1 /*
2 ********************************************************************************
3 * Copyright (C) 1997-2006, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ********************************************************************************
6 *
7 * File DECIMFMT.H
8 *
9 * Modification History:
10 *
11 * Date Name Description
12 * 02/19/97 aliu Converted from java.
13 * 03/20/97 clhuang Updated per C++ implementation.
14 * 04/03/97 aliu Rewrote parsing and formatting completely, and
15 * cleaned up and debugged. Actually works now.
16 * 04/17/97 aliu Changed DigitCount to int per code review.
17 * 07/10/97 helena Made ParsePosition a class and get rid of the function
18 * hiding problems.
19 * 09/09/97 aliu Ported over support for exponential formats.
20 * 07/20/98 stephen Changed documentation
21 ********************************************************************************
22 */
23
24 #ifndef DECIMFMT_H
25 #define DECIMFMT_H
26
27 #include "unicode/utypes.h"
28 /**
29 * \file
30 * \brief C++ API: Formats decimal numbers.
31 */
32
33 #if !UCONFIG_NO_FORMATTING
34
35 #include "unicode/dcfmtsym.h"
36 #include "unicode/numfmt.h"
37 #include "unicode/locid.h"
38
39 U_NAMESPACE_BEGIN
40
41 class DigitList;
42 class ChoiceFormat;
43
44 /**
45 * DecimalFormat is a concrete subclass of NumberFormat that formats decimal
46 * numbers. It has a variety of features designed to make it possible to parse
47 * and format numbers in any locale, including support for Western, Arabic, or
48 * Indic digits. It also supports different flavors of numbers, including
49 * integers ("123"), fixed-point numbers ("123.4"), scientific notation
50 * ("1.23E4"), percentages ("12%"), and currency amounts ("$123"). All of these
51 * flavors can be easily localized.
52 *
53 * <p>To obtain a NumberFormat for a specific locale (including the default
54 * locale) call one of NumberFormat's factory methods such as
55 * createInstance(). Do not call the DecimalFormat constructors directly, unless
56 * you know what you are doing, since the NumberFormat factory methods may
57 * return subclasses other than DecimalFormat.
58 *
59 * <p><strong>Example Usage</strong>
60 *
61 * \code
62 * // Normally we would have a GUI with a menu for this
63 * int32_t locCount;
64 * const Locale* locales = NumberFormat::getAvailableLocales(locCount);
65 *
66 * double myNumber = -1234.56;
67 * UErrorCode success = U_ZERO_ERROR;
68 * NumberFormat* form;
69 *
70 * // Print out a number with the localized number, currency and percent
71 * // format for each locale.
72 * UnicodeString countryName;
73 * UnicodeString displayName;
74 * UnicodeString str;
75 * UnicodeString pattern;
76 * Formattable fmtable;
77 * for (int32_t j = 0; j < 3; ++j) {
78 * cout << endl << "FORMAT " << j << endl;
79 * for (int32_t i = 0; i < locCount; ++i) {
80 * if (locales[i].getCountry(countryName).size() == 0) {
81 * // skip language-only
82 * continue;
83 * }
84 * switch (j) {
85 * case 0:
86 * form = NumberFormat::createInstance(locales[i], success ); break;
87 * case 1:
88 * form = NumberFormat::createCurrencyInstance(locales[i], success ); break;
89 * default:
90 * form = NumberFormat::createPercentInstance(locales[i], success ); break;
91 * }
92 * if (form) {
93 * str.remove();
94 * pattern = ((DecimalFormat*)form)->toPattern(pattern);
95 * cout << locales[i].getDisplayName(displayName) << ": " << pattern;
96 * cout << " -> " << form->format(myNumber,str) << endl;
97 * form->parse(form->format(myNumber,str), fmtable, success);
98 * delete form;
99 * }
100 * }
101 * }
102 * \endcode
103 *
104 * <p><strong>Patterns</strong>
105 *
106 * <p>A DecimalFormat consists of a <em>pattern</em> and a set of
107 * <em>symbols</em>. The pattern may be set directly using
108 * applyPattern(), or indirectly using other API methods which
109 * manipulate aspects of the pattern, such as the minimum number of integer
110 * digits. The symbols are stored in a DecimalFormatSymbols
111 * object. When using the NumberFormat factory methods, the
112 * pattern and symbols are read from ICU's locale data.
113 *
114 * <p><strong>Special Pattern Characters</strong>
115 *
116 * <p>Many characters in a pattern are taken literally; they are matched during
117 * parsing and output unchanged during formatting. Special characters, on the
118 * other hand, stand for other characters, strings, or classes of characters.
119 * For example, the '#' character is replaced by a localized digit. Often the
120 * replacement character is the same as the pattern character; in the U.S. locale,
121 * the ',' grouping character is replaced by ','. However, the replacement is
122 * still happening, and if the symbols are modified, the grouping character
123 * changes. Some special characters affect the behavior of the formatter by
124 * their presence; for example, if the percent character is seen, then the
125 * value is multiplied by 100 before being displayed.
126 *
127 * <p>To insert a special character in a pattern as a literal, that is, without
128 * any special meaning, the character must be quoted. There are some exceptions to
129 * this which are noted below.
130 *
131 * <p>The characters listed here are used in non-localized patterns. Localized
132 * patterns use the corresponding characters taken from this formatter's
133 * DecimalFormatSymbols object instead, and these characters lose
134 * their special status. Two exceptions are the currency sign and quote, which
135 * are not localized.
136 *
137 * <table border=0 cellspacing=3 cellpadding=0>
138 * <tr bgcolor="#ccccff">
139 * <td align=left><strong>Symbol</strong>
140 * <td align=left><strong>Location</strong>
141 * <td align=left><strong>Localized?</strong>
142 * <td align=left><strong>Meaning</strong>
143 * <tr valign=top>
144 * <td><code>0</code>
145 * <td>Number
146 * <td>Yes
147 * <td>Digit
148 * <tr valign=top bgcolor="#eeeeff">
149 * <td><code>1-9</code>
150 * <td>Number
151 * <td>Yes
152 * <td>'1' through '9' indicate rounding.
153 * <tr valign=top>
154 * <td><code>\htmlonly@\endhtmlonly</code> <!--doxygen doesn't like @-->
155 * <td>Number
156 * <td>No
157 * <td>Significant digit
158 * <tr valign=top bgcolor="#eeeeff">
159 * <td><code>#</code>
160 * <td>Number
161 * <td>Yes
162 * <td>Digit, zero shows as absent
163 * <tr valign=top>
164 * <td><code>.</code>
165 * <td>Number
166 * <td>Yes
167 * <td>Decimal separator or monetary decimal separator
168 * <tr valign=top bgcolor="#eeeeff">
169 * <td><code>-</code>
170 * <td>Number
171 * <td>Yes
172 * <td>Minus sign
173 * <tr valign=top>
174 * <td><code>,</code>
175 * <td>Number
176 * <td>Yes
177 * <td>Grouping separator
178 * <tr valign=top bgcolor="#eeeeff">
179 * <td><code>E</code>
180 * <td>Number
181 * <td>Yes
182 * <td>Separates mantissa and exponent in scientific notation.
183 * <em>Need not be quoted in prefix or suffix.</em>
184 * <tr valign=top>
185 * <td><code>+</code>
186 * <td>Exponent
187 * <td>Yes
188 * <td>Prefix positive exponents with localized plus sign.
189 * <em>Need not be quoted in prefix or suffix.</em>
190 * <tr valign=top bgcolor="#eeeeff">
191 * <td><code>;</code>
192 * <td>Subpattern boundary
193 * <td>Yes
194 * <td>Separates positive and negative subpatterns
195 * <tr valign=top>
196 * <td><code>\%</code>
197 * <td>Prefix or suffix
198 * <td>Yes
199 * <td>Multiply by 100 and show as percentage
200 * <tr valign=top bgcolor="#eeeeff">
201 * <td><code>\\u2030</code>
202 * <td>Prefix or suffix
203 * <td>Yes
204 * <td>Multiply by 1000 and show as per mille
205 * <tr valign=top>
206 * <td><code>\htmlonly¤\endhtmlonly</code> (<code>\\u00A4</code>)
207 * <td>Prefix or suffix
208 * <td>No
209 * <td>Currency sign, replaced by currency symbol. If
210 * doubled, replaced by international currency symbol.
211 * If present in a pattern, the monetary decimal separator
212 * is used instead of the decimal separator.
213 * <tr valign=top bgcolor="#eeeeff">
214 * <td><code>'</code>
215 * <td>Prefix or suffix
216 * <td>No
217 * <td>Used to quote special characters in a prefix or suffix,
218 * for example, <code>"'#'#"</code> formats 123 to
219 * <code>"#123"</code>. To create a single quote
220 * itself, use two in a row: <code>"# o''clock"</code>.
221 * <tr valign=top>
222 * <td><code>*</code>
223 * <td>Prefix or suffix boundary
224 * <td>Yes
225 * <td>Pad escape, precedes pad character
226 * </table>
227 *
228 * <p>A DecimalFormat pattern contains a postive and negative
229 * subpattern, for example, "#,##0.00;(#,##0.00)". Each subpattern has a
230 * prefix, a numeric part, and a suffix. If there is no explicit negative
231 * subpattern, the negative subpattern is the localized minus sign prefixed to the
232 * positive subpattern. That is, "0.00" alone is equivalent to "0.00;-0.00". If there
233 * is an explicit negative subpattern, it serves only to specify the negative
234 * prefix and suffix; the number of digits, minimal digits, and other
235 * characteristics are ignored in the negative subpattern. That means that
236 * "#,##0.0#;(#)" has precisely the same result as "#,##0.0#;(#,##0.0#)".
237 *
238 * <p>The prefixes, suffixes, and various symbols used for infinity, digits,
239 * thousands separators, decimal separators, etc. may be set to arbitrary
240 * values, and they will appear properly during formatting. However, care must
241 * be taken that the symbols and strings do not conflict, or parsing will be
242 * unreliable. For example, either the positive and negative prefixes or the
243 * suffixes must be distinct for parse() to be able
244 * to distinguish positive from negative values. Another example is that the
245 * decimal separator and thousands separator should be distinct characters, or
246 * parsing will be impossible.
247 *
248 * <p>The <em>grouping separator</em> is a character that separates clusters of
249 * integer digits to make large numbers more legible. It commonly used for
250 * thousands, but in some locales it separates ten-thousands. The <em>grouping
251 * size</em> is the number of digits between the grouping separators, such as 3
252 * for "100,000,000" or 4 for "1 0000 0000". There are actually two different
253 * grouping sizes: One used for the least significant integer digits, the
254 * <em>primary grouping size</em>, and one used for all others, the
255 * <em>secondary grouping size</em>. In most locales these are the same, but
256 * sometimes they are different. For example, if the primary grouping interval
257 * is 3, and the secondary is 2, then this corresponds to the pattern
258 * "#,##,##0", and the number 123456789 is formatted as "12,34,56,789". If a
259 * pattern contains multiple grouping separators, the interval between the last
260 * one and the end of the integer defines the primary grouping size, and the
261 * interval between the last two defines the secondary grouping size. All others
262 * are ignored, so "#,##,###,####" == "###,###,####" == "##,#,###,####".
263 *
264 * <p>Illegal patterns, such as "#.#.#" or "#.###,###", will cause
265 * DecimalFormat to set a failing UErrorCode.
266 *
267 * <p><strong>Pattern BNF</strong>
268 *
269 * <pre>
270 * pattern := subpattern (';' subpattern)?
271 * subpattern := prefix? number exponent? suffix?
272 * number := (integer ('.' fraction)?) | sigDigits
273 * prefix := '\\u0000'..'\\uFFFD' - specialCharacters
274 * suffix := '\\u0000'..'\\uFFFD' - specialCharacters
275 * integer := '#'* '0'* '0'
276 * fraction := '0'* '#'*
277 * sigDigits := '#'* '@' '@'* '#'*
278 * exponent := 'E' '+'? '0'* '0'
279 * padSpec := '*' padChar
280 * padChar := '\\u0000'..'\\uFFFD' - quote
281 *
282 * Notation:
283 * X* 0 or more instances of X
284 * X? 0 or 1 instances of X
285 * X|Y either X or Y
286 * C..D any character from C up to D, inclusive
287 * S-T characters in S, except those in T
288 * </pre>
289 * The first subpattern is for positive numbers. The second (optional)
290 * subpattern is for negative numbers.
291 *
292 * <p>Not indicated in the BNF syntax above:
293 *
294 * <ul><li>The grouping separator ',' can occur inside the integer and
295 * sigDigits elements, between any two pattern characters of that
296 * element, as long as the integer or sigDigits element is not
297 * followed by the exponent element.
298 *
299 * <li>Two grouping intervals are recognized: That between the
300 * decimal point and the first grouping symbol, and that
301 * between the first and second grouping symbols. These
302 * intervals are identical in most locales, but in some
303 * locales they differ. For example, the pattern
304 * "#,##,###" formats the number 123456789 as
305 * "12,34,56,789".</li>
306 *
307 * <li>The pad specifier <code>padSpec</code> may appear before the prefix,
308 * after the prefix, before the suffix, after the suffix, or not at all.
309 *
310 * <li>In place of '0', the digits '1' through '9' may be used to
311 * indicate a rounding increment.
312 * </ul>
313 *
314 * <p><strong>Parsing</strong>
315 *
316 * <p>DecimalFormat parses all Unicode characters that represent
317 * decimal digits, as defined by u_charDigitValue(). In addition,
318 * DecimalFormat also recognizes as digits the ten consecutive
319 * characters starting with the localized zero digit defined in the
320 * DecimalFormatSymbols object. During formatting, the
321 * DecimalFormatSymbols-based digits are output.
322 *
323 * <p>During parsing, grouping separators are ignored.
324 *
325 * <p>If parse(UnicodeString&,Formattable&,ParsePosition&)
326 * fails to parse a string, it leaves the parse position unchanged.
327 * The convenience method parse(UnicodeString&,Formattable&,UErrorCode&)
328 * indicates parse failure by setting a failing
329 * UErrorCode.
330 *
331 * <p><strong>Formatting</strong>
332 *
333 * <p>Formatting is guided by several parameters, all of which can be
334 * specified either using a pattern or using the API. The following
335 * description applies to formats that do not use <a href="#sci">scientific
336 * notation</a> or <a href="#sigdig">significant digits</a>.
337 *
338 * <ul><li>If the number of actual integer digits exceeds the
339 * <em>maximum integer digits</em>, then only the least significant
340 * digits are shown. For example, 1997 is formatted as "97" if the
341 * maximum integer digits is set to 2.
342 *
343 * <li>If the number of actual integer digits is less than the
344 * <em>minimum integer digits</em>, then leading zeros are added. For
345 * example, 1997 is formatted as "01997" if the minimum integer digits
346 * is set to 5.
347 *
348 * <li>If the number of actual fraction digits exceeds the <em>maximum
349 * fraction digits</em>, then half-even rounding it performed to the
350 * maximum fraction digits. For example, 0.125 is formatted as "0.12"
351 * if the maximum fraction digits is 2. This behavior can be changed
352 * by specifying a rounding increment and a rounding mode.
353 *
354 * <li>If the number of actual fraction digits is less than the
355 * <em>minimum fraction digits</em>, then trailing zeros are added.
356 * For example, 0.125 is formatted as "0.1250" if the mimimum fraction
357 * digits is set to 4.
358 *
359 * <li>Trailing fractional zeros are not displayed if they occur
360 * <em>j</em> positions after the decimal, where <em>j</em> is less
361 * than the maximum fraction digits. For example, 0.10004 is
362 * formatted as "0.1" if the maximum fraction digits is four or less.
363 * </ul>
364 *
365 * <p><strong>Special Values</strong>
366 *
367 * <p><code>NaN</code> is represented as a single character, typically
368 * <code>\\uFFFD</code>. This character is determined by the
369 * DecimalFormatSymbols object. This is the only value for which
370 * the prefixes and suffixes are not used.
371 *
372 * <p>Infinity is represented as a single character, typically
373 * <code>\\u221E</code>, with the positive or negative prefixes and suffixes
374 * applied. The infinity character is determined by the
375 * DecimalFormatSymbols object.
376 *
377 * <a name="sci"><strong>Scientific Notation</strong></a>
378 *
379 * <p>Numbers in scientific notation are expressed as the product of a mantissa
380 * and a power of ten, for example, 1234 can be expressed as 1.234 x 10<sup>3</sup>. The
381 * mantissa is typically in the half-open interval [1.0, 10.0) or sometimes [0.0, 1.0),
382 * but it need not be. DecimalFormat supports arbitrary mantissas.
383 * DecimalFormat can be instructed to use scientific
384 * notation through the API or through the pattern. In a pattern, the exponent
385 * character immediately followed by one or more digit characters indicates
386 * scientific notation. Example: "0.###E0" formats the number 1234 as
387 * "1.234E3".
388 *
389 * <ul>
390 * <li>The number of digit characters after the exponent character gives the
391 * minimum exponent digit count. There is no maximum. Negative exponents are
392 * formatted using the localized minus sign, <em>not</em> the prefix and suffix
393 * from the pattern. This allows patterns such as "0.###E0 m/s". To prefix
394 * positive exponents with a localized plus sign, specify '+' between the
395 * exponent and the digits: "0.###E+0" will produce formats "1E+1", "1E+0",
396 * "1E-1", etc. (In localized patterns, use the localized plus sign rather than
397 * '+'.)
398 *
399 * <li>The minimum number of integer digits is achieved by adjusting the
400 * exponent. Example: 0.00123 formatted with "00.###E0" yields "12.3E-4". This
401 * only happens if there is no maximum number of integer digits. If there is a
402 * maximum, then the minimum number of integer digits is fixed at one.
403 *
404 * <li>The maximum number of integer digits, if present, specifies the exponent
405 * grouping. The most common use of this is to generate <em>engineering
406 * notation</em>, in which the exponent is a multiple of three, e.g.,
407 * "##0.###E0". The number 12345 is formatted using "##0.####E0" as "12.345E3".
408 *
409 * <li>When using scientific notation, the formatter controls the
410 * digit counts using significant digits logic. The maximum number of
411 * significant digits limits the total number of integer and fraction
412 * digits that will be shown in the mantissa; it does not affect
413 * parsing. For example, 12345 formatted with "##0.##E0" is "12.3E3".
414 * See the section on significant digits for more details.
415 *
416 * <li>The number of significant digits shown is determined as
417 * follows: If areSignificantDigitsUsed() returns false, then the
418 * minimum number of significant digits shown is one, and the maximum
419 * number of significant digits shown is the sum of the <em>minimum
420 * integer</em> and <em>maximum fraction</em> digits, and is
421 * unaffected by the maximum integer digits. If this sum is zero,
422 * then all significant digits are shown. If
423 * areSignificantDigitsUsed() returns true, then the significant digit
424 * counts are specified by getMinimumSignificantDigits() and
425 * getMaximumSignificantDigits(). In this case, the number of
426 * integer digits is fixed at one, and there is no exponent grouping.
427 *
428 * <li>Exponential patterns may not contain grouping separators.
429 * </ul>
430 *
431 * <a name="sigdig"><strong>Significant Digits</strong></a>
432 *
433 * <code>DecimalFormat</code> has two ways of controlling how many
434 * digits are shows: (a) significant digits counts, or (b) integer and
435 * fraction digit counts. Integer and fraction digit counts are
436 * described above. When a formatter is using significant digits
437 * counts, the number of integer and fraction digits is not specified
438 * directly, and the formatter settings for these counts are ignored.
439 * Instead, the formatter uses however many integer and fraction
440 * digits are required to display the specified number of significant
441 * digits. Examples:
442 *
443 * <table border=0 cellspacing=3 cellpadding=0>
444 * <tr bgcolor="#ccccff">
445 * <td align=left>Pattern
446 * <td align=left>Minimum significant digits
447 * <td align=left>Maximum significant digits
448 * <td align=left>Number
449 * <td align=left>Output of format()
450 * <tr valign=top>
451 * <td><code>\@\@\@</code>
452 * <td>3
453 * <td>3
454 * <td>12345
455 * <td><code>12300</code>
456 * <tr valign=top bgcolor="#eeeeff">
457 * <td><code>\@\@\@</code>
458 * <td>3
459 * <td>3
460 * <td>0.12345
461 * <td><code>0.123</code>
462 * <tr valign=top>
463 * <td><code>\@\@##</code>
464 * <td>2
465 * <td>4
466 * <td>3.14159
467 * <td><code>3.142</code>
468 * <tr valign=top bgcolor="#eeeeff">
469 * <td><code>\@\@##</code>
470 * <td>2
471 * <td>4
472 * <td>1.23004
473 * <td><code>1.23</code>
474 * </table>
475 *
476 * <ul>
477 * <li>Significant digit counts may be expressed using patterns that
478 * specify a minimum and maximum number of significant digits. These
479 * are indicated by the <code>'@'</code> and <code>'#'</code>
480 * characters. The minimum number of significant digits is the number
481 * of <code>'@'</code> characters. The maximum number of significant
482 * digits is the number of <code>'@'</code> characters plus the number
483 * of <code>'#'</code> characters following on the right. For
484 * example, the pattern <code>"@@@"</code> indicates exactly 3
485 * significant digits. The pattern <code>"@##"</code> indicates from
486 * 1 to 3 significant digits. Trailing zero digits to the right of
487 * the decimal separator are suppressed after the minimum number of
488 * significant digits have been shown. For example, the pattern
489 * <code>"@##"</code> formats the number 0.1203 as
490 * <code>"0.12"</code>.
491 *
492 * <li>If a pattern uses significant digits, it may not contain a
493 * decimal separator, nor the <code>'0'</code> pattern character.
494 * Patterns such as <code>"@00"</code> or <code>"@.###"</code> are
495 * disallowed.
496 *
497 * <li>Any number of <code>'#'</code> characters may be prepended to
498 * the left of the leftmost <code>'@'</code> character. These have no
499 * effect on the minimum and maximum significant digits counts, but
500 * may be used to position grouping separators. For example,
501 * <code>"#,#@#"</code> indicates a minimum of one significant digits,
502 * a maximum of two significant digits, and a grouping size of three.
503 *
504 * <li>In order to enable significant digits formatting, use a pattern
505 * containing the <code>'@'</code> pattern character. Alternatively,
506 * call setSignificantDigitsUsed(TRUE).
507 *
508 * <li>In order to disable significant digits formatting, use a
509 * pattern that does not contain the <code>'@'</code> pattern
510 * character. Alternatively, call setSignificantDigitsUsed(FALSE).
511 *
512 * <li>The number of significant digits has no effect on parsing.
513 *
514 * <li>Significant digits may be used together with exponential notation. Such
515 * patterns are equivalent to a normal exponential pattern with a minimum and
516 * maximum integer digit count of one, a minimum fraction digit count of
517 * <code>getMinimumSignificantDigits() - 1</code>, and a maximum fraction digit
518 * count of <code>getMaximumSignificantDigits() - 1</code>. For example, the
519 * pattern <code>"@@###E0"</code> is equivalent to <code>"0.0###E0"</code>.
520 *
521 * <li>If signficant digits are in use, then the integer and fraction
522 * digit counts, as set via the API, are ignored. If significant
523 * digits are not in use, then the signficant digit counts, as set via
524 * the API, are ignored.
525 *
526 * </ul>
527 *
528 * <p><strong>Padding</strong>
529 *
530 * <p>DecimalFormat supports padding the result of
531 * format() to a specific width. Padding may be specified either
532 * through the API or through the pattern syntax. In a pattern the pad escape
533 * character, followed by a single pad character, causes padding to be parsed
534 * and formatted. The pad escape character is '*' in unlocalized patterns, and
535 * can be localized using DecimalFormatSymbols::setSymbol() with a
536 * DecimalFormatSymbols::kPadEscapeSymbol
537 * selector. For example, <code>"$*x#,##0.00"</code> formats 123 to
538 * <code>"$xx123.00"</code>, and 1234 to <code>"$1,234.00"</code>.
539 *
540 * <ul>
541 * <li>When padding is in effect, the width of the positive subpattern,
542 * including prefix and suffix, determines the format width. For example, in
543 * the pattern <code>"* #0 o''clock"</code>, the format width is 10.
544 *
545 * <li>The width is counted in 16-bit code units (UChars).
546 *
547 * <li>Some parameters which usually do not matter have meaning when padding is
548 * used, because the pattern width is significant with padding. In the pattern
549 * "* ##,##,#,##0.##", the format width is 14. The initial characters "##,##,"
550 * do not affect the grouping size or maximum integer digits, but they do affect
551 * the format width.
552 *
553 * <li>Padding may be inserted at one of four locations: before the prefix,
554 * after the prefix, before the suffix, or after the suffix. If padding is
555 * specified in any other location, applyPattern()
556 * sets a failing UErrorCode. If there is no prefix,
557 * before the prefix and after the prefix are equivalent, likewise for the
558 * suffix.
559 *
560 * <li>When specified in a pattern, the 32-bit code point immediately
561 * following the pad escape is the pad character. This may be any character,
562 * including a special pattern character. That is, the pad escape
563 * <em>escapes</em> the following character. If there is no character after
564 * the pad escape, then the pattern is illegal.
565 *
566 * </ul>
567 *
568 * <p><strong>Rounding</strong>
569 *
570 * <p>DecimalFormat supports rounding to a specific increment. For
571 * example, 1230 rounded to the nearest 50 is 1250. 1.234 rounded to the
572 * nearest 0.65 is 1.3. The rounding increment may be specified through the API
573 * or in a pattern. To specify a rounding increment in a pattern, include the
574 * increment in the pattern itself. "#,#50" specifies a rounding increment of
575 * 50. "#,##0.05" specifies a rounding increment of 0.05.
576 *
577 * <ul>
578 * <li>Rounding only affects the string produced by formatting. It does
579 * not affect parsing or change any numerical values.
580 *
581 * <li>A <em>rounding mode</em> determines how values are rounded; see
582 * DecimalFormat::ERoundingMode. Rounding increments specified in
583 * patterns use the default mode, DecimalFormat::kRoundHalfEven.
584 *
585 * <li>Some locales use rounding in their currency formats to reflect the
586 * smallest currency denomination.
587 *
588 * <li>In a pattern, digits '1' through '9' specify rounding, but otherwise
589 * behave identically to digit '0'.
590 * </ul>
591 *
592 * <p><strong>Synchronization</strong>
593 *
594 * <p>DecimalFormat objects are not synchronized. Multiple
595 * threads should not access one formatter concurrently.
596 *
597 * <p><strong>Subclassing</strong>
598 *
599 * <p><em>User subclasses are not supported.</em> While clients may write
600 * subclasses, such code will not necessarily work and will not be
601 * guaranteed to work stably from release to release.
602 */
603 class U_I18N_API DecimalFormat: public NumberFormat {
604 public:
605 /**
606 * Rounding mode.
607 * @stable ICU 2.4
608 */
609 enum ERoundingMode {
610 kRoundCeiling, /**< Round towards positive infinity */
611 kRoundFloor, /**< Round towards negative infinity */
612 kRoundDown, /**< Round towards zero */
613 kRoundUp, /**< Round away from zero */
614 kRoundHalfEven, /**< Round towards the nearest integer, or
615 towards the nearest even integer if equidistant */
616 kRoundHalfDown, /**< Round towards the nearest integer, or
617 towards zero if equidistant */
618 kRoundHalfUp /**< Round towards the nearest integer, or
619 away from zero if equidistant */
620 // We don't support ROUND_UNNECESSARY
621 };
622
623 /**
624 * Pad position.
625 * @stable ICU 2.4
626 */
627 enum EPadPosition {
628 kPadBeforePrefix,
629 kPadAfterPrefix,
630 kPadBeforeSuffix,
631 kPadAfterSuffix
632 };
633
634 typedef struct attributeBuffer {
635 char * buffer;
636 size_t bufferSize;
637 } AttributeBuffer, *AttrBuffer;
638
639 /**
640 * Create a DecimalFormat using the default pattern and symbols
641 * for the default locale. This is a convenient way to obtain a
642 * DecimalFormat when internationalization is not the main concern.
643 * <P>
644 * To obtain standard formats for a given locale, use the factory methods
645 * on NumberFormat such as createInstance. These factories will
646 * return the most appropriate sub-class of NumberFormat for a given
647 * locale.
648 * @param status Output param set to success/failure code. If the
649 * pattern is invalid this will be set to a failure code.
650 * @stable ICU 2.0
651 */
652 DecimalFormat(UErrorCode& status);
653
654 /**
655 * Create a DecimalFormat from the given pattern and the symbols
656 * for the default locale. This is a convenient way to obtain a
657 * DecimalFormat when internationalization is not the main concern.
658 * <P>
659 * To obtain standard formats for a given locale, use the factory methods
660 * on NumberFormat such as createInstance. These factories will
661 * return the most appropriate sub-class of NumberFormat for a given
662 * locale.
663 * @param pattern A non-localized pattern string.
664 * @param status Output param set to success/failure code. If the
665 * pattern is invalid this will be set to a failure code.
666 * @stable ICU 2.0
667 */
668 DecimalFormat(const UnicodeString& pattern,
669 UErrorCode& status);
670
671 /**
672 * Create a DecimalFormat from the given pattern and symbols.
673 * Use this constructor when you need to completely customize the
674 * behavior of the format.
675 * <P>
676 * To obtain standard formats for a given
677 * locale, use the factory methods on NumberFormat such as
678 * createInstance or createCurrencyInstance. If you need only minor adjustments
679 * to a standard format, you can modify the format returned by
680 * a NumberFormat factory method.
681 *
682 * @param pattern a non-localized pattern string
683 * @param symbolsToAdopt the set of symbols to be used. The caller should not
684 * delete this object after making this call.
685 * @param status Output param set to success/failure code. If the
686 * pattern is invalid this will be set to a failure code.
687 * @stable ICU 2.0
688 */
689 DecimalFormat( const UnicodeString& pattern,
690 DecimalFormatSymbols* symbolsToAdopt,
691 UErrorCode& status);
692
693 /**
694 * Create a DecimalFormat from the given pattern and symbols.
695 * Use this constructor when you need to completely customize the
696 * behavior of the format.
697 * <P>
698 * To obtain standard formats for a given
699 * locale, use the factory methods on NumberFormat such as
700 * createInstance or createCurrencyInstance. If you need only minor adjustments
701 * to a standard format, you can modify the format returned by
702 * a NumberFormat factory method.
703 *
704 * @param pattern a non-localized pattern string
705 * @param symbolsToAdopt the set of symbols to be used. The caller should not
706 * delete this object after making this call.
707 * @param parseError Output param to receive errors occured during parsing
708 * @param status Output param set to success/failure code. If the
709 * pattern is invalid this will be set to a failure code.
710 * @stable ICU 2.0
711 */
712 DecimalFormat( const UnicodeString& pattern,
713 DecimalFormatSymbols* symbolsToAdopt,
714 UParseError& parseError,
715 UErrorCode& status);
716 /**
717 * Create a DecimalFormat from the given pattern and symbols.
718 * Use this constructor when you need to completely customize the
719 * behavior of the format.
720 * <P>
721 * To obtain standard formats for a given
722 * locale, use the factory methods on NumberFormat such as
723 * createInstance or createCurrencyInstance. If you need only minor adjustments
724 * to a standard format, you can modify the format returned by
725 * a NumberFormat factory method.
726 *
727 * @param pattern a non-localized pattern string
728 * @param symbols the set of symbols to be used
729 * @param status Output param set to success/failure code. If the
730 * pattern is invalid this will be set to a failure code.
731 * @stable ICU 2.0
732 */
733 DecimalFormat( const UnicodeString& pattern,
734 const DecimalFormatSymbols& symbols,
735 UErrorCode& status);
736
737 /**
738 * Copy constructor.
739 *
740 * @param source the DecimalFormat object to be copied from.
741 * @stable ICU 2.0
742 */
743 DecimalFormat(const DecimalFormat& source);
744
745 /**
746 * Assignment operator.
747 *
748 * @param rhs the DecimalFormat object to be copied.
749 * @stable ICU 2.0
750 */
751 DecimalFormat& operator=(const DecimalFormat& rhs);
752
753 /**
754 * Destructor.
755 * @stable ICU 2.0
756 */
757 virtual ~DecimalFormat();
758
759 /**
760 * Clone this Format object polymorphically. The caller owns the
761 * result and should delete it when done.
762 *
763 * @return a polymorphic copy of this DecimalFormat.
764 * @stable ICU 2.0
765 */
766 virtual Format* clone(void) const;
767
768 /**
769 * Return true if the given Format objects are semantically equal.
770 * Objects of different subclasses are considered unequal.
771 *
772 * @param other the object to be compared with.
773 * @return true if the given Format objects are semantically equal.
774 * @stable ICU 2.0
775 */
776 virtual UBool operator==(const Format& other) const;
777
778 /**
779 * Format a double or long number using base-10 representation.
780 *
781 * @param number The value to be formatted.
782 * @param appendTo Output parameter to receive result.
783 * Result is appended to existing contents.
784 * @param pos On input: an alignment field, if desired.
785 * On output: the offsets of the alignment field.
786 * @return Reference to 'appendTo' parameter.
787 * @stable ICU 2.0
788 */
789 virtual UnicodeString& format(double number,
790 UnicodeString& appendTo,
791 FieldPosition& pos) const;
792
793 virtual UnicodeString& format(double number,
794 UnicodeString& appendTo,
795 FieldPosition& pos,
796 AttrBuffer attrBuffer) const;
797
798 /**
799 * Format a long number using base-10 representation.
800 *
801 * @param number The value to be formatted.
802 * @param appendTo Output parameter to receive result.
803 * Result is appended to existing contents.
804 * @param pos On input: an alignment field, if desired.
805 * On output: the offsets of the alignment field.
806 * @return Reference to 'appendTo' parameter.
807 * @stable ICU 2.0
808 */
809 virtual UnicodeString& format(int32_t number,
810 UnicodeString& appendTo,
811 FieldPosition& pos) const;
812
813 virtual UnicodeString& format(int32_t number,
814 UnicodeString& appendTo,
815 FieldPosition& pos,
816 AttrBuffer attrBuffer) const;
817
818 /**
819 * Format an int64 number using base-10 representation.
820 *
821 * @param number The value to be formatted.
822 * @param appendTo Output parameter to receive result.
823 * Result is appended to existing contents.
824 * @param pos On input: an alignment field, if desired.
825 * On output: the offsets of the alignment field.
826 * @return Reference to 'appendTo' parameter.
827 * @stable ICU 2.8
828 */
829 virtual UnicodeString& format(int64_t number,
830 UnicodeString& appendTo,
831 FieldPosition& pos) const;
832
833 virtual UnicodeString& format(int64_t number,
834 UnicodeString& appendTo,
835 FieldPosition& pos,
836 AttrBuffer attrBuffer) const;
837
838 /**
839 * Format a Formattable using base-10 representation.
840 *
841 * @param obj The value to be formatted.
842 * @param appendTo Output parameter to receive result.
843 * Result is appended to existing contents.
844 * @param pos On input: an alignment field, if desired.
845 * On output: the offsets of the alignment field.
846 * @param status Error code indicating success or failure.
847 * @return Reference to 'appendTo' parameter.
848 * @stable ICU 2.0
849 */
850 virtual UnicodeString& format(const Formattable& obj,
851 UnicodeString& appendTo,
852 FieldPosition& pos,
853 UErrorCode& status) const;
854
855 /**
856 * Redeclared NumberFormat method.
857 * Formats an object to produce a string.
858 *
859 * @param obj The object to format.
860 * @param appendTo Output parameter to receive result.
861 * Result is appended to existing contents.
862 * @param status Output parameter filled in with success or failure status.
863 * @return Reference to 'appendTo' parameter.
864 * @stable ICU 2.0
865 */
866 UnicodeString& format(const Formattable& obj,
867 UnicodeString& appendTo,
868 UErrorCode& status) const;
869
870 /**
871 * Redeclared NumberFormat method.
872 * Format a double number.
873 *
874 * @param number The value to be formatted.
875 * @param appendTo Output parameter to receive result.
876 * Result is appended to existing contents.
877 * @return Reference to 'appendTo' parameter.
878 * @stable ICU 2.0
879 */
880 UnicodeString& format(double number,
881 UnicodeString& appendTo) const;
882
883 /**
884 * Redeclared NumberFormat method.
885 * Format a long number. These methods call the NumberFormat
886 * pure virtual format() methods with the default FieldPosition.
887 *
888 * @param number The value to be formatted.
889 * @param appendTo Output parameter to receive result.
890 * Result is appended to existing contents.
891 * @return Reference to 'appendTo' parameter.
892 * @stable ICU 2.0
893 */
894 UnicodeString& format(int32_t number,
895 UnicodeString& appendTo) const;
896
897 /**
898 * Redeclared NumberFormat method.
899 * Format an int64 number. These methods call the NumberFormat
900 * pure virtual format() methods with the default FieldPosition.
901 *
902 * @param number The value to be formatted.
903 * @param appendTo Output parameter to receive result.
904 * Result is appended to existing contents.
905 * @return Reference to 'appendTo' parameter.
906 * @stable ICU 2.8
907 */
908 UnicodeString& format(int64_t number,
909 UnicodeString& appendTo) const;
910
911 // BEGIN android-added
912 UnicodeString& subformat(UnicodeString& appendTo,
913 FieldPosition& fieldPosition,
914 AttrBuffer attrBuffer,
915 DigitList& digits,
916 UBool isInteger) const;
917 // END android-changed
918
919 /**
920 * Parse the given string using this object's choices. The method
921 * does string comparisons to try to find an optimal match.
922 * If no object can be parsed, index is unchanged, and NULL is
923 * returned. The result is returned as the most parsimonious
924 * type of Formattable that will accomodate all of the
925 * necessary precision. For example, if the result is exactly 12,
926 * it will be returned as a long. However, if it is 1.5, it will
927 * be returned as a double.
928 *
929 * @param text The text to be parsed.
930 * @param result Formattable to be set to the parse result.
931 * If parse fails, return contents are undefined.
932 * @param parsePosition The position to start parsing at on input.
933 * On output, moved to after the last successfully
934 * parse character. On parse failure, does not change.
935 * @see Formattable
936 * @stable ICU 2.0
937 */
938 virtual void parse(const UnicodeString& text,
939 Formattable& result,
940 ParsePosition& parsePosition) const;
941
942 // Declare here again to get rid of function hiding problems.
943 /**
944 * Parse the given string using this object's choices.
945 *
946 * @param text The text to be parsed.
947 * @param result Formattable to be set to the parse result.
948 * @param status Output parameter filled in with success or failure status.
949 * @stable ICU 2.0
950 */
951 virtual void parse(const UnicodeString& text,
952 Formattable& result,
953 UErrorCode& status) const;
954
955 // BEGIN android-added
956 // A way to access parsing directly as workaround for missing
957 // BigNum parsing
958 /**
959 * Parses the given text as either a number or a currency amount.
960 * @param text the string to parse
961 * @param resultAssigned indicates whether or not the param result is assigned
962 * @param result output parameter for the result
963 * ATTENTION: result is assigned ONLY for types long and int64
964 * @param parsePosition input-output position; on input, the
965 * position within text to match; must have 0 <= pos.getIndex() <
966 * text.length(); on output, the position after the last matched
967 * character. If the parse fails, the position in unchanged upon
968 * output.
969 * @param parseCurrency if true, a currency amount is parsed;
970 * otherwise a Number is parsed
971 * @param digits The DigitList that represents the result will be returned
972 * @param scale the scale with which the number in the DigitList
973 * has to be scaled
974 * ATTENTION: list and scale are only returned when result was not assigned
975 */
976 virtual void parse(const UnicodeString& text,
977 bool& resultAssigned,
978 Formattable& result,
979 ParsePosition& parsePosition,
980 UBool parseCurrency,
981 DigitList& digits) const;
982 // END android-added
983
984 /**
985 * Parses text from the given string as a currency amount. Unlike
986 * the parse() method, this method will attempt to parse a generic
987 * currency name, searching for a match of this object's locale's
988 * currency display names, or for a 3-letter ISO currency code.
989 * This method will fail if this format is not a currency format,
990 * that is, if it does not contain the currency pattern symbol
991 * (U+00A4) in its prefix or suffix.
992 *
993 * @param text the string to parse
994 * @param result output parameter to receive result. This will have
995 * its currency set to the parsed ISO currency code.
996 * @param pos input-output position; on input, the position within
997 * text to match; must have 0 <= pos.getIndex() < text.length();
998 * on output, the position after the last matched character. If
999 * the parse fails, the position in unchanged upon output.
1000 * @return a reference to result
1001 * @internal
1002 */
1003 virtual Formattable& parseCurrency(const UnicodeString& text,
1004 Formattable& result,
1005 ParsePosition& pos) const;
1006
1007 /**
1008 * Returns the decimal format symbols, which is generally not changed
1009 * by the programmer or user.
1010 * @return desired DecimalFormatSymbols
1011 * @see DecimalFormatSymbols
1012 * @stable ICU 2.0
1013 */
1014 virtual const DecimalFormatSymbols* getDecimalFormatSymbols(void) const;
1015
1016 /**
1017 * Sets the decimal format symbols, which is generally not changed
1018 * by the programmer or user.
1019 * @param symbolsToAdopt DecimalFormatSymbols to be adopted.
1020 * @stable ICU 2.0
1021 */
1022 virtual void adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt);
1023
1024 /**
1025 * Sets the decimal format symbols, which is generally not changed
1026 * by the programmer or user.
1027 * @param symbols DecimalFormatSymbols.
1028 * @stable ICU 2.0
1029 */
1030 virtual void setDecimalFormatSymbols(const DecimalFormatSymbols& symbols);
1031
1032
1033 /**
1034 * Get the positive prefix.
1035 *
1036 * @param result Output param which will receive the positive prefix.
1037 * @return A reference to 'result'.
1038 * Examples: +123, $123, sFr123
1039 * @stable ICU 2.0
1040 */
1041 UnicodeString& getPositivePrefix(UnicodeString& result) const;
1042
1043 /**
1044 * Set the positive prefix.
1045 *
1046 * @param newValue the new value of the the positive prefix to be set.
1047 * Examples: +123, $123, sFr123
1048 * @stable ICU 2.0
1049 */
1050 virtual void setPositivePrefix(const UnicodeString& newValue);
1051
1052 /**
1053 * Get the negative prefix.
1054 *
1055 * @param result Output param which will receive the negative prefix.
1056 * @return A reference to 'result'.
1057 * Examples: -123, ($123) (with negative suffix), sFr-123
1058 * @stable ICU 2.0
1059 */
1060 UnicodeString& getNegativePrefix(UnicodeString& result) const;
1061
1062 /**
1063 * Set the negative prefix.
1064 *
1065 * @param newValue the new value of the the negative prefix to be set.
1066 * Examples: -123, ($123) (with negative suffix), sFr-123
1067 * @stable ICU 2.0
1068 */
1069 virtual void setNegativePrefix(const UnicodeString& newValue);
1070
1071 /**
1072 * Get the positive suffix.
1073 *
1074 * @param result Output param which will receive the positive suffix.
1075 * @return A reference to 'result'.
1076 * Example: 123%
1077 * @stable ICU 2.0
1078 */
1079 UnicodeString& getPositiveSuffix(UnicodeString& result) const;
1080
1081 /**
1082 * Set the positive suffix.
1083 *
1084 * @param newValue the new value of the positive suffix to be set.
1085 * Example: 123%
1086 * @stable ICU 2.0
1087 */
1088 virtual void setPositiveSuffix(const UnicodeString& newValue);
1089
1090 /**
1091 * Get the negative suffix.
1092 *
1093 * @param result Output param which will receive the negative suffix.
1094 * @return A reference to 'result'.
1095 * Examples: -123%, ($123) (with positive suffixes)
1096 * @stable ICU 2.0
1097 */
1098 UnicodeString& getNegativeSuffix(UnicodeString& result) const;
1099
1100 /**
1101 * Set the negative suffix.
1102 *
1103 * @param newValue the new value of the negative suffix to be set.
1104 * Examples: 123%
1105 * @stable ICU 2.0
1106 */
1107 virtual void setNegativeSuffix(const UnicodeString& newValue);
1108
1109 /**
1110 * Get the multiplier for use in percent, permill, etc.
1111 * For a percentage, set the suffixes to have "%" and the multiplier to be 100.
1112 * (For Arabic, use arabic percent symbol).
1113 * For a permill, set the suffixes to have "\\u2031" and the multiplier to be 1000.
1114 *
1115 * @return the multiplier for use in percent, permill, etc.
1116 * Examples: with 100, 1.23 -> "123", and "123" -> 1.23
1117 * @stable ICU 2.0
1118 */
1119 int32_t getMultiplier(void) const;
1120
1121 /**
1122 * Set the multiplier for use in percent, permill, etc.
1123 * For a percentage, set the suffixes to have "%" and the multiplier to be 100.
1124 * (For Arabic, use arabic percent symbol).
1125 * For a permill, set the suffixes to have "\\u2031" and the multiplier to be 1000.
1126 *
1127 * @param newValue the new value of the multiplier for use in percent, permill, etc.
1128 * Examples: with 100, 1.23 -> "123", and "123" -> 1.23
1129 * @stable ICU 2.0
1130 */
1131 virtual void setMultiplier(int32_t newValue);
1132
1133 /**
1134 * Get the rounding increment.
1135 * @return A positive rounding increment, or 0.0 if rounding
1136 * is not in effect.
1137 * @see #setRoundingIncrement
1138 * @see #getRoundingMode
1139 * @see #setRoundingMode
1140 * @stable ICU 2.0
1141 */
1142 virtual double getRoundingIncrement(void) const;
1143
1144 /**
1145 * Set the rounding increment. This method also controls whether
1146 * rounding is enabled.
1147 * @param newValue A positive rounding increment, or 0.0 to disable rounding.
1148 * Negative increments are equivalent to 0.0.
1149 * @see #getRoundingIncrement
1150 * @see #getRoundingMode
1151 * @see #setRoundingMode
1152 * @stable ICU 2.0
1153 */
1154 virtual void setRoundingIncrement(double newValue);
1155
1156 /**
1157 * Get the rounding mode.
1158 * @return A rounding mode
1159 * @see #setRoundingIncrement
1160 * @see #getRoundingIncrement
1161 * @see #setRoundingMode
1162 * @stable ICU 2.0
1163 */
1164 virtual ERoundingMode getRoundingMode(void) const;
1165
1166 /**
1167 * Set the rounding mode. This has no effect unless the rounding
1168 * increment is greater than zero.
1169 * @param roundingMode A rounding mode
1170 * @see #setRoundingIncrement
1171 * @see #getRoundingIncrement
1172 * @see #getRoundingMode
1173 * @stable ICU 2.0
1174 */
1175 virtual void setRoundingMode(ERoundingMode roundingMode);
1176
1177 /**
1178 * Get the width to which the output of format() is padded.
1179 * The width is counted in 16-bit code units.
1180 * @return the format width, or zero if no padding is in effect
1181 * @see #setFormatWidth
1182 * @see #getPadCharacterString
1183 * @see #setPadCharacter
1184 * @see #getPadPosition
1185 * @see #setPadPosition
1186 * @stable ICU 2.0
1187 */
1188 virtual int32_t getFormatWidth(void) const;
1189
1190 /**
1191 * Set the width to which the output of format() is padded.
1192 * The width is counted in 16-bit code units.
1193 * This method also controls whether padding is enabled.
1194 * @param width the width to which to pad the result of
1195 * format(), or zero to disable padding. A negative
1196 * width is equivalent to 0.
1197 * @see #getFormatWidth
1198 * @see #getPadCharacterString
1199 * @see #setPadCharacter
1200 * @see #getPadPosition
1201 * @see #setPadPosition
1202 * @stable ICU 2.0
1203 */
1204 virtual void setFormatWidth(int32_t width);
1205
1206 /**
1207 * Get the pad character used to pad to the format width. The
1208 * default is ' '.
1209 * @return a string containing the pad character. This will always
1210 * have a length of one 32-bit code point.
1211 * @see #setFormatWidth
1212 * @see #getFormatWidth
1213 * @see #setPadCharacter
1214 * @see #getPadPosition
1215 * @see #setPadPosition
1216 * @stable ICU 2.0
1217 */
1218 virtual UnicodeString getPadCharacterString() const;
1219
1220 /**
1221 * Set the character used to pad to the format width. If padding
1222 * is not enabled, then this will take effect if padding is later
1223 * enabled.
1224 * @param padChar a string containing the pad charcter. If the string
1225 * has length 0, then the pad characer is set to ' '. Otherwise
1226 * padChar.char32At(0) will be used as the pad character.
1227 * @see #setFormatWidth
1228 * @see #getFormatWidth
1229 * @see #getPadCharacterString
1230 * @see #getPadPosition
1231 * @see #setPadPosition
1232 * @stable ICU 2.0
1233 */
1234 virtual void setPadCharacter(const UnicodeString &padChar);
1235
1236 /**
1237 * Get the position at which padding will take place. This is the location
1238 * at which padding will be inserted if the result of format()
1239 * is shorter than the format width.
1240 * @return the pad position, one of kPadBeforePrefix,
1241 * kPadAfterPrefix, kPadBeforeSuffix, or
1242 * kPadAfterSuffix.
1243 * @see #setFormatWidth
1244 * @see #getFormatWidth
1245 * @see #setPadCharacter
1246 * @see #getPadCharacterString
1247 * @see #setPadPosition
1248 * @see #kPadBeforePrefix
1249 * @see #kPadAfterPrefix
1250 * @see #kPadBeforeSuffix
1251 * @see #kPadAfterSuffix
1252 * @stable ICU 2.0
1253 */
1254 virtual EPadPosition getPadPosition(void) const;
1255
1256 /**
1257 * Set the position at which padding will take place. This is the location
1258 * at which padding will be inserted if the result of format()
1259 * is shorter than the format width. This has no effect unless padding is
1260 * enabled.
1261 * @param padPos the pad position, one of kPadBeforePrefix,
1262 * kPadAfterPrefix, kPadBeforeSuffix, or
1263 * kPadAfterSuffix.
1264 * @see #setFormatWidth
1265 * @see #getFormatWidth
1266 * @see #setPadCharacter
1267 * @see #getPadCharacterString
1268 * @see #getPadPosition
1269 * @see #kPadBeforePrefix
1270 * @see #kPadAfterPrefix
1271 * @see #kPadBeforeSuffix
1272 * @see #kPadAfterSuffix
1273 * @stable ICU 2.0
1274 */
1275 virtual void setPadPosition(EPadPosition padPos);
1276
1277 /**
1278 * Return whether or not scientific notation is used.
1279 * @return TRUE if this object formats and parses scientific notation
1280 * @see #setScientificNotation
1281 * @see #getMinimumExponentDigits
1282 * @see #setMinimumExponentDigits
1283 * @see #isExponentSignAlwaysShown
1284 * @see #setExponentSignAlwaysShown
1285 * @stable ICU 2.0
1286 */
1287 virtual UBool isScientificNotation(void);
1288
1289 /**
1290 * Set whether or not scientific notation is used. When scientific notation
1291 * is used, the effective maximum number of integer digits is <= 8. If the
1292 * maximum number of integer digits is set to more than 8, the effective
1293 * maximum will be 1. This allows this call to generate a 'default' scientific
1294 * number format without additional changes.
1295 * @param useScientific TRUE if this object formats and parses scientific
1296 * notation
1297 * @see #isScientificNotation
1298 * @see #getMinimumExponentDigits
1299 * @see #setMinimumExponentDigits
1300 * @see #isExponentSignAlwaysShown
1301 * @see #setExponentSignAlwaysShown
1302 * @stable ICU 2.0
1303 */
1304 virtual void setScientificNotation(UBool useScientific);
1305
1306 /**
1307 * Return the minimum exponent digits that will be shown.
1308 * @return the minimum exponent digits that will be shown
1309 * @see #setScientificNotation
1310 * @see #isScientificNotation
1311 * @see #setMinimumExponentDigits
1312 * @see #isExponentSignAlwaysShown
1313 * @see #setExponentSignAlwaysShown
1314 * @stable ICU 2.0
1315 */
1316 virtual int8_t getMinimumExponentDigits(void) const;
1317
1318 /**
1319 * Set the minimum exponent digits that will be shown. This has no
1320 * effect unless scientific notation is in use.
1321 * @param minExpDig a value >= 1 indicating the fewest exponent digits
1322 * that will be shown. Values less than 1 will be treated as 1.
1323 * @see #setScientificNotation
1324 * @see #isScientificNotation
1325 * @see #getMinimumExponentDigits
1326 * @see #isExponentSignAlwaysShown
1327 * @see #setExponentSignAlwaysShown
1328 * @stable ICU 2.0
1329 */
1330 virtual void setMinimumExponentDigits(int8_t minExpDig);
1331
1332 /**
1333 * Return whether the exponent sign is always shown.
1334 * @return TRUE if the exponent is always prefixed with either the
1335 * localized minus sign or the localized plus sign, false if only negative
1336 * exponents are prefixed with the localized minus sign.
1337 * @see #setScientificNotation
1338 * @see #isScientificNotation
1339 * @see #setMinimumExponentDigits
1340 * @see #getMinimumExponentDigits
1341 * @see #setExponentSignAlwaysShown
1342 * @stable ICU 2.0
1343 */
1344 virtual UBool isExponentSignAlwaysShown(void);
1345
1346 /**
1347 * Set whether the exponent sign is always shown. This has no effect
1348 * unless scientific notation is in use.
1349 * @param expSignAlways TRUE if the exponent is always prefixed with either
1350 * the localized minus sign or the localized plus sign, false if only
1351 * negative exponents are prefixed with the localized minus sign.
1352 * @see #setScientificNotation
1353 * @see #isScientificNotation
1354 * @see #setMinimumExponentDigits
1355 * @see #getMinimumExponentDigits
1356 * @see #isExponentSignAlwaysShown
1357 * @stable ICU 2.0
1358 */
1359 virtual void setExponentSignAlwaysShown(UBool expSignAlways);
1360
1361 /**
1362 * Return the grouping size. Grouping size is the number of digits between
1363 * grouping separators in the integer portion of a number. For example,
1364 * in the number "123,456.78", the grouping size is 3.
1365 *
1366 * @return the grouping size.
1367 * @see setGroupingSize
1368 * @see NumberFormat::isGroupingUsed
1369 * @see DecimalFormatSymbols::getGroupingSeparator
1370 * @stable ICU 2.0
1371 */
1372 int32_t getGroupingSize(void) const;
1373
1374 /**
1375 * Set the grouping size. Grouping size is the number of digits between
1376 * grouping separators in the integer portion of a number. For example,
1377 * in the number "123,456.78", the grouping size is 3.
1378 *
1379 * @param newValue the new value of the grouping size.
1380 * @see getGroupingSize
1381 * @see NumberFormat::setGroupingUsed
1382 * @see DecimalFormatSymbols::setGroupingSeparator
1383 * @stable ICU 2.0
1384 */
1385 virtual void setGroupingSize(int32_t newValue);
1386
1387 /**
1388 * Return the secondary grouping size. In some locales one
1389 * grouping interval is used for the least significant integer
1390 * digits (the primary grouping size), and another is used for all
1391 * others (the secondary grouping size). A formatter supporting a
1392 * secondary grouping size will return a positive integer unequal
1393 * to the primary grouping size returned by
1394 * getGroupingSize(). For example, if the primary
1395 * grouping size is 4, and the secondary grouping size is 2, then
1396 * the number 123456789 formats as "1,23,45,6789", and the pattern
1397 * appears as "#,##,###0".
1398 * @return the secondary grouping size, or a value less than
1399 * one if there is none
1400 * @see setSecondaryGroupingSize
1401 * @see NumberFormat::isGroupingUsed
1402 * @see DecimalFormatSymbols::getGroupingSeparator
1403 * @stable ICU 2.4
1404 */
1405 int32_t getSecondaryGroupingSize(void) const;
1406
1407 /**
1408 * Set the secondary grouping size. If set to a value less than 1,
1409 * then secondary grouping is turned off, and the primary grouping
1410 * size is used for all intervals, not just the least significant.
1411 *
1412 * @param newValue the new value of the secondary grouping size.
1413 * @see getSecondaryGroupingSize
1414 * @see NumberFormat#setGroupingUsed
1415 * @see DecimalFormatSymbols::setGroupingSeparator
1416 * @stable ICU 2.4
1417 */
1418 virtual void setSecondaryGroupingSize(int32_t newValue);
1419
1420 /**
1421 * Allows you to get the behavior of the decimal separator with integers.
1422 * (The decimal separator will always appear with decimals.)
1423 *
1424 * @return TRUE if the decimal separator always appear with decimals.
1425 * Example: Decimal ON: 12345 -> 12345.; OFF: 12345 -> 12345
1426 * @stable ICU 2.0
1427 */
1428 UBool isDecimalSeparatorAlwaysShown(void) const;
1429
1430 /**
1431 * Allows you to set the behavior of the decimal separator with integers.
1432 * (The decimal separator will always appear with decimals.)
1433 *
1434 * @param newValue set TRUE if the decimal separator will always appear with decimals.
1435 * Example: Decimal ON: 12345 -> 12345.; OFF: 12345 -> 12345
1436 * @stable ICU 2.0
1437 */
1438 virtual void setDecimalSeparatorAlwaysShown(UBool newValue);
1439
1440 /**
1441 * Synthesizes a pattern string that represents the current state
1442 * of this Format object.
1443 *
1444 * @param result Output param which will receive the pattern.
1445 * Previous contents are deleted.
1446 * @return A reference to 'result'.
1447 * @see applyPattern
1448 * @stable ICU 2.0
1449 */
1450 virtual UnicodeString& toPattern(UnicodeString& result) const;
1451
1452 /**
1453 * Synthesizes a localized pattern string that represents the current
1454 * state of this Format object.
1455 *
1456 * @param result Output param which will receive the localized pattern.
1457 * Previous contents are deleted.
1458 * @return A reference to 'result'.
1459 * @see applyPattern
1460 * @stable ICU 2.0
1461 */
1462 virtual UnicodeString& toLocalizedPattern(UnicodeString& result) const;
1463
1464 /**
1465 * Apply the given pattern to this Format object. A pattern is a
1466 * short-hand specification for the various formatting properties.
1467 * These properties can also be changed individually through the
1468 * various setter methods.
1469 * <P>
1470 * There is no limit to integer digits are set
1471 * by this routine, since that is the typical end-user desire;
1472 * use setMaximumInteger if you want to set a real value.
1473 * For negative numbers, use a second pattern, separated by a semicolon
1474 * <pre>
1475 * . Example "#,#00.0#" -> 1,234.56
1476 * </pre>
1477 * This means a minimum of 2 integer digits, 1 fraction digit, and
1478 * a maximum of 2 fraction digits.
1479 * <pre>
1480 * . Example: "#,#00.0#;(#,#00.0#)" for negatives in parantheses.
1481 * </pre>
1482 * In negative patterns, the minimum and maximum counts are ignored;
1483 * these are presumed to be set in the positive pattern.
1484 *
1485 * @param pattern The pattern to be applied.
1486 * @param parseError Struct to recieve information on position
1487 * of error if an error is encountered
1488 * @param status Output param set to success/failure code on
1489 * exit. If the pattern is invalid, this will be
1490 * set to a failure result.
1491 * @stable ICU 2.0
1492 */
1493 virtual void applyPattern(const UnicodeString& pattern,
1494 UParseError& parseError,
1495 UErrorCode& status);
1496 /**
1497 * Sets the pattern.
1498 * @param pattern The pattern to be applied.
1499 * @param status Output param set to success/failure code on
1500 * exit. If the pattern is invalid, this will be
1501 * set to a failure result.
1502 * @stable ICU 2.0
1503 */
1504 virtual void applyPattern(const UnicodeString& pattern,
1505 UErrorCode& status);
1506
1507 /**
1508 * Apply the given pattern to this Format object. The pattern
1509 * is assumed to be in a localized notation. A pattern is a
1510 * short-hand specification for the various formatting properties.
1511 * These properties can also be changed individually through the
1512 * various setter methods.
1513 * <P>
1514 * There is no limit to integer digits are set
1515 * by this routine, since that is the typical end-user desire;
1516 * use setMaximumInteger if you want to set a real value.
1517 * For negative numbers, use a second pattern, separated by a semicolon
1518 * <pre>
1519 * . Example "#,#00.0#" -> 1,234.56
1520 * </pre>
1521 * This means a minimum of 2 integer digits, 1 fraction digit, and
1522 * a maximum of 2 fraction digits.
1523 *
1524 * Example: "#,#00.0#;(#,#00.0#)" for negatives in parantheses.
1525 *
1526 * In negative patterns, the minimum and maximum counts are ignored;
1527 * these are presumed to be set in the positive pattern.
1528 *
1529 * @param pattern The localized pattern to be applied.
1530 * @param parseError Struct to recieve information on position
1531 * of error if an error is encountered
1532 * @param status Output param set to success/failure code on
1533 * exit. If the pattern is invalid, this will be
1534 * set to a failure result.
1535 * @stable ICU 2.0
1536 */
1537 virtual void applyLocalizedPattern(const UnicodeString& pattern,
1538 UParseError& parseError,
1539 UErrorCode& status);
1540
1541 /**
1542 * Apply the given pattern to this Format object.
1543 *
1544 * @param pattern The localized pattern to be applied.
1545 * @param status Output param set to success/failure code on
1546 * exit. If the pattern is invalid, this will be
1547 * set to a failure result.
1548 * @stable ICU 2.0
1549 */
1550 virtual void applyLocalizedPattern(const UnicodeString& pattern,
1551 UErrorCode& status);
1552
1553
1554 /**
1555 * Sets the maximum number of digits allowed in the integer portion of a
1556 * number. This override limits the integer digit count to 309.
1557 *
1558 * @param newValue the new value of the maximum number of digits
1559 * allowed in the integer portion of a number.
1560 * @see NumberFormat#setMaximumIntegerDigits
1561 * @stable ICU 2.0
1562 */
1563 virtual void setMaximumIntegerDigits(int32_t newValue);
1564
1565 /**
1566 * Sets the minimum number of digits allowed in the integer portion of a
1567 * number. This override limits the integer digit count to 309.
1568 *
1569 * @param newValue the new value of the minimum number of digits
1570 * allowed in the integer portion of a number.
1571 * @see NumberFormat#setMinimumIntegerDigits
1572 * @stable ICU 2.0
1573 */
1574 virtual void setMinimumIntegerDigits(int32_t newValue);
1575
1576 /**
1577 * Sets the maximum number of digits allowed in the fraction portion of a
1578 * number. This override limits the fraction digit count to 340.
1579 *
1580 * @param newValue the new value of the maximum number of digits
1581 * allowed in the fraction portion of a number.
1582 * @see NumberFormat#setMaximumFractionDigits
1583 * @stable ICU 2.0
1584 */
1585 virtual void setMaximumFractionDigits(int32_t newValue);
1586
1587 /**
1588 * Sets the minimum number of digits allowed in the fraction portion of a
1589 * number. This override limits the fraction digit count to 340.
1590 *
1591 * @param newValue the new value of the minimum number of digits
1592 * allowed in the fraction portion of a number.
1593 * @see NumberFormat#setMinimumFractionDigits
1594 * @stable ICU 2.0
1595 */
1596 virtual void setMinimumFractionDigits(int32_t newValue);
1597
1598 /**
1599 * Returns the minimum number of significant digits that will be
1600 * displayed. This value has no effect unless areSignificantDigitsUsed()
1601 * returns true.
1602 * @return the fewest significant digits that will be shown
1603 * @stable ICU 3.0
1604 */
1605 int32_t getMinimumSignificantDigits() const;
1606
1607 /**
1608 * Returns the maximum number of significant digits that will be
1609 * displayed. This value has no effect unless areSignificantDigitsUsed()
1610 * returns true.
1611 * @return the most significant digits that will be shown
1612 * @stable ICU 3.0
1613 */
1614 int32_t getMaximumSignificantDigits() const;
1615
1616 /**
1617 * Sets the minimum number of significant digits that will be
1618 * displayed. If <code>min</code> is less than one then it is set
1619 * to one. If the maximum significant digits count is less than
1620 * <code>min</code>, then it is set to <code>min</code>. This
1621 * value has no effect unless areSignificantDigits() returns true.
1622 * @param min the fewest significant digits to be shown
1623 * @stable ICU 3.0
1624 */
1625 void setMinimumSignificantDigits(int32_t min);
1626
1627 /**
1628 * Sets the maximum number of significant digits that will be
1629 * displayed. If <code>max</code> is less than one then it is set
1630 * to one. If the minimum significant digits count is greater
1631 * than <code>max</code>, then it is set to <code>max</code>.
1632 * This value has no effect unless areSignificantDigits() returns
1633 * true.
1634 * @param max the most significant digits to be shown
1635 * @stable ICU 3.0
1636 */
1637 void setMaximumSignificantDigits(int32_t max);
1638
1639 /**
1640 * Returns true if significant digits are in use, or false if
1641 * integer and fraction digit counts are in use.
1642 * @return true if significant digits are in use
1643 * @stable ICU 3.0
1644 */
1645 UBool areSignificantDigitsUsed() const;
1646
1647 /**
1648 * Sets whether significant digits are in use, or integer and
1649 * fraction digit counts are in use.
1650 * @param useSignificantDigits true to use significant digits, or
1651 * false to use integer and fraction digit counts
1652 * @stable ICU 3.0
1653 */
1654 void setSignificantDigitsUsed(UBool useSignificantDigits);
1655
1656 public:
1657 /**
1658 * Sets the currency used to display currency
1659 * amounts. This takes effect immediately, if this format is a
1660 * currency format. If this format is not a currency format, then
1661 * the currency is used if and when this object becomes a
1662 * currency format through the application of a new pattern.
1663 * @param theCurrency a 3-letter ISO code indicating new currency
1664 * to use. It need not be null-terminated. May be the empty
1665 * string or NULL to indicate no currency.
1666 * @param ec input-output error code
1667 * @stable ICU 3.0
1668 */
1669 virtual void setCurrency(const UChar* theCurrency, UErrorCode& ec);
1670
1671 /**
1672 * Sets the currency used to display currency amounts. See
1673 * setCurrency(const UChar*, UErrorCode&).
1674 * @deprecated ICU 3.0. Use setCurrency(const UChar*, UErrorCode&).
1675 */
1676 virtual void setCurrency(const UChar* theCurrency);
1677
1678 /**
1679 * The resource tags we use to retrieve decimal format data from
1680 * locale resource bundles.
1681 * @deprecated ICU 3.4. This string has no public purpose. Please don't use it.
1682 */
1683 static const char fgNumberPatterns[];
1684
1685 public:
1686
1687 /**
1688 * Return the class ID for this class. This is useful only for
1689 * comparing to a return value from getDynamicClassID(). For example:
1690 * <pre>
1691 * . Base* polymorphic_pointer = createPolymorphicObject();
1692 * . if (polymorphic_pointer->getDynamicClassID() ==
1693 * . Derived::getStaticClassID()) ...
1694 * </pre>
1695 * @return The class ID for all objects of this class.
1696 * @stable ICU 2.0
1697 */
1698 static UClassID U_EXPORT2 getStaticClassID(void);
1699
1700 /**
1701 * Returns a unique class ID POLYMORPHICALLY. Pure virtual override.
1702 * This method is to implement a simple version of RTTI, since not all
1703 * C++ compilers support genuine RTTI. Polymorphic operator==() and
1704 * clone() methods call this method.
1705 *
1706 * @return The class ID for this object. All objects of a
1707 * given class have the same class ID. Objects of
1708 * other classes have different class IDs.
1709 * @stable ICU 2.0
1710 */
1711 virtual UClassID getDynamicClassID(void) const;
1712
1713 private:
1714 DecimalFormat(); // default constructor not implemented
1715
1716 int32_t precision(UBool isIntegral) const;
1717
1718 /**
1719 * Do real work of constructing a new DecimalFormat.
1720 */
1721 void construct(UErrorCode& status,
1722 UParseError& parseErr,
1723 const UnicodeString* pattern = 0,
1724 DecimalFormatSymbols* symbolsToAdopt = 0
1725 );
1726
1727 /**
1728 * Does the real work of generating a pattern.
1729 *
1730 * @param result Output param which will receive the pattern.
1731 * Previous contents are deleted.
1732 * @param localized TRUE return localized pattern.
1733 * @return A reference to 'result'.
1734 */
1735 UnicodeString& toPattern(UnicodeString& result, UBool localized) const;
1736
1737 /**
1738 * Does the real work of applying a pattern.
1739 * @param pattern The pattern to be applied.
1740 * @param localized If true, the pattern is localized; else false.
1741 * @param parseError Struct to recieve information on position
1742 * of error if an error is encountered
1743 * @param status Output param set to success/failure code on
1744 * exit. If the pattern is invalid, this will be
1745 * set to a failure result.
1746 */
1747 void applyPattern(const UnicodeString& pattern,
1748 UBool localized,
1749 UParseError& parseError,
1750 UErrorCode& status);
1751 /**
1752 * Do the work of formatting a number, either a double or a long.
1753 *
1754 * @param appendTo Output parameter to receive result.
1755 * Result is appended to existing contents.
1756 * @param fieldPosition On input: an alignment field, if desired.
1757 * On output: the offsets of the alignment field.
1758 * @param digits the digits to be formatted.
1759 * @param isInteger if TRUE format the digits as Integer.
1760 * @return Reference to 'appendTo' parameter.
1761 */
1762 UnicodeString& subformat(UnicodeString& appendTo,
1763 FieldPosition& fieldPosition,
1764 DigitList& digits,
1765 UBool isInteger) const;
1766
1767 // BEGIN android-removed
1768 // UnicodeString& subformat(UnicodeString& appendTo,
1769 // FieldPosition& fieldPosition,
1770 // AttrBuffer attrBuffer,
1771 // DigitList& digits,
1772 // UBool isInteger) const;
1773 // END android-removed
1774
1775 void parse(const UnicodeString& text,
1776 Formattable& result,
1777 ParsePosition& pos,
1778 UBool parseCurrency) const;
1779
1780 enum {
1781 fgStatusInfinite,
1782 fgStatusLength // Leave last in list.
1783 } StatusFlags;
1784
1785 UBool subparse(const UnicodeString& text, ParsePosition& parsePosition,
1786 DigitList& digits, UBool* status,
1787 UChar* currency) const;
1788
1789 int32_t skipPadding(const UnicodeString& text, int32_t position) const;
1790
1791 int32_t compareAffix(const UnicodeString& input,
1792 int32_t pos,
1793 UBool isNegative,
1794 UBool isPrefix,
1795 UChar* currency) const;
1796
1797 static int32_t compareSimpleAffix(const UnicodeString& affix,
1798 const UnicodeString& input,
1799 int32_t pos);
1800
1801 static int32_t skipRuleWhiteSpace(const UnicodeString& text, int32_t pos);
1802
1803 static int32_t skipUWhiteSpace(const UnicodeString& text, int32_t pos);
1804
1805 int32_t compareComplexAffix(const UnicodeString& affixPat,
1806 const UnicodeString& input,
1807 int32_t pos,
1808 UChar* currency) const;
1809
1810 static int32_t match(const UnicodeString& text, int32_t pos, UChar32 ch);
1811
1812 static int32_t match(const UnicodeString& text, int32_t pos, const UnicodeString& str);
1813
1814 /**
1815 * Get a decimal format symbol.
1816 * Returns a const reference to the symbol string.
1817 * @internal
1818 */
1819 inline const UnicodeString &getConstSymbol(DecimalFormatSymbols::ENumberFormatSymbol symbol) const;
1820
1821 int32_t appendAffix(UnicodeString& buf, double number,
1822 UBool isNegative, UBool isPrefix) const;
1823
1824 int32_t appendAffix(UnicodeString& buf, double number, AttrBuffer attrBuffer,
1825 UBool isNegative, UBool isPrefix) const;
1826
1827 /**
1828 * Append an affix to the given UnicodeString, using quotes if
1829 * there are special characters. Single quotes themselves must be
1830 * escaped in either case.
1831 */
1832 void appendAffixPattern(UnicodeString& appendTo, const UnicodeString& affix,
1833 UBool localized) const;
1834
1835 void appendAffixPattern(UnicodeString& appendTo,
1836 const UnicodeString* affixPattern,
1837 const UnicodeString& expAffix, UBool localized) const;
1838
1839 void expandAffix(const UnicodeString& pattern,
1840 UnicodeString& affix,
1841 double number,
1842 UBool doFormat) const;
1843
1844 void expandAffix(const UnicodeString& pattern,
1845 UnicodeString& affix,
1846 double number,
1847 AttrBuffer attrBuffer,
1848 UBool doFormat) const;
1849
1850 void expandAffixes();
1851
1852 static double round(double a, ERoundingMode mode, UBool isNegative);
1853
1854 void addPadding(UnicodeString& appendTo,
1855 FieldPosition& fieldPosition,
1856 int32_t prefixLen, int32_t suffixLen) const;
1857
1858 UBool isGroupingPosition(int32_t pos) const;
1859
1860 void setCurrencyForSymbols();
1861
1862 /**
1863 * Constants.
1864 */
1865 //static const int8_t fgMaxDigit; // The largest digit, in this case 9
1866
1867 /*transient*/ //DigitList* fDigitList;
1868
1869 UnicodeString fPositivePrefix;
1870 UnicodeString fPositiveSuffix;
1871 UnicodeString fNegativePrefix;
1872 UnicodeString fNegativeSuffix;
1873 UnicodeString* fPosPrefixPattern;
1874 UnicodeString* fPosSuffixPattern;
1875 UnicodeString* fNegPrefixPattern;
1876 UnicodeString* fNegSuffixPattern;
1877
1878 /**
1879 * Formatter for ChoiceFormat-based currency names. If this field
1880 * is not null, then delegate to it to format currency symbols.
1881 * @since ICU 2.6
1882 */
1883 ChoiceFormat* fCurrencyChoice;
1884
1885 int32_t fMultiplier;
1886 int32_t fGroupingSize;
1887 int32_t fGroupingSize2;
1888 UBool fDecimalSeparatorAlwaysShown;
1889 /*transient*/ UBool fIsCurrencyFormat;
1890 DecimalFormatSymbols* fSymbols;
1891
1892 UBool fUseSignificantDigits;
1893 int32_t fMinSignificantDigits;
1894 int32_t fMaxSignificantDigits;
1895
1896 UBool fUseExponentialNotation;
1897 int8_t fMinExponentDigits;
1898 UBool fExponentSignAlwaysShown;
1899
1900 /* If fRoundingIncrement is NULL, there is no rounding. Otherwise, round to
1901 * fRoundingIncrement.getDouble(). Since this operation may be expensive,
1902 * we cache the result in fRoundingDouble. All methods that update
1903 * fRoundingIncrement also update fRoundingDouble. */
1904 DigitList* fRoundingIncrement;
1905 /*transient*/ double fRoundingDouble;
1906 ERoundingMode fRoundingMode;
1907
1908 UChar32 fPad;
1909 int32_t fFormatWidth;
1910 EPadPosition fPadPosition;
1911
1912 void addAttribute(AttrBuffer attrBuffer, char *fieldname, int begin, int end) const;
1913
1914 protected:
1915
1916 /**
1917 * Returns the currency in effect for this formatter. Subclasses
1918 * should override this method as needed. Unlike getCurrency(),
1919 * this method should never return "".
1920 * @result output parameter for null-terminated result, which must
1921 * have a capacity of at least 4
1922 * @internal
1923 */
1924 virtual void getEffectiveCurrency(UChar* result, UErrorCode& ec) const;
1925
1926 /** number of integer digits
1927 * @stable ICU 2.4
1928 */
1929 static const int32_t kDoubleIntegerDigits;
1930 /** number of fraction digits
1931 * @stable ICU 2.4
1932 */
1933 static const int32_t kDoubleFractionDigits;
1934
1935 /**
1936 * When someone turns on scientific mode, we assume that more than this
1937 * number of digits is due to flipping from some other mode that didn't
1938 * restrict the maximum, and so we force 1 integer digit. We don't bother
1939 * to track and see if someone is using exponential notation with more than
1940 * this number, it wouldn't make sense anyway, and this is just to make sure
1941 * that someone turning on scientific mode with default settings doesn't
1942 * end up with lots of zeroes.
1943 * @stable ICU 2.8
1944 */
1945 static const int32_t kMaxScientificIntegerDigits;
1946 };
1947
1948 inline UnicodeString&
format(const Formattable & obj,UnicodeString & appendTo,UErrorCode & status)1949 DecimalFormat::format(const Formattable& obj,
1950 UnicodeString& appendTo,
1951 UErrorCode& status) const {
1952 // Don't use Format:: - use immediate base class only,
1953 // in case immediate base modifies behavior later.
1954 return NumberFormat::format(obj, appendTo, status);
1955 }
1956
1957 inline UnicodeString&
format(double number,UnicodeString & appendTo)1958 DecimalFormat::format(double number,
1959 UnicodeString& appendTo) const {
1960 FieldPosition pos(0);
1961 return format(number, appendTo, pos, NULL);
1962 }
1963
1964 inline UnicodeString&
format(int32_t number,UnicodeString & appendTo)1965 DecimalFormat::format(int32_t number,
1966 UnicodeString& appendTo) const {
1967 FieldPosition pos(0);
1968 return format((int64_t)number, appendTo, pos, NULL);
1969 }
1970
1971 inline const UnicodeString &
getConstSymbol(DecimalFormatSymbols::ENumberFormatSymbol symbol)1972 DecimalFormat::getConstSymbol(DecimalFormatSymbols::ENumberFormatSymbol symbol) const {
1973 return fSymbols->getConstSymbol(symbol);
1974 }
1975
1976 U_NAMESPACE_END
1977
1978 #endif /* #if !UCONFIG_NO_FORMATTING */
1979
1980 #endif // _DECIMFMT
1981 //eof
1982