• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/ec/ec2_mult.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  *    software must display the following acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  *    endorse or promote products derived from this software without
38  *    prior written permission. For written permission, please contact
39  *    openssl-core@openssl.org.
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  *    nor may "OpenSSL" appear in their names without prior written
43  *    permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  *    acknowledgment:
47  *    "This product includes software developed by the OpenSSL Project
48  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * (eay@cryptsoft.com).  This product includes software written by Tim
66  * Hudson (tjh@cryptsoft.com).
67  *
68  */
69 
70 #include <openssl/err.h>
71 
72 #include "ec_lcl.h"
73 
74 
75 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
76  * coordinates.
77  * Uses algorithm Mdouble in appendix of
78  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
79  *     GF(2^m) without precomputation".
80  * modified to not require precomputation of c=b^{2^{m-1}}.
81  */
gf2m_Mdouble(const EC_GROUP * group,BIGNUM * x,BIGNUM * z,BN_CTX * ctx)82 static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
83 	{
84 	BIGNUM *t1;
85 	int ret = 0;
86 
87 	/* Since Mdouble is static we can guarantee that ctx != NULL. */
88 	BN_CTX_start(ctx);
89 	t1 = BN_CTX_get(ctx);
90 	if (t1 == NULL) goto err;
91 
92 	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
93 	if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
94 	if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
95 	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
96 	if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
97 	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
98 	if (!BN_GF2m_add(x, x, t1)) goto err;
99 
100 	ret = 1;
101 
102  err:
103 	BN_CTX_end(ctx);
104 	return ret;
105 	}
106 
107 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
108  * projective coordinates.
109  * Uses algorithm Madd in appendix of
110  *     Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
111  *     GF(2^m) without precomputation".
112  */
gf2m_Madd(const EC_GROUP * group,const BIGNUM * x,BIGNUM * x1,BIGNUM * z1,const BIGNUM * x2,const BIGNUM * z2,BN_CTX * ctx)113 static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
114 	const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
115 	{
116 	BIGNUM *t1, *t2;
117 	int ret = 0;
118 
119 	/* Since Madd is static we can guarantee that ctx != NULL. */
120 	BN_CTX_start(ctx);
121 	t1 = BN_CTX_get(ctx);
122 	t2 = BN_CTX_get(ctx);
123 	if (t2 == NULL) goto err;
124 
125 	if (!BN_copy(t1, x)) goto err;
126 	if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
127 	if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
128 	if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
129 	if (!BN_GF2m_add(z1, z1, x1)) goto err;
130 	if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
131 	if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
132 	if (!BN_GF2m_add(x1, x1, t2)) goto err;
133 
134 	ret = 1;
135 
136  err:
137 	BN_CTX_end(ctx);
138 	return ret;
139 	}
140 
141 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
142  * using Montgomery point multiplication algorithm Mxy() in appendix of
143  *     Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
144  *     GF(2^m) without precomputation".
145  * Returns:
146  *     0 on error
147  *     1 if return value should be the point at infinity
148  *     2 otherwise
149  */
gf2m_Mxy(const EC_GROUP * group,const BIGNUM * x,const BIGNUM * y,BIGNUM * x1,BIGNUM * z1,BIGNUM * x2,BIGNUM * z2,BN_CTX * ctx)150 static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
151 	BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
152 	{
153 	BIGNUM *t3, *t4, *t5;
154 	int ret = 0;
155 
156 	if (BN_is_zero(z1))
157 		{
158 		BN_zero(x2);
159 		BN_zero(z2);
160 		return 1;
161 		}
162 
163 	if (BN_is_zero(z2))
164 		{
165 		if (!BN_copy(x2, x)) return 0;
166 		if (!BN_GF2m_add(z2, x, y)) return 0;
167 		return 2;
168 		}
169 
170 	/* Since Mxy is static we can guarantee that ctx != NULL. */
171 	BN_CTX_start(ctx);
172 	t3 = BN_CTX_get(ctx);
173 	t4 = BN_CTX_get(ctx);
174 	t5 = BN_CTX_get(ctx);
175 	if (t5 == NULL) goto err;
176 
177 	if (!BN_one(t5)) goto err;
178 
179 	if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
180 
181 	if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
182 	if (!BN_GF2m_add(z1, z1, x1)) goto err;
183 	if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
184 	if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
185 	if (!BN_GF2m_add(z2, z2, x2)) goto err;
186 
187 	if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
188 	if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
189 	if (!BN_GF2m_add(t4, t4, y)) goto err;
190 	if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
191 	if (!BN_GF2m_add(t4, t4, z2)) goto err;
192 
193 	if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
194 	if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
195 	if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
196 	if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
197 	if (!BN_GF2m_add(z2, x2, x)) goto err;
198 
199 	if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
200 	if (!BN_GF2m_add(z2, z2, y)) goto err;
201 
202 	ret = 2;
203 
204  err:
205 	BN_CTX_end(ctx);
206 	return ret;
207 	}
208 
209 /* Computes scalar*point and stores the result in r.
210  * point can not equal r.
211  * Uses algorithm 2P of
212  *     Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
213  *     GF(2^m) without precomputation".
214  */
ec_GF2m_montgomery_point_multiply(const EC_GROUP * group,EC_POINT * r,const BIGNUM * scalar,const EC_POINT * point,BN_CTX * ctx)215 static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
216 	const EC_POINT *point, BN_CTX *ctx)
217 	{
218 	BIGNUM *x1, *x2, *z1, *z2;
219 	int ret = 0, i, j;
220 	BN_ULONG mask;
221 
222 	if (r == point)
223 		{
224 		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
225 		return 0;
226 		}
227 
228 	/* if result should be point at infinity */
229 	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
230 		EC_POINT_is_at_infinity(group, point))
231 		{
232 		return EC_POINT_set_to_infinity(group, r);
233 		}
234 
235 	/* only support affine coordinates */
236 	if (!point->Z_is_one) return 0;
237 
238 	/* Since point_multiply is static we can guarantee that ctx != NULL. */
239 	BN_CTX_start(ctx);
240 	x1 = BN_CTX_get(ctx);
241 	z1 = BN_CTX_get(ctx);
242 	if (z1 == NULL) goto err;
243 
244 	x2 = &r->X;
245 	z2 = &r->Y;
246 
247 	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
248 	if (!BN_one(z1)) goto err; /* z1 = 1 */
249 	if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
250 	if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
251 	if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
252 
253 	/* find top most bit and go one past it */
254 	i = scalar->top - 1; j = BN_BITS2 - 1;
255 	mask = BN_TBIT;
256 	while (!(scalar->d[i] & mask)) { mask >>= 1; j--; }
257 	mask >>= 1; j--;
258 	/* if top most bit was at word break, go to next word */
259 	if (!mask)
260 		{
261 		i--; j = BN_BITS2 - 1;
262 		mask = BN_TBIT;
263 		}
264 
265 	for (; i >= 0; i--)
266 		{
267 		for (; j >= 0; j--)
268 			{
269 			if (scalar->d[i] & mask)
270 				{
271 				if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err;
272 				if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;
273 				}
274 			else
275 				{
276 				if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
277 				if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
278 				}
279 			mask >>= 1;
280 			}
281 		j = BN_BITS2 - 1;
282 		mask = BN_TBIT;
283 		}
284 
285 	/* convert out of "projective" coordinates */
286 	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
287 	if (i == 0) goto err;
288 	else if (i == 1)
289 		{
290 		if (!EC_POINT_set_to_infinity(group, r)) goto err;
291 		}
292 	else
293 		{
294 		if (!BN_one(&r->Z)) goto err;
295 		r->Z_is_one = 1;
296 		}
297 
298 	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
299 	BN_set_negative(&r->X, 0);
300 	BN_set_negative(&r->Y, 0);
301 
302 	ret = 1;
303 
304  err:
305 	BN_CTX_end(ctx);
306 	return ret;
307 	}
308 
309 
310 /* Computes the sum
311  *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
312  * gracefully ignoring NULL scalar values.
313  */
ec_GF2m_simple_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * scalar,size_t num,const EC_POINT * points[],const BIGNUM * scalars[],BN_CTX * ctx)314 int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
315 	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
316 	{
317 	BN_CTX *new_ctx = NULL;
318 	int ret = 0;
319 	size_t i;
320 	EC_POINT *p=NULL;
321 
322 	if (ctx == NULL)
323 		{
324 		ctx = new_ctx = BN_CTX_new();
325 		if (ctx == NULL)
326 			return 0;
327 		}
328 
329 	/* This implementation is more efficient than the wNAF implementation for 2
330 	 * or fewer points.  Use the ec_wNAF_mul implementation for 3 or more points,
331 	 * or if we can perform a fast multiplication based on precomputation.
332 	 */
333 	if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
334 		{
335 		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
336 		goto err;
337 		}
338 
339 	if ((p = EC_POINT_new(group)) == NULL) goto err;
340 
341 	if (!EC_POINT_set_to_infinity(group, r)) goto err;
342 
343 	if (scalar)
344 		{
345 		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
346 		if (BN_is_negative(scalar))
347 			if (!group->meth->invert(group, p, ctx)) goto err;
348 		if (!group->meth->add(group, r, r, p, ctx)) goto err;
349 		}
350 
351 	for (i = 0; i < num; i++)
352 		{
353 		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
354 		if (BN_is_negative(scalars[i]))
355 			if (!group->meth->invert(group, p, ctx)) goto err;
356 		if (!group->meth->add(group, r, r, p, ctx)) goto err;
357 		}
358 
359 	ret = 1;
360 
361   err:
362 	if (p) EC_POINT_free(p);
363 	if (new_ctx != NULL)
364 		BN_CTX_free(new_ctx);
365 	return ret;
366 	}
367 
368 
369 /* Precomputation for point multiplication: fall back to wNAF methods
370  * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
371 
ec_GF2m_precompute_mult(EC_GROUP * group,BN_CTX * ctx)372 int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
373 	{
374 	return ec_wNAF_precompute_mult(group, ctx);
375  	}
376 
ec_GF2m_have_precompute_mult(const EC_GROUP * group)377 int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
378 	{
379 	return ec_wNAF_have_precompute_mult(group);
380  	}
381