• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23 
24 /* is_jmp field values */
25 #define DISAS_NEXT    0 /* next instruction can be analyzed */
26 #define DISAS_JUMP    1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
29 
30 typedef struct TranslationBlock TranslationBlock;
31 
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 64
34 /* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35 #define MAX_OPC_PARAM 10
36 #define OPC_BUF_SIZE 512
37 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38 
39 /* Maximum size a TCG op can expand to.  This is complicated because a
40    single op may require several host instructions and regirster reloads.
41    For now take a wild guess at 128 bytes, which should allow at least
42    a couple of fixup instructions per argument.  */
43 #define TCG_MAX_OP_SIZE 128
44 
45 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46 
47 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51 extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
52 extern target_ulong gen_opc_jump_pc[2];
53 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
54 
55 typedef void (GenOpFunc)(void);
56 typedef void (GenOpFunc1)(long);
57 typedef void (GenOpFunc2)(long, long);
58 typedef void (GenOpFunc3)(long, long, long);
59 
60 #include "qemu-log.h"
61 
62 void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63 void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64 void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
65                  unsigned long searched_pc, int pc_pos, void *puc);
66 
67 unsigned long code_gen_max_block_size(void);
68 void cpu_gen_init(void);
69 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
70                  int *gen_code_size_ptr);
71 int cpu_restore_state(struct TranslationBlock *tb,
72                       CPUState *env, unsigned long searched_pc,
73                       void *puc);
74 int cpu_restore_state_copy(struct TranslationBlock *tb,
75                            CPUState *env, unsigned long searched_pc,
76                            void *puc);
77 void cpu_resume_from_signal(CPUState *env1, void *puc);
78 void cpu_io_recompile(CPUState *env, void *retaddr);
79 TranslationBlock *tb_gen_code(CPUState *env,
80                               target_ulong pc, target_ulong cs_base, int flags,
81                               int cflags);
82 void cpu_exec_init(CPUState *env);
83 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
84 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
85                                    int is_cpu_write_access);
86 void tb_invalidate_page_range(target_ulong start, target_ulong end);
87 void tlb_flush_page(CPUState *env, target_ulong addr);
88 void tlb_flush(CPUState *env, int flush_global);
89 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
90                       target_phys_addr_t paddr, int prot,
91                       int mmu_idx, int is_softmmu);
tlb_set_page(CPUState * env1,target_ulong vaddr,target_phys_addr_t paddr,int prot,int mmu_idx,int is_softmmu)92 static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
93                                target_phys_addr_t paddr, int prot,
94                                int mmu_idx, int is_softmmu)
95 {
96     if (prot & PAGE_READ)
97         prot |= PAGE_EXEC;
98     return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
99 }
100 
101 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
102 
103 #define CODE_GEN_PHYS_HASH_BITS     15
104 #define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
105 
106 #define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
107 
108 /* estimated block size for TB allocation */
109 /* XXX: use a per code average code fragment size and modulate it
110    according to the host CPU */
111 #if defined(CONFIG_SOFTMMU)
112 #define CODE_GEN_AVG_BLOCK_SIZE 128
113 #else
114 #define CODE_GEN_AVG_BLOCK_SIZE 64
115 #endif
116 
117 #if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
118 #define USE_DIRECT_JUMP
119 #endif
120 #if defined(__i386__) && !defined(_WIN32)
121 #define USE_DIRECT_JUMP
122 #endif
123 
124 struct TranslationBlock {
125     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
126     target_ulong cs_base; /* CS base for this block */
127     uint64_t flags; /* flags defining in which context the code was generated */
128     uint16_t size;      /* size of target code for this block (1 <=
129                            size <= TARGET_PAGE_SIZE) */
130     uint16_t cflags;    /* compile flags */
131 #define CF_COUNT_MASK  0x7fff
132 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
133 
134     uint8_t *tc_ptr;    /* pointer to the translated code */
135     /* next matching tb for physical address. */
136     struct TranslationBlock *phys_hash_next;
137     /* first and second physical page containing code. The lower bit
138        of the pointer tells the index in page_next[] */
139     struct TranslationBlock *page_next[2];
140     target_ulong page_addr[2];
141 
142     /* the following data are used to directly call another TB from
143        the code of this one. */
144     uint16_t tb_next_offset[2]; /* offset of original jump target */
145 #ifdef USE_DIRECT_JUMP
146     uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
147 #else
148     unsigned long tb_next[2]; /* address of jump generated code */
149 #endif
150     /* list of TBs jumping to this one. This is a circular list using
151        the two least significant bits of the pointers to tell what is
152        the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
153        jmp_first */
154     struct TranslationBlock *jmp_next[2];
155     struct TranslationBlock *jmp_first;
156 
157 #ifdef CONFIG_TRACE
158     struct BBRec *bb_rec;
159     uint64_t prev_time;
160 #endif
161     uint32_t icount;
162 };
163 
tb_jmp_cache_hash_page(target_ulong pc)164 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
165 {
166     target_ulong tmp;
167     tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
168     return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
169 }
170 
tb_jmp_cache_hash_func(target_ulong pc)171 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
172 {
173     target_ulong tmp;
174     tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
175     return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
176 	    | (tmp & TB_JMP_ADDR_MASK));
177 }
178 
tb_phys_hash_func(unsigned long pc)179 static inline unsigned int tb_phys_hash_func(unsigned long pc)
180 {
181     return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
182 }
183 
184 TranslationBlock *tb_alloc(target_ulong pc);
185 void tb_free(TranslationBlock *tb);
186 void tb_flush(CPUState *env);
187 void tb_link_phys(TranslationBlock *tb,
188                   target_ulong phys_pc, target_ulong phys_page2);
189 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
190 
191 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
192 extern uint8_t *code_gen_ptr;
193 extern int code_gen_max_blocks;
194 
195 #if defined(USE_DIRECT_JUMP)
196 
197 #if defined(__powerpc__)
198 extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
199 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
200 #elif defined(__i386__) || defined(__x86_64__)
tb_set_jmp_target1(unsigned long jmp_addr,unsigned long addr)201 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
202 {
203     /* patch the branch destination */
204     *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
205     /* no need to flush icache explicitly */
206 }
207 #elif defined(__arm__)
tb_set_jmp_target1(unsigned long jmp_addr,unsigned long addr)208 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
209 {
210     register unsigned long _beg __asm ("a1");
211     register unsigned long _end __asm ("a2");
212     register unsigned long _flg __asm ("a3");
213 
214     /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
215     *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
216 
217     /* flush icache */
218     _beg = jmp_addr;
219     _end = jmp_addr + 4;
220     _flg = 0;
221     __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
222 }
223 #endif
224 
tb_set_jmp_target(TranslationBlock * tb,int n,unsigned long addr)225 static inline void tb_set_jmp_target(TranslationBlock *tb,
226                                      int n, unsigned long addr)
227 {
228     unsigned long offset;
229 
230     offset = tb->tb_jmp_offset[n];
231     tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
232     offset = tb->tb_jmp_offset[n + 2];
233     if (offset != 0xffff)
234         tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
235 }
236 
237 #else
238 
239 /* set the jump target */
tb_set_jmp_target(TranslationBlock * tb,int n,unsigned long addr)240 static inline void tb_set_jmp_target(TranslationBlock *tb,
241                                      int n, unsigned long addr)
242 {
243     tb->tb_next[n] = addr;
244 }
245 
246 #endif
247 
tb_add_jump(TranslationBlock * tb,int n,TranslationBlock * tb_next)248 static inline void tb_add_jump(TranslationBlock *tb, int n,
249                                TranslationBlock *tb_next)
250 {
251     /* NOTE: this test is only needed for thread safety */
252     if (!tb->jmp_next[n]) {
253         /* patch the native jump address */
254         tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
255 
256         /* add in TB jmp circular list */
257         tb->jmp_next[n] = tb_next->jmp_first;
258         tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
259     }
260 }
261 
262 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
263 
264 #if defined(_WIN32)
265 #define ASM_DATA_SECTION ".section \".data\"\n"
266 #define ASM_PREVIOUS_SECTION ".section .text\n"
267 #elif defined(__APPLE__)
268 #define ASM_DATA_SECTION ".data\n"
269 #define ASM_PREVIOUS_SECTION ".text\n"
270 #else
271 #define ASM_DATA_SECTION ".section \".data\"\n"
272 #define ASM_PREVIOUS_SECTION ".previous\n"
273 #endif
274 
275 #define ASM_OP_LABEL_NAME(n, opname) \
276     ASM_NAME(__op_label) #n "." ASM_NAME(opname)
277 
278 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
279 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
280 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
281 
282 #include "qemu-lock.h"
283 
284 extern spinlock_t tb_lock;
285 
286 extern int tb_invalidated_flag;
287 
288 #if !defined(CONFIG_USER_ONLY)
289 
290 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
291               void *retaddr);
292 
293 #include "softmmu_defs.h"
294 
295 #define ACCESS_TYPE (NB_MMU_MODES + 1)
296 #define MEMSUFFIX _code
297 #define env cpu_single_env
298 
299 #define DATA_SIZE 1
300 #include "softmmu_header.h"
301 
302 #define DATA_SIZE 2
303 #include "softmmu_header.h"
304 
305 #define DATA_SIZE 4
306 #include "softmmu_header.h"
307 
308 #define DATA_SIZE 8
309 #include "softmmu_header.h"
310 
311 #undef ACCESS_TYPE
312 #undef MEMSUFFIX
313 #undef env
314 
315 #endif
316 
317 #if defined(CONFIG_USER_ONLY)
get_phys_addr_code(CPUState * env1,target_ulong addr)318 static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
319 {
320     return addr;
321 }
322 #else
323 /* NOTE: this function can trigger an exception */
324 /* NOTE2: the returned address is not exactly the physical address: it
325    is the offset relative to phys_ram_base */
get_phys_addr_code(CPUState * env1,target_ulong addr)326 static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
327 {
328     int mmu_idx, page_index, pd;
329 
330     page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
331     mmu_idx = cpu_mmu_index(env1);
332     if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
333                  (addr & TARGET_PAGE_MASK))) {
334         ldub_code(addr);
335     }
336     pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
337     if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
338 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
339         do_unassigned_access(addr, 0, 1, 0);
340 #else
341         cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
342 #endif
343     }
344     return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
345 }
346 
347 /* Deterministic execution requires that IO only be performed on the last
348    instruction of a TB so that interrupts take effect immediately.  */
can_do_io(CPUState * env)349 static inline int can_do_io(CPUState *env)
350 {
351     if (!use_icount)
352         return 1;
353 
354     /* If not executing code then assume we are ok.  */
355     if (!env->current_tb)
356         return 1;
357 
358     return env->can_do_io != 0;
359 }
360 #endif
361 
362 #ifdef USE_KQEMU
363 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
364 
365 #define MSR_QPI_COMMBASE 0xfabe0010
366 
367 int kqemu_init(CPUState *env);
368 int kqemu_cpu_exec(CPUState *env);
369 void kqemu_flush_page(CPUState *env, target_ulong addr);
370 void kqemu_flush(CPUState *env, int global);
371 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
372 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
373 void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
374                         ram_addr_t phys_offset);
375 void kqemu_cpu_interrupt(CPUState *env);
376 void kqemu_record_dump(void);
377 
378 extern uint32_t kqemu_comm_base;
379 
kqemu_is_ok(CPUState * env)380 static inline int kqemu_is_ok(CPUState *env)
381 {
382     return(env->kqemu_enabled &&
383            (env->cr[0] & CR0_PE_MASK) &&
384            !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
385            (env->eflags & IF_MASK) &&
386            !(env->eflags & VM_MASK) &&
387            (env->kqemu_enabled == 2 ||
388             ((env->hflags & HF_CPL_MASK) == 3 &&
389              (env->eflags & IOPL_MASK) != IOPL_MASK)));
390 }
391 
392 #endif
393