get password from the network configuration
1760 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1761 * @len: Buffer for the length of the password
1762 * Returns: Pointer to the password or %NULL if not found
1763 */
eap_get_config_password(struct eap_sm * sm,size_t * len)1764 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1765 {
1766 struct wpa_ssid *config = eap_get_config(sm);
1767 if (config == NULL)
1768 return NULL;
1769 *len = config->password_len;
1770 return config->password;
1771 }
1772
1773
1774 /**
1775 * eap_get_config_new_password - Get new password from network configuration
1776 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1777 * @len: Buffer for the length of the new password
1778 * Returns: Pointer to the new password or %NULL if not found
1779 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)1780 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1781 {
1782 struct wpa_ssid *config = eap_get_config(sm);
1783 if (config == NULL)
1784 return NULL;
1785 *len = config->new_password_len;
1786 return config->new_password;
1787 }
1788
1789
1790 /**
1791 * eap_get_config_otp - Get one-time password from the network configuration
1792 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1793 * @len: Buffer for the length of the one-time password
1794 * Returns: Pointer to the one-time password or %NULL if not found
1795 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)1796 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1797 {
1798 struct wpa_ssid *config = eap_get_config(sm);
1799 if (config == NULL)
1800 return NULL;
1801 *len = config->otp_len;
1802 return config->otp;
1803 }
1804
1805
1806 /**
1807 * eap_clear_config_otp - Clear used one-time password
1808 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1809 *
1810 * This function clears a used one-time password (OTP) from the current network
1811 * configuration. This should be called when the OTP has been used and is not
1812 * needed anymore.
1813 */
eap_clear_config_otp(struct eap_sm * sm)1814 void eap_clear_config_otp(struct eap_sm *sm)
1815 {
1816 struct wpa_ssid *config = eap_get_config(sm);
1817 if (config == NULL)
1818 return;
1819 os_memset(config->otp, 0, config->otp_len);
1820 os_free(config->otp);
1821 config->otp = NULL;
1822 config->otp_len = 0;
1823 }
1824
1825
1826 /**
1827 * eap_key_available - Get key availability (eapKeyAvailable variable)
1828 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1829 * Returns: 1 if EAP keying material is available, 0 if not
1830 */
eap_key_available(struct eap_sm * sm)1831 int eap_key_available(struct eap_sm *sm)
1832 {
1833 return sm ? sm->eapKeyAvailable : 0;
1834 }
1835
1836
1837 /**
1838 * eap_notify_success - Notify EAP state machine about external success trigger
1839 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1840 *
1841 * This function is called when external event, e.g., successful completion of
1842 * WPA-PSK key handshake, is indicating that EAP state machine should move to
1843 * success state. This is mainly used with security modes that do not use EAP
1844 * state machine (e.g., WPA-PSK).
1845 */
eap_notify_success(struct eap_sm * sm)1846 void eap_notify_success(struct eap_sm *sm)
1847 {
1848 if (sm) {
1849 sm->decision = DECISION_COND_SUCC;
1850 sm->EAP_state = EAP_SUCCESS;
1851 }
1852 }
1853
1854
1855 /**
1856 * eap_notify_lower_layer_success - Notification of lower layer success
1857 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1858 *
1859 * Notify EAP state machines that a lower layer has detected a successful
1860 * authentication. This is used to recover from dropped EAP-Success messages.
1861 */
eap_notify_lower_layer_success(struct eap_sm * sm)1862 void eap_notify_lower_layer_success(struct eap_sm *sm)
1863 {
1864 if (sm == NULL)
1865 return;
1866
1867 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
1868 sm->decision == DECISION_FAIL ||
1869 (sm->methodState != METHOD_MAY_CONT &&
1870 sm->methodState != METHOD_DONE))
1871 return;
1872
1873 if (sm->eapKeyData != NULL)
1874 sm->eapKeyAvailable = TRUE;
1875 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1876 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1877 "EAP authentication completed successfully (based on lower "
1878 "layer success)");
1879 }
1880
1881
1882 /**
1883 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
1884 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1885 * @len: Pointer to variable that will be set to number of bytes in the key
1886 * Returns: Pointer to the EAP keying data or %NULL on failure
1887 *
1888 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
1889 * key is available only after a successful authentication. EAP state machine
1890 * continues to manage the key data and the caller must not change or free the
1891 * returned data.
1892 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)1893 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
1894 {
1895 if (sm == NULL || sm->eapKeyData == NULL) {
1896 *len = 0;
1897 return NULL;
1898 }
1899
1900 *len = sm->eapKeyDataLen;
1901 return sm->eapKeyData;
1902 }
1903
1904
1905 /**
1906 * eap_get_eapKeyData - Get EAP response data
1907 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1908 * @len: Pointer to variable that will be set to the length of the response
1909 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
1910 *
1911 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
1912 * available when EAP state machine has processed an incoming EAP request. The
1913 * EAP state machine does not maintain a reference to the response after this
1914 * function is called and the caller is responsible for freeing the data.
1915 */
eap_get_eapRespData(struct eap_sm * sm,size_t * len)1916 u8 * eap_get_eapRespData(struct eap_sm *sm, size_t *len)
1917 {
1918 u8 *resp;
1919
1920 if (sm == NULL || sm->eapRespData == NULL) {
1921 *len = 0;
1922 return NULL;
1923 }
1924
1925 resp = sm->eapRespData;
1926 *len = sm->eapRespDataLen;
1927 sm->eapRespData = NULL;
1928 sm->eapRespDataLen = 0;
1929
1930 return resp;
1931 }
1932
1933
1934 /**
1935 * eap_sm_register_scard_ctx - Notification of smart card context
1936 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
1937 * @ctx: Context data for smart card operations
1938 *
1939 * Notify EAP state machines of context data for smart card operations. This
1940 * context data will be used as a parameter for scard_*() functions.
1941 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)1942 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
1943 {
1944 if (sm)
1945 sm->scard_ctx = ctx;
1946 }
1947
1948
1949 /**
1950 * eap_hdr_validate - Validate EAP header
1951 * @vendor: Expected EAP Vendor-Id (0 = IETF)
1952 * @eap_type: Expected EAP type number
1953 * @msg: EAP frame (starting with EAP header)
1954 * @msglen: Length of msg
1955 * @plen: Pointer to variable to contain the returned payload length
1956 * Returns: Pointer to EAP payload (after type field), or %NULL on failure
1957 *
1958 * This is a helper function for EAP method implementations. This is usually
1959 * called in the beginning of struct eap_method::process() function to verify
1960 * that the received EAP request packet has a valid header. This function is
1961 * able to process both legacy and expanded EAP headers and in most cases, the
1962 * caller can just use the returned payload pointer (into *plen) for processing
1963 * the payload regardless of whether the packet used the expanded EAP header or
1964 * not.
1965 */
eap_hdr_validate(int vendor,EapType eap_type,const u8 * msg,size_t msglen,size_t * plen)1966 const u8 * eap_hdr_validate(int vendor, EapType eap_type,
1967 const u8 *msg, size_t msglen, size_t *plen)
1968 {
1969 const struct eap_hdr *hdr;
1970 const u8 *pos;
1971 size_t len;
1972
1973 hdr = (const struct eap_hdr *) msg;
1974
1975 if (msglen < sizeof(*hdr)) {
1976 wpa_printf(MSG_INFO, "EAP: Too short EAP frame");
1977 return NULL;
1978 }
1979
1980 len = be_to_host16(hdr->length);
1981 if (len < sizeof(*hdr) + 1 || len > msglen) {
1982 wpa_printf(MSG_INFO, "EAP: Invalid EAP length");
1983 return NULL;
1984 }
1985
1986 pos = (const u8 *) (hdr + 1);
1987
1988 if (*pos == EAP_TYPE_EXPANDED) {
1989 int exp_vendor;
1990 u32 exp_type;
1991 if (len < sizeof(*hdr) + 8) {
1992 wpa_printf(MSG_INFO, "EAP: Invalid expanded EAP "
1993 "length");
1994 return NULL;
1995 }
1996 pos++;
1997 exp_vendor = WPA_GET_BE24(pos);
1998 pos += 3;
1999 exp_type = WPA_GET_BE32(pos);
2000 pos += 4;
2001 if (exp_vendor != vendor || exp_type != (u32) eap_type) {
2002 wpa_printf(MSG_INFO, "EAP: Invalid expanded frame "
2003 "type");
2004 return NULL;
2005 }
2006
2007 *plen = len - sizeof(*hdr) - 8;
2008 return pos;
2009 } else {
2010 if (vendor != EAP_VENDOR_IETF || *pos != eap_type) {
2011 wpa_printf(MSG_INFO, "EAP: Invalid frame type");
2012 return NULL;
2013 }
2014 *plen = len - sizeof(*hdr) - 1;
2015 return pos + 1;
2016 }
2017 }
2018
2019
2020 /**
2021 * eap_set_config_blob - Set or add a named configuration blob
2022 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
2023 * @blob: New value for the blob
2024 *
2025 * Adds a new configuration blob or replaces the current value of an existing
2026 * blob.
2027 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2028 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2029 {
2030 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2031 }
2032
2033
2034 /**
2035 * eap_get_config_blob - Get a named configuration blob
2036 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
2037 * @name: Name of the blob
2038 * Returns: Pointer to blob data or %NULL if not found
2039 */
eap_get_config_blob(struct eap_sm * sm,const char * name)2040 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2041 const char *name)
2042 {
2043 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2044 }
2045
2046
2047 /**
2048 * eap_set_force_disabled - Set force_disabled flag
2049 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
2050 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2051 *
2052 * This function is used to force EAP state machine to be disabled when it is
2053 * not in use (e.g., with WPA-PSK or plaintext connections).
2054 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2055 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2056 {
2057 sm->force_disabled = disabled;
2058 }
2059
2060
2061 /**
2062 * eap_msg_alloc - Allocate a buffer for an EAP message
2063 * @vendor: Vendor-Id (0 = IETF)
2064 * @type: EAP type
2065 * @len: Buffer for returning message length
2066 * @payload_len: Payload length in bytes (data after Type)
2067 * @code: Message Code (EAP_CODE_*)
2068 * @identifier: Identifier
2069 * @payload: Pointer to payload pointer that will be set to point to the
2070 * beginning of the payload or %NULL if payload pointer is not needed
2071 * Returns: Pointer to the allocated message buffer or %NULL on error
2072 *
2073 * This function can be used to allocate a buffer for an EAP message and fill
2074 * in the EAP header. This function is automatically using expanded EAP header
2075 * if the selected Vendor-Id is not IETF. In other words, most EAP methods do
2076 * not need to separately select which header type to use when using this
2077 * function to allocate the message buffers.
2078 */
eap_msg_alloc(int vendor,EapType type,size_t * len,size_t payload_len,u8 code,u8 identifier,u8 ** payload)2079 struct eap_hdr * eap_msg_alloc(int vendor, EapType type, size_t *len,
2080 size_t payload_len, u8 code, u8 identifier,
2081 u8 **payload)
2082 {
2083 struct eap_hdr *hdr;
2084 u8 *pos;
2085
2086 *len = sizeof(struct eap_hdr) + (vendor == EAP_VENDOR_IETF ? 1 : 8) +
2087 payload_len;
2088 hdr = os_malloc(*len);
2089 if (hdr) {
2090 hdr->code = code;
2091 hdr->identifier = identifier;
2092 hdr->length = host_to_be16(*len);
2093 pos = (u8 *) (hdr + 1);
2094 if (vendor == EAP_VENDOR_IETF) {
2095 *pos++ = type;
2096 } else {
2097 *pos++ = EAP_TYPE_EXPANDED;
2098 WPA_PUT_BE24(pos, vendor);
2099 pos += 3;
2100 WPA_PUT_BE32(pos, type);
2101 pos += 4;
2102 }
2103 if (payload)
2104 *payload = pos;
2105 }
2106
2107 return hdr;
2108 }
2109
2110
2111 /**
2112 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2113 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
2114 *
2115 * An EAP method can perform a pending operation (e.g., to get a response from
2116 * an external process). Once the response is available, this function can be
2117 * used to request EAPOL state machine to retry delivering the previously
2118 * received (and still unanswered) EAP request to EAP state machine.
2119 */
eap_notify_pending(struct eap_sm * sm)2120 void eap_notify_pending(struct eap_sm *sm)
2121 {
2122 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2123 }
2124
2125
2126 /**
2127 * eap_invalidate_cached_session - Mark cached session data invalid
2128 * @sm: Pointer to EAP state machine allocated with eap_sm_init()
2129 */
eap_invalidate_cached_session(struct eap_sm * sm)2130 void eap_invalidate_cached_session(struct eap_sm *sm)
2131 {
2132 if (sm)
2133 eap_deinit_prev_method(sm, "invalidate");
2134 }
2135