• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AES-based functions
3  *
4  * - AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
5  * - One-Key CBC MAC (OMAC1) hash with AES-128
6  * - AES-128 CTR mode encryption
7  * - AES-128 EAX mode encryption/decryption
8  * - AES-128 CBC
9  *
10  * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * Alternatively, this software may be distributed under the terms of BSD
17  * license.
18  *
19  * See README and COPYING for more details.
20  */
21 
22 #include "includes.h"
23 
24 #include "common.h"
25 #include "aes_wrap.h"
26 #include "crypto.h"
27 
28 #ifdef INTERNAL_AES
29 #include "aes.c"
30 #endif /* INTERNAL_AES */
31 
32 
33 #ifndef CONFIG_NO_AES_WRAP
34 
35 /**
36  * aes_wrap - Wrap keys with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
37  * @kek: 16-octet Key encryption key (KEK)
38  * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
39  * bytes
40  * @plain: Plaintext key to be wrapped, n * 64 bits
41  * @cipher: Wrapped key, (n + 1) * 64 bits
42  * Returns: 0 on success, -1 on failure
43  */
aes_wrap(const u8 * kek,int n,const u8 * plain,u8 * cipher)44 int aes_wrap(const u8 *kek, int n, const u8 *plain, u8 *cipher)
45 {
46 	u8 *a, *r, b[16];
47 	int i, j;
48 	void *ctx;
49 
50 	a = cipher;
51 	r = cipher + 8;
52 
53 	/* 1) Initialize variables. */
54 	os_memset(a, 0xa6, 8);
55 	os_memcpy(r, plain, 8 * n);
56 
57 	ctx = aes_encrypt_init(kek, 16);
58 	if (ctx == NULL)
59 		return -1;
60 
61 	/* 2) Calculate intermediate values.
62 	 * For j = 0 to 5
63 	 *     For i=1 to n
64 	 *         B = AES(K, A | R[i])
65 	 *         A = MSB(64, B) ^ t where t = (n*j)+i
66 	 *         R[i] = LSB(64, B)
67 	 */
68 	for (j = 0; j <= 5; j++) {
69 		r = cipher + 8;
70 		for (i = 1; i <= n; i++) {
71 			os_memcpy(b, a, 8);
72 			os_memcpy(b + 8, r, 8);
73 			aes_encrypt(ctx, b, b);
74 			os_memcpy(a, b, 8);
75 			a[7] ^= n * j + i;
76 			os_memcpy(r, b + 8, 8);
77 			r += 8;
78 		}
79 	}
80 	aes_encrypt_deinit(ctx);
81 
82 	/* 3) Output the results.
83 	 *
84 	 * These are already in @cipher due to the location of temporary
85 	 * variables.
86 	 */
87 
88 	return 0;
89 }
90 
91 #endif /* CONFIG_NO_AES_WRAP */
92 
93 
94 /**
95  * aes_unwrap - Unwrap key with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
96  * @kek: Key encryption key (KEK)
97  * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
98  * bytes
99  * @cipher: Wrapped key to be unwrapped, (n + 1) * 64 bits
100  * @plain: Plaintext key, n * 64 bits
101  * Returns: 0 on success, -1 on failure (e.g., integrity verification failed)
102  */
aes_unwrap(const u8 * kek,int n,const u8 * cipher,u8 * plain)103 int aes_unwrap(const u8 *kek, int n, const u8 *cipher, u8 *plain)
104 {
105 	u8 a[8], *r, b[16];
106 	int i, j;
107 	void *ctx;
108 
109 	/* 1) Initialize variables. */
110 	os_memcpy(a, cipher, 8);
111 	r = plain;
112 	os_memcpy(r, cipher + 8, 8 * n);
113 
114 	ctx = aes_decrypt_init(kek, 16);
115 	if (ctx == NULL)
116 		return -1;
117 
118 	/* 2) Compute intermediate values.
119 	 * For j = 5 to 0
120 	 *     For i = n to 1
121 	 *         B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
122 	 *         A = MSB(64, B)
123 	 *         R[i] = LSB(64, B)
124 	 */
125 	for (j = 5; j >= 0; j--) {
126 		r = plain + (n - 1) * 8;
127 		for (i = n; i >= 1; i--) {
128 			os_memcpy(b, a, 8);
129 			b[7] ^= n * j + i;
130 
131 			os_memcpy(b + 8, r, 8);
132 			aes_decrypt(ctx, b, b);
133 			os_memcpy(a, b, 8);
134 			os_memcpy(r, b + 8, 8);
135 			r -= 8;
136 		}
137 	}
138 	aes_decrypt_deinit(ctx);
139 
140 	/* 3) Output results.
141 	 *
142 	 * These are already in @plain due to the location of temporary
143 	 * variables. Just verify that the IV matches with the expected value.
144 	 */
145 	for (i = 0; i < 8; i++) {
146 		if (a[i] != 0xa6)
147 			return -1;
148 	}
149 
150 	return 0;
151 }
152 
153 
154 #define BLOCK_SIZE 16
155 
156 #ifndef CONFIG_NO_AES_OMAC1
157 
gf_mulx(u8 * pad)158 static void gf_mulx(u8 *pad)
159 {
160 	int i, carry;
161 
162 	carry = pad[0] & 0x80;
163 	for (i = 0; i < BLOCK_SIZE - 1; i++)
164 		pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);
165 	pad[BLOCK_SIZE - 1] <<= 1;
166 	if (carry)
167 		pad[BLOCK_SIZE - 1] ^= 0x87;
168 }
169 
170 
171 /**
172  * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128
173  * @key: 128-bit key for the hash operation
174  * @num_elem: Number of elements in the data vector
175  * @addr: Pointers to the data areas
176  * @len: Lengths of the data blocks
177  * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
178  * Returns: 0 on success, -1 on failure
179  */
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)180 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
181 			 const u8 *addr[], const size_t *len, u8 *mac)
182 {
183 	void *ctx;
184 	u8 cbc[BLOCK_SIZE], pad[BLOCK_SIZE];
185 	const u8 *pos, *end;
186 	size_t i, e, left, total_len;
187 
188 	ctx = aes_encrypt_init(key, 16);
189 	if (ctx == NULL)
190 		return -1;
191 	os_memset(cbc, 0, BLOCK_SIZE);
192 
193 	total_len = 0;
194 	for (e = 0; e < num_elem; e++)
195 		total_len += len[e];
196 	left = total_len;
197 
198 	e = 0;
199 	pos = addr[0];
200 	end = pos + len[0];
201 
202 	while (left >= BLOCK_SIZE) {
203 		for (i = 0; i < BLOCK_SIZE; i++) {
204 			cbc[i] ^= *pos++;
205 			if (pos >= end) {
206 				e++;
207 				pos = addr[e];
208 				end = pos + len[e];
209 			}
210 		}
211 		if (left > BLOCK_SIZE)
212 			aes_encrypt(ctx, cbc, cbc);
213 		left -= BLOCK_SIZE;
214 	}
215 
216 	os_memset(pad, 0, BLOCK_SIZE);
217 	aes_encrypt(ctx, pad, pad);
218 	gf_mulx(pad);
219 
220 	if (left || total_len == 0) {
221 		for (i = 0; i < left; i++) {
222 			cbc[i] ^= *pos++;
223 			if (pos >= end) {
224 				e++;
225 				pos = addr[e];
226 				end = pos + len[e];
227 			}
228 		}
229 		cbc[left] ^= 0x80;
230 		gf_mulx(pad);
231 	}
232 
233 	for (i = 0; i < BLOCK_SIZE; i++)
234 		pad[i] ^= cbc[i];
235 	aes_encrypt(ctx, pad, mac);
236 	aes_encrypt_deinit(ctx);
237 	return 0;
238 }
239 
240 
241 /**
242  * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC)
243  * @key: 128-bit key for the hash operation
244  * @data: Data buffer for which a MAC is determined
245  * @data_len: Length of data buffer in bytes
246  * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
247  * Returns: 0 on success, -1 on failure
248  *
249  * This is a mode for using block cipher (AES in this case) for authentication.
250  * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
251  * (SP) 800-38B.
252  */
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)253 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
254 {
255 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
256 }
257 
258 #endif /* CONFIG_NO_AES_OMAC1 */
259 
260 
261 /**
262  * aes_128_encrypt_block - Perform one AES 128-bit block operation
263  * @key: Key for AES
264  * @in: Input data (16 bytes)
265  * @out: Output of the AES block operation (16 bytes)
266  * Returns: 0 on success, -1 on failure
267  */
aes_128_encrypt_block(const u8 * key,const u8 * in,u8 * out)268 int aes_128_encrypt_block(const u8 *key, const u8 *in, u8 *out)
269 {
270 	void *ctx;
271 	ctx = aes_encrypt_init(key, 16);
272 	if (ctx == NULL)
273 		return -1;
274 	aes_encrypt(ctx, in, out);
275 	aes_encrypt_deinit(ctx);
276 	return 0;
277 }
278 
279 
280 #ifndef CONFIG_NO_AES_CTR
281 
282 /**
283  * aes_128_ctr_encrypt - AES-128 CTR mode encryption
284  * @key: Key for encryption (16 bytes)
285  * @nonce: Nonce for counter mode (16 bytes)
286  * @data: Data to encrypt in-place
287  * @data_len: Length of data in bytes
288  * Returns: 0 on success, -1 on failure
289  */
aes_128_ctr_encrypt(const u8 * key,const u8 * nonce,u8 * data,size_t data_len)290 int aes_128_ctr_encrypt(const u8 *key, const u8 *nonce,
291 			u8 *data, size_t data_len)
292 {
293 	void *ctx;
294 	size_t j, len, left = data_len;
295 	int i;
296 	u8 *pos = data;
297 	u8 counter[BLOCK_SIZE], buf[BLOCK_SIZE];
298 
299 	ctx = aes_encrypt_init(key, 16);
300 	if (ctx == NULL)
301 		return -1;
302 	os_memcpy(counter, nonce, BLOCK_SIZE);
303 
304 	while (left > 0) {
305 		aes_encrypt(ctx, counter, buf);
306 
307 		len = (left < BLOCK_SIZE) ? left : BLOCK_SIZE;
308 		for (j = 0; j < len; j++)
309 			pos[j] ^= buf[j];
310 		pos += len;
311 		left -= len;
312 
313 		for (i = BLOCK_SIZE - 1; i >= 0; i--) {
314 			counter[i]++;
315 			if (counter[i])
316 				break;
317 		}
318 	}
319 	aes_encrypt_deinit(ctx);
320 	return 0;
321 }
322 
323 #endif /* CONFIG_NO_AES_CTR */
324 
325 
326 #ifndef CONFIG_NO_AES_EAX
327 
328 /**
329  * aes_128_eax_encrypt - AES-128 EAX mode encryption
330  * @key: Key for encryption (16 bytes)
331  * @nonce: Nonce for counter mode
332  * @nonce_len: Nonce length in bytes
333  * @hdr: Header data to be authenticity protected
334  * @hdr_len: Length of the header data bytes
335  * @data: Data to encrypt in-place
336  * @data_len: Length of data in bytes
337  * @tag: 16-byte tag value
338  * Returns: 0 on success, -1 on failure
339  */
aes_128_eax_encrypt(const u8 * key,const u8 * nonce,size_t nonce_len,const u8 * hdr,size_t hdr_len,u8 * data,size_t data_len,u8 * tag)340 int aes_128_eax_encrypt(const u8 *key, const u8 *nonce, size_t nonce_len,
341 			const u8 *hdr, size_t hdr_len,
342 			u8 *data, size_t data_len, u8 *tag)
343 {
344 	u8 *buf;
345 	size_t buf_len;
346 	u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE];
347 	int i;
348 
349 	if (nonce_len > data_len)
350 		buf_len = nonce_len;
351 	else
352 		buf_len = data_len;
353 	if (hdr_len > buf_len)
354 		buf_len = hdr_len;
355 	buf_len += 16;
356 
357 	buf = os_malloc(buf_len);
358 	if (buf == NULL)
359 		return -1;
360 
361 	os_memset(buf, 0, 15);
362 
363 	buf[15] = 0;
364 	os_memcpy(buf + 16, nonce, nonce_len);
365 	omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac);
366 
367 	buf[15] = 1;
368 	os_memcpy(buf + 16, hdr, hdr_len);
369 	omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac);
370 
371 	aes_128_ctr_encrypt(key, nonce_mac, data, data_len);
372 	buf[15] = 2;
373 	os_memcpy(buf + 16, data, data_len);
374 	omac1_aes_128(key, buf, 16 + data_len, data_mac);
375 
376 	os_free(buf);
377 
378 	for (i = 0; i < BLOCK_SIZE; i++)
379 		tag[i] = nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i];
380 
381 	return 0;
382 }
383 
384 
385 /**
386  * aes_128_eax_decrypt - AES-128 EAX mode decryption
387  * @key: Key for decryption (16 bytes)
388  * @nonce: Nonce for counter mode
389  * @nonce_len: Nonce length in bytes
390  * @hdr: Header data to be authenticity protected
391  * @hdr_len: Length of the header data bytes
392  * @data: Data to encrypt in-place
393  * @data_len: Length of data in bytes
394  * @tag: 16-byte tag value
395  * Returns: 0 on success, -1 on failure, -2 if tag does not match
396  */
aes_128_eax_decrypt(const u8 * key,const u8 * nonce,size_t nonce_len,const u8 * hdr,size_t hdr_len,u8 * data,size_t data_len,const u8 * tag)397 int aes_128_eax_decrypt(const u8 *key, const u8 *nonce, size_t nonce_len,
398 			const u8 *hdr, size_t hdr_len,
399 			u8 *data, size_t data_len, const u8 *tag)
400 {
401 	u8 *buf;
402 	size_t buf_len;
403 	u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE];
404 	int i;
405 
406 	if (nonce_len > data_len)
407 		buf_len = nonce_len;
408 	else
409 		buf_len = data_len;
410 	if (hdr_len > buf_len)
411 		buf_len = hdr_len;
412 	buf_len += 16;
413 
414 	buf = os_malloc(buf_len);
415 	if (buf == NULL)
416 		return -1;
417 
418 	os_memset(buf, 0, 15);
419 
420 	buf[15] = 0;
421 	os_memcpy(buf + 16, nonce, nonce_len);
422 	omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac);
423 
424 	buf[15] = 1;
425 	os_memcpy(buf + 16, hdr, hdr_len);
426 	omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac);
427 
428 	buf[15] = 2;
429 	os_memcpy(buf + 16, data, data_len);
430 	omac1_aes_128(key, buf, 16 + data_len, data_mac);
431 
432 	os_free(buf);
433 
434 	for (i = 0; i < BLOCK_SIZE; i++) {
435 		if (tag[i] != (nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i]))
436 			return -2;
437 	}
438 
439 	aes_128_ctr_encrypt(key, nonce_mac, data, data_len);
440 
441 	return 0;
442 }
443 
444 #endif /* CONFIG_NO_AES_EAX */
445 
446 
447 #ifndef CONFIG_NO_AES_CBC
448 
449 /**
450  * aes_128_cbc_encrypt - AES-128 CBC encryption
451  * @key: Encryption key
452  * @iv: Encryption IV for CBC mode (16 bytes)
453  * @data: Data to encrypt in-place
454  * @data_len: Length of data in bytes (must be divisible by 16)
455  * Returns: 0 on success, -1 on failure
456  */
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)457 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
458 {
459 	void *ctx;
460 	u8 cbc[BLOCK_SIZE];
461 	u8 *pos = data;
462 	int i, j, blocks;
463 
464 	ctx = aes_encrypt_init(key, 16);
465 	if (ctx == NULL)
466 		return -1;
467 	os_memcpy(cbc, iv, BLOCK_SIZE);
468 
469 	blocks = data_len / BLOCK_SIZE;
470 	for (i = 0; i < blocks; i++) {
471 		for (j = 0; j < BLOCK_SIZE; j++)
472 			cbc[j] ^= pos[j];
473 		aes_encrypt(ctx, cbc, cbc);
474 		os_memcpy(pos, cbc, BLOCK_SIZE);
475 		pos += BLOCK_SIZE;
476 	}
477 	aes_encrypt_deinit(ctx);
478 	return 0;
479 }
480 
481 
482 /**
483  * aes_128_cbc_decrypt - AES-128 CBC decryption
484  * @key: Decryption key
485  * @iv: Decryption IV for CBC mode (16 bytes)
486  * @data: Data to decrypt in-place
487  * @data_len: Length of data in bytes (must be divisible by 16)
488  * Returns: 0 on success, -1 on failure
489  */
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)490 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
491 {
492 	void *ctx;
493 	u8 cbc[BLOCK_SIZE], tmp[BLOCK_SIZE];
494 	u8 *pos = data;
495 	int i, j, blocks;
496 
497 	ctx = aes_decrypt_init(key, 16);
498 	if (ctx == NULL)
499 		return -1;
500 	os_memcpy(cbc, iv, BLOCK_SIZE);
501 
502 	blocks = data_len / BLOCK_SIZE;
503 	for (i = 0; i < blocks; i++) {
504 		os_memcpy(tmp, pos, BLOCK_SIZE);
505 		aes_decrypt(ctx, pos, pos);
506 		for (j = 0; j < BLOCK_SIZE; j++)
507 			pos[j] ^= cbc[j];
508 		os_memcpy(cbc, tmp, BLOCK_SIZE);
509 		pos += BLOCK_SIZE;
510 	}
511 	aes_decrypt_deinit(ctx);
512 	return 0;
513 }
514 
515 #endif /* CONFIG_NO_AES_CBC */
516