• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <signal.h>
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <errno.h>
35 #include <sys/atomics.h>
36 #include <bionic_tls.h>
37 #include <sys/mman.h>
38 #include <pthread.h>
39 #include <time.h>
40 #include "pthread_internal.h"
41 #include "thread_private.h"
42 #include <limits.h>
43 #include <memory.h>
44 #include <assert.h>
45 #include <malloc.h>
46 
47 extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
48 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
49 extern void _exit_thread(int  retCode);
50 extern int  __set_errno(int);
51 
52 void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
53 
54 #define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
55 #define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
56 
57 #define DEFAULT_STACKSIZE (1024 * 1024)
58 #define STACKBASE 0x10000000
59 
60 static uint8_t * gStackBase = (uint8_t *)STACKBASE;
61 
62 static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
63 
64 
65 static const pthread_attr_t gDefaultPthreadAttr = {
66     .flags = 0,
67     .stack_base = NULL,
68     .stack_size = DEFAULT_STACKSIZE,
69     .guard_size = PAGE_SIZE,
70     .sched_policy = SCHED_NORMAL,
71     .sched_priority = 0
72 };
73 
74 #define  INIT_THREADS  1
75 
76 static pthread_internal_t*  gThreadList = NULL;
77 static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
78 static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
79 
80 
81 /* we simply malloc/free the internal pthread_internal_t structures. we may
82  * want to use a different allocation scheme in the future, but this one should
83  * be largely enough
84  */
85 static pthread_internal_t*
_pthread_internal_alloc(void)86 _pthread_internal_alloc(void)
87 {
88     pthread_internal_t*   thread;
89 
90     thread = calloc( sizeof(*thread), 1 );
91     if (thread)
92         thread->intern = 1;
93 
94     return thread;
95 }
96 
97 static void
_pthread_internal_free(pthread_internal_t * thread)98 _pthread_internal_free( pthread_internal_t*  thread )
99 {
100     if (thread && thread->intern) {
101         thread->intern = 0;  /* just in case */
102         free (thread);
103     }
104 }
105 
106 
107 static void
_pthread_internal_remove_locked(pthread_internal_t * thread)108 _pthread_internal_remove_locked( pthread_internal_t*  thread )
109 {
110     thread->next->pref = thread->pref;
111     thread->pref[0]    = thread->next;
112 }
113 
114 static void
_pthread_internal_remove(pthread_internal_t * thread)115 _pthread_internal_remove( pthread_internal_t*  thread )
116 {
117     pthread_mutex_lock(&gThreadListLock);
118     _pthread_internal_remove_locked(thread);
119     pthread_mutex_unlock(&gThreadListLock);
120 }
121 
122 static void
_pthread_internal_add(pthread_internal_t * thread)123 _pthread_internal_add( pthread_internal_t*  thread )
124 {
125     pthread_mutex_lock(&gThreadListLock);
126     thread->pref = &gThreadList;
127     thread->next = thread->pref[0];
128     if (thread->next)
129         thread->next->pref = &thread->next;
130     thread->pref[0] = thread;
131     pthread_mutex_unlock(&gThreadListLock);
132 }
133 
134 pthread_internal_t*
__get_thread(void)135 __get_thread(void)
136 {
137     void**  tls = (void**)__get_tls();
138 
139     return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
140 }
141 
142 
143 void*
__get_stack_base(int * p_stack_size)144 __get_stack_base(int  *p_stack_size)
145 {
146     pthread_internal_t*  thread = __get_thread();
147 
148     *p_stack_size = thread->attr.stack_size;
149     return thread->attr.stack_base;
150 }
151 
152 
__init_tls(void ** tls,void * thread)153 void  __init_tls(void**  tls, void*  thread)
154 {
155     int  nn;
156 
157     ((pthread_internal_t*)thread)->tls = tls;
158 
159     // slot 0 must point to the tls area, this is required by the implementation
160     // of the x86 Linux kernel thread-local-storage
161     tls[TLS_SLOT_SELF]      = (void*)tls;
162     tls[TLS_SLOT_THREAD_ID] = thread;
163     for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
164        tls[nn] = 0;
165 
166     __set_tls( (void*)tls );
167 }
168 
169 
170 /*
171  * This trampoline is called from the assembly clone() function
172  */
__thread_entry(int (* func)(void *),void * arg,void ** tls)173 void __thread_entry(int (*func)(void*), void *arg, void **tls)
174 {
175     int retValue;
176     pthread_internal_t * thrInfo;
177 
178     // Wait for our creating thread to release us. This lets it have time to
179     // notify gdb about this thread before it starts doing anything.
180     pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
181     pthread_mutex_lock(start_mutex);
182     pthread_mutex_destroy(start_mutex);
183 
184     thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
185 
186     __init_tls( tls, thrInfo );
187 
188     pthread_exit( (void*)func(arg) );
189 }
190 
_init_thread(pthread_internal_t * thread,pid_t kernel_id,pthread_attr_t * attr,void * stack_base)191 void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
192 {
193     if (attr == NULL) {
194         thread->attr = gDefaultPthreadAttr;
195     } else {
196         thread->attr = *attr;
197     }
198     thread->attr.stack_base = stack_base;
199     thread->kernel_id       = kernel_id;
200 
201     // set the scheduling policy/priority of the thread
202     if (thread->attr.sched_policy != SCHED_NORMAL) {
203         struct sched_param param;
204         param.sched_priority = thread->attr.sched_priority;
205         sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
206     }
207 
208     pthread_cond_init(&thread->join_cond, NULL);
209     thread->join_count = 0;
210 
211     thread->cleanup_stack = NULL;
212 
213     _pthread_internal_add(thread);
214 }
215 
216 
217 /* XXX stacks not reclaimed if thread spawn fails */
218 /* XXX stacks address spaces should be reused if available again */
219 
mkstack(size_t size,size_t guard_size)220 static void *mkstack(size_t size, size_t guard_size)
221 {
222     void * stack;
223 
224     pthread_mutex_lock(&mmap_lock);
225 
226     stack = mmap((void *)gStackBase, size,
227                  PROT_READ | PROT_WRITE,
228                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
229                  -1, 0);
230 
231     if(stack == MAP_FAILED) {
232         stack = NULL;
233         goto done;
234     }
235 
236     if(mprotect(stack, guard_size, PROT_NONE)){
237         munmap(stack, size);
238         stack = NULL;
239         goto done;
240     }
241 
242 done:
243     pthread_mutex_unlock(&mmap_lock);
244     return stack;
245 }
246 
247 /*
248  * Create a new thread. The thread's stack is layed out like so:
249  *
250  * +---------------------------+
251  * |     pthread_internal_t    |
252  * +---------------------------+
253  * |                           |
254  * |          TLS area         |
255  * |                           |
256  * +---------------------------+
257  * |                           |
258  * .                           .
259  * .         stack area        .
260  * .                           .
261  * |                           |
262  * +---------------------------+
263  * |         guard page        |
264  * +---------------------------+
265  *
266  *  note that TLS[0] must be a pointer to itself, this is required
267  *  by the thread-local storage implementation of the x86 Linux
268  *  kernel, where the TLS pointer is read by reading fs:[0]
269  */
pthread_create(pthread_t * thread_out,pthread_attr_t const * attr,void * (* start_routine)(void *),void * arg)270 int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
271                    void *(*start_routine)(void *), void * arg)
272 {
273     char*   stack;
274     void**  tls;
275     int tid;
276     pthread_mutex_t * start_mutex;
277     pthread_internal_t * thread;
278     int                  madestack = 0;
279     int     old_errno = errno;
280 
281     /* this will inform the rest of the C library that at least one thread
282      * was created. this will enforce certain functions to acquire/release
283      * locks (e.g. atexit()) to protect shared global structures.
284      *
285      * this works because pthread_create() is not called by the C library
286      * initialization routine that sets up the main thread's data structures.
287      */
288     __isthreaded = 1;
289 
290     thread = _pthread_internal_alloc();
291     if (thread == NULL)
292         return ENOMEM;
293 
294     if (attr == NULL) {
295         attr = &gDefaultPthreadAttr;
296     }
297 
298     // make sure the stack is PAGE_SIZE aligned
299     size_t stackSize = (attr->stack_size +
300                         (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
301 
302     if (!attr->stack_base) {
303         stack = mkstack(stackSize, attr->guard_size);
304         if(stack == NULL) {
305             _pthread_internal_free(thread);
306             return ENOMEM;
307         }
308         madestack = 1;
309     } else {
310         stack = attr->stack_base;
311     }
312 
313     // Make room for TLS
314     tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
315 
316     // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
317     // it from doing anything until after we notify the debugger about it
318     start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
319     pthread_mutex_init(start_mutex, NULL);
320     pthread_mutex_lock(start_mutex);
321 
322     tls[TLS_SLOT_THREAD_ID] = thread;
323 
324     tid = __pthread_clone((int(*)(void*))start_routine, tls,
325                 CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
326                 | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
327                 arg);
328 
329     if(tid < 0) {
330         int  result;
331         if (madestack)
332             munmap(stack, stackSize);
333         _pthread_internal_free(thread);
334         result = errno;
335         errno = old_errno;
336         return result;
337     }
338 
339     _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
340 
341     if (!madestack)
342         thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
343 
344     // Notify any debuggers about the new thread
345     pthread_mutex_lock(&gDebuggerNotificationLock);
346     _thread_created_hook(tid);
347     pthread_mutex_unlock(&gDebuggerNotificationLock);
348 
349     // Let the thread do it's thing
350     pthread_mutex_unlock(start_mutex);
351 
352     *thread_out = (pthread_t)thread;
353     return 0;
354 }
355 
356 
pthread_attr_init(pthread_attr_t * attr)357 int pthread_attr_init(pthread_attr_t * attr)
358 {
359     *attr = gDefaultPthreadAttr;
360     return 0;
361 }
362 
pthread_attr_destroy(pthread_attr_t * attr)363 int pthread_attr_destroy(pthread_attr_t * attr)
364 {
365     memset(attr, 0x42, sizeof(pthread_attr_t));
366     return 0;
367 }
368 
pthread_attr_setdetachstate(pthread_attr_t * attr,int state)369 int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
370 {
371     if (state == PTHREAD_CREATE_DETACHED) {
372         attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
373     } else if (state == PTHREAD_CREATE_JOINABLE) {
374         attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
375     } else {
376         return EINVAL;
377     }
378     return 0;
379 }
380 
pthread_attr_getdetachstate(pthread_attr_t const * attr,int * state)381 int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
382 {
383     *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
384            ? PTHREAD_CREATE_DETACHED
385            : PTHREAD_CREATE_JOINABLE;
386     return 0;
387 }
388 
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)389 int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
390 {
391     attr->sched_policy = policy;
392     return 0;
393 }
394 
pthread_attr_getschedpolicy(pthread_attr_t const * attr,int * policy)395 int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
396 {
397     *policy = attr->sched_policy;
398     return 0;
399 }
400 
pthread_attr_setschedparam(pthread_attr_t * attr,struct sched_param const * param)401 int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
402 {
403     attr->sched_priority = param->sched_priority;
404     return 0;
405 }
406 
pthread_attr_getschedparam(pthread_attr_t const * attr,struct sched_param * param)407 int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
408 {
409     param->sched_priority = attr->sched_priority;
410     return 0;
411 }
412 
pthread_attr_setstacksize(pthread_attr_t * attr,size_t stack_size)413 int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
414 {
415     if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
416         return EINVAL;
417     }
418     attr->stack_size = stack_size;
419     return 0;
420 }
421 
pthread_attr_getstacksize(pthread_attr_t const * attr,size_t * stack_size)422 int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
423 {
424     *stack_size = attr->stack_size;
425     return 0;
426 }
427 
pthread_attr_setstackaddr(pthread_attr_t * attr,void * stack_addr)428 int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
429 {
430 #if 1
431     // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
432     return ENOSYS;
433 #else
434     if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
435         return EINVAL;
436     }
437     attr->stack_base = stack_addr;
438     return 0;
439 #endif
440 }
441 
pthread_attr_getstackaddr(pthread_attr_t const * attr,void ** stack_addr)442 int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
443 {
444     *stack_addr = attr->stack_base + attr->stack_size;
445     return 0;
446 }
447 
pthread_attr_setstack(pthread_attr_t * attr,void * stack_base,size_t stack_size)448 int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
449 {
450     if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
451         return EINVAL;
452     }
453     if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
454         return EINVAL;
455     }
456     attr->stack_base = stack_base;
457     attr->stack_size = stack_size;
458     return 0;
459 }
460 
pthread_attr_getstack(pthread_attr_t const * attr,void ** stack_base,size_t * stack_size)461 int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
462 {
463     *stack_base = attr->stack_base;
464     *stack_size = attr->stack_size;
465     return 0;
466 }
467 
pthread_attr_setguardsize(pthread_attr_t * attr,size_t guard_size)468 int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
469 {
470     if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
471         return EINVAL;
472     }
473 
474     attr->guard_size = guard_size;
475     return 0;
476 }
477 
pthread_attr_getguardsize(pthread_attr_t const * attr,size_t * guard_size)478 int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
479 {
480     *guard_size = attr->guard_size;
481     return 0;
482 }
483 
pthread_getattr_np(pthread_t thid,pthread_attr_t * attr)484 int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
485 {
486     pthread_internal_t * thread = (pthread_internal_t *)thid;
487     *attr = thread->attr;
488     return 0;
489 }
490 
pthread_attr_setscope(pthread_attr_t * attr,int scope)491 int pthread_attr_setscope(pthread_attr_t *attr, int  scope)
492 {
493     if (scope == PTHREAD_SCOPE_SYSTEM)
494         return 0;
495     if (scope == PTHREAD_SCOPE_PROCESS)
496         return ENOTSUP;
497 
498     return EINVAL;
499 }
500 
pthread_attr_getscope(pthread_attr_t const * attr)501 int pthread_attr_getscope(pthread_attr_t const *attr)
502 {
503     return PTHREAD_SCOPE_SYSTEM;
504 }
505 
506 
507 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
508  *         and thread cancelation
509  */
510 
__pthread_cleanup_push(__pthread_cleanup_t * c,__pthread_cleanup_func_t routine,void * arg)511 void __pthread_cleanup_push( __pthread_cleanup_t*      c,
512                              __pthread_cleanup_func_t  routine,
513                              void*                     arg )
514 {
515     pthread_internal_t*  thread = __get_thread();
516 
517     c->__cleanup_routine  = routine;
518     c->__cleanup_arg      = arg;
519     c->__cleanup_prev     = thread->cleanup_stack;
520     thread->cleanup_stack = c;
521 }
522 
__pthread_cleanup_pop(__pthread_cleanup_t * c,int execute)523 void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
524 {
525     pthread_internal_t*  thread = __get_thread();
526 
527     thread->cleanup_stack = c->__cleanup_prev;
528     if (execute)
529         c->__cleanup_routine(c->__cleanup_arg);
530 }
531 
532 /* used by pthread_exit() to clean all TLS keys of the current thread */
533 static void pthread_key_clean_all(void);
534 
pthread_exit(void * retval)535 void pthread_exit(void * retval)
536 {
537     pthread_internal_t*  thread     = __get_thread();
538     void*                stack_base = thread->attr.stack_base;
539     int                  stack_size = thread->attr.stack_size;
540     int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
541 
542     // call the cleanup handlers first
543     while (thread->cleanup_stack) {
544         __pthread_cleanup_t*  c = thread->cleanup_stack;
545         thread->cleanup_stack   = c->__cleanup_prev;
546         c->__cleanup_routine(c->__cleanup_arg);
547     }
548 
549     // call the TLS destructors, it is important to do that before removing this
550     // thread from the global list. this will ensure that if someone else deletes
551     // a TLS key, the corresponding value will be set to NULL in this thread's TLS
552     // space (see pthread_key_delete)
553     pthread_key_clean_all();
554 
555     // if the thread is detached, destroy the pthread_internal_t
556     // otherwise, keep it in memory and signal any joiners
557     if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
558         _pthread_internal_remove(thread);
559         _pthread_internal_free(thread);
560     } else {
561        /* the join_count field is used to store the number of threads waiting for
562         * the termination of this thread with pthread_join(),
563         *
564         * if it is positive we need to signal the waiters, and we do not touch
565         * the count (it will be decremented by the waiters, the last one will
566         * also remove/free the thread structure
567         *
568         * if it is zero, we set the count value to -1 to indicate that the
569         * thread is in 'zombie' state: it has stopped executing, and its stack
570         * is gone (as well as its TLS area). when another thread calls pthread_join()
571         * on it, it will immediately free the thread and return.
572         */
573         pthread_mutex_lock(&gThreadListLock);
574         thread->return_value = retval;
575         if (thread->join_count > 0) {
576             pthread_cond_broadcast(&thread->join_cond);
577         } else {
578             thread->join_count = -1;  /* zombie thread */
579         }
580         pthread_mutex_unlock(&gThreadListLock);
581     }
582 
583     // destroy the thread stack
584     if (user_stack)
585         _exit_thread((int)retval);
586     else
587         _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
588 }
589 
pthread_join(pthread_t thid,void ** ret_val)590 int pthread_join(pthread_t thid, void ** ret_val)
591 {
592     pthread_internal_t*  thread = (pthread_internal_t*)thid;
593     int                  count;
594 
595     // check that the thread still exists and is not detached
596     pthread_mutex_lock(&gThreadListLock);
597 
598     for (thread = gThreadList; thread != NULL; thread = thread->next)
599         if (thread == (pthread_internal_t*)thid)
600             break;
601 
602     if (!thread) {
603         pthread_mutex_unlock(&gThreadListLock);
604         return ESRCH;
605     }
606 
607     if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
608         pthread_mutex_unlock(&gThreadListLock);
609         return EINVAL;
610     }
611 
612    /* wait for thread death when needed
613     *
614     * if the 'join_count' is negative, this is a 'zombie' thread that
615     * is already dead and without stack/TLS
616     *
617     * otherwise, we need to increment 'join-count' and wait to be signaled
618     */
619    count = thread->join_count;
620     if (count >= 0) {
621         thread->join_count += 1;
622         pthread_cond_wait( &thread->join_cond, &gThreadListLock );
623         count = --thread->join_count;
624     }
625     if (ret_val)
626         *ret_val = thread->return_value;
627 
628     /* remove thread descriptor when we're the last joiner or when the
629      * thread was already a zombie.
630      */
631     if (count <= 0) {
632         _pthread_internal_remove_locked(thread);
633         _pthread_internal_free(thread);
634     }
635     pthread_mutex_unlock(&gThreadListLock);
636     return 0;
637 }
638 
pthread_detach(pthread_t thid)639 int  pthread_detach( pthread_t  thid )
640 {
641     pthread_internal_t*  thread;
642     int                  result = 0;
643     int                  flags;
644 
645     pthread_mutex_lock(&gThreadListLock);
646     for (thread = gThreadList; thread != NULL; thread = thread->next)
647         if (thread == (pthread_internal_t*)thid)
648             goto FoundIt;
649 
650     result = ESRCH;
651     goto Exit;
652 
653 FoundIt:
654     do {
655         flags = thread->attr.flags;
656 
657         if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
658             /* thread is not joinable ! */
659             result = EINVAL;
660             goto Exit;
661         }
662     }
663     while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
664                               (volatile int*)&thread->attr.flags ) != 0 );
665 Exit:
666     pthread_mutex_unlock(&gThreadListLock);
667     return result;
668 }
669 
pthread_self(void)670 pthread_t pthread_self(void)
671 {
672     return (pthread_t)__get_thread();
673 }
674 
pthread_equal(pthread_t one,pthread_t two)675 int pthread_equal(pthread_t one, pthread_t two)
676 {
677     return (one == two ? 1 : 0);
678 }
679 
pthread_getschedparam(pthread_t thid,int * policy,struct sched_param * param)680 int pthread_getschedparam(pthread_t thid, int * policy,
681                           struct sched_param * param)
682 {
683     int  old_errno = errno;
684 
685     pthread_internal_t * thread = (pthread_internal_t *)thid;
686     int err = sched_getparam(thread->kernel_id, param);
687     if (!err) {
688         *policy = sched_getscheduler(thread->kernel_id);
689     } else {
690         err = errno;
691         errno = old_errno;
692     }
693     return err;
694 }
695 
pthread_setschedparam(pthread_t thid,int policy,struct sched_param const * param)696 int pthread_setschedparam(pthread_t thid, int policy,
697                           struct sched_param const * param)
698 {
699     pthread_internal_t * thread = (pthread_internal_t *)thid;
700     int                  old_errno = errno;
701     int                  ret;
702 
703     ret = sched_setscheduler(thread->kernel_id, policy, param);
704     if (ret < 0) {
705         ret = errno;
706         errno = old_errno;
707     }
708     return ret;
709 }
710 
711 
712 int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
713 int __futex_wake(volatile void *ftx, int count);
714 
715 // mutex lock states
716 //
717 // 0: unlocked
718 // 1: locked, no waiters
719 // 2: locked, maybe waiters
720 
721 /* a mutex is implemented as a 32-bit integer holding the following fields
722  *
723  * bits:     name     description
724  * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
725  * 15-14     type     mutex type
726  * 13-2      counter  counter of recursive mutexes
727  * 1-0       state    lock state (0, 1 or 2)
728  */
729 
730 
731 #define  MUTEX_OWNER(m)  (((m)->value >> 16) & 0xffff)
732 #define  MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
733 
734 #define  MUTEX_TYPE_MASK       0xc000
735 #define  MUTEX_TYPE_NORMAL     0x0000
736 #define  MUTEX_TYPE_RECURSIVE  0x4000
737 #define  MUTEX_TYPE_ERRORCHECK 0x8000
738 
739 #define  MUTEX_COUNTER_SHIFT  2
740 #define  MUTEX_COUNTER_MASK   0x3ffc
741 
742 
743 
744 
pthread_mutexattr_init(pthread_mutexattr_t * attr)745 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
746 {
747     if (attr) {
748         *attr = PTHREAD_MUTEX_DEFAULT;
749         return 0;
750     } else {
751         return EINVAL;
752     }
753 }
754 
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)755 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
756 {
757     if (attr) {
758         *attr = -1;
759         return 0;
760     } else {
761         return EINVAL;
762     }
763 }
764 
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type)765 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
766 {
767     if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
768                 *attr <= PTHREAD_MUTEX_ERRORCHECK ) {
769         *type = *attr;
770         return 0;
771     }
772     return EINVAL;
773 }
774 
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)775 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
776 {
777     if (attr && type >= PTHREAD_MUTEX_NORMAL &&
778                 type <= PTHREAD_MUTEX_ERRORCHECK ) {
779         *attr = type;
780         return 0;
781     }
782     return EINVAL;
783 }
784 
785 /* process-shared mutexes are not supported at the moment */
786 
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)787 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
788 {
789     if (!attr)
790         return EINVAL;
791 
792     return (pshared == PTHREAD_PROCESS_PRIVATE) ? 0 : ENOTSUP;
793 }
794 
pthread_mutexattr_getpshared(pthread_mutexattr_t * attr,int * pshared)795 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
796 {
797     if (!attr)
798         return EINVAL;
799 
800     *pshared = PTHREAD_PROCESS_PRIVATE;
801     return 0;
802 }
803 
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)804 int pthread_mutex_init(pthread_mutex_t *mutex,
805                        const pthread_mutexattr_t *attr)
806 {
807     if ( mutex ) {
808         if (attr == NULL) {
809             mutex->value = MUTEX_TYPE_NORMAL;
810             return 0;
811         }
812         switch ( *attr ) {
813         case PTHREAD_MUTEX_NORMAL:
814             mutex->value = MUTEX_TYPE_NORMAL;
815             return 0;
816 
817         case PTHREAD_MUTEX_RECURSIVE:
818             mutex->value = MUTEX_TYPE_RECURSIVE;
819             return 0;
820 
821         case PTHREAD_MUTEX_ERRORCHECK:
822             mutex->value = MUTEX_TYPE_ERRORCHECK;
823             return 0;
824         }
825     }
826     return EINVAL;
827 }
828 
pthread_mutex_destroy(pthread_mutex_t * mutex)829 int pthread_mutex_destroy(pthread_mutex_t *mutex)
830 {
831     mutex->value = 0xdead10cc;
832     return 0;
833 }
834 
835 
836 /*
837  * Lock a non-recursive mutex.
838  *
839  * As noted above, there are three states:
840  *   0 (unlocked, no contention)
841  *   1 (locked, no contention)
842  *   2 (locked, contention)
843  *
844  * Non-recursive mutexes don't use the thread-id or counter fields, and the
845  * "type" value is zero, so the only bits that will be set are the ones in
846  * the lock state field.
847  */
848 static __inline__ void
_normal_lock(pthread_mutex_t * mutex)849 _normal_lock(pthread_mutex_t*  mutex)
850 {
851     /*
852      * The common case is an unlocked mutex, so we begin by trying to
853      * change the lock's state from 0 to 1.  __atomic_cmpxchg() returns 0
854      * if it made the swap successfully.  If the result is nonzero, this
855      * lock is already held by another thread.
856      */
857     if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
858         /*
859          * We want to go to sleep until the mutex is available, which
860          * requires promoting it to state 2.  We need to swap in the new
861          * state value and then wait until somebody wakes us up.
862          *
863          * __atomic_swap() returns the previous value.  We swap 2 in and
864          * see if we got zero back; if so, we have acquired the lock.  If
865          * not, another thread still holds the lock and we wait again.
866          *
867          * The second argument to the __futex_wait() call is compared
868          * against the current value.  If it doesn't match, __futex_wait()
869          * returns immediately (otherwise, it sleeps for a time specified
870          * by the third argument; 0 means sleep forever).  This ensures
871          * that the mutex is in state 2 when we go to sleep on it, which
872          * guarantees a wake-up call.
873          */
874         while (__atomic_swap(2, &mutex->value ) != 0)
875             __futex_wait(&mutex->value, 2, 0);
876     }
877 }
878 
879 /*
880  * Release a non-recursive mutex.  The caller is responsible for determining
881  * that we are in fact the owner of this lock.
882  */
883 static __inline__ void
_normal_unlock(pthread_mutex_t * mutex)884 _normal_unlock(pthread_mutex_t*  mutex)
885 {
886     /*
887      * The mutex value will be 1 or (rarely) 2.  We use an atomic decrement
888      * to release the lock.  __atomic_dec() returns the previous value;
889      * if it wasn't 1 we have to do some additional work.
890      */
891     if (__atomic_dec(&mutex->value) != 1) {
892         /*
893          * Start by releasing the lock.  The decrement changed it from
894          * "contended lock" to "uncontended lock", which means we still
895          * hold it, and anybody who tries to sneak in will push it back
896          * to state 2.
897          *
898          * Once we set it to zero the lock is up for grabs.  We follow
899          * this with a __futex_wake() to ensure that one of the waiting
900          * threads has a chance to grab it.
901          *
902          * This doesn't cause a race with the swap/wait pair in
903          * _normal_lock(), because the __futex_wait() call there will
904          * return immediately if the mutex value isn't 2.
905          */
906         mutex->value = 0;
907 
908         /*
909          * Wake up one waiting thread.  We don't know which thread will be
910          * woken or when it'll start executing -- futexes make no guarantees
911          * here.  There may not even be a thread waiting.
912          *
913          * The newly-woken thread will replace the 0 we just set above
914          * with 2, which means that when it eventually releases the mutex
915          * it will also call FUTEX_WAKE.  This results in one extra wake
916          * call whenever a lock is contended, but lets us avoid forgetting
917          * anyone without requiring us to track the number of sleepers.
918          *
919          * It's possible for another thread to sneak in and grab the lock
920          * between the zero assignment above and the wake call below.  If
921          * the new thread is "slow" and holds the lock for a while, we'll
922          * wake up a sleeper, which will swap in a 2 and then go back to
923          * sleep since the lock is still held.  If the new thread is "fast",
924          * running to completion before we call wake, the thread we
925          * eventually wake will find an unlocked mutex and will execute.
926          * Either way we have correct behavior and nobody is orphaned on
927          * the wait queue.
928          */
929         __futex_wake(&mutex->value, 1);
930     }
931 }
932 
933 static pthread_mutex_t  __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
934 
935 static void
_recursive_lock(void)936 _recursive_lock(void)
937 {
938     _normal_lock( &__recursive_lock);
939 }
940 
941 static void
_recursive_unlock(void)942 _recursive_unlock(void)
943 {
944     _normal_unlock( &__recursive_lock );
945 }
946 
947 #define  __likely(cond)    __builtin_expect(!!(cond), 1)
948 #define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
949 
pthread_mutex_lock(pthread_mutex_t * mutex)950 int pthread_mutex_lock(pthread_mutex_t *mutex)
951 {
952     if (__likely(mutex != NULL))
953     {
954         int  mtype = (mutex->value & MUTEX_TYPE_MASK);
955 
956         if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
957             _normal_lock(mutex);
958         }
959         else
960         {
961             int  tid = __get_thread()->kernel_id;
962 
963             if ( tid == MUTEX_OWNER(mutex) )
964             {
965                 int  oldv, counter;
966 
967                 if (mtype == MUTEX_TYPE_ERRORCHECK) {
968                     /* trying to re-lock a mutex we already acquired */
969                     return EDEADLK;
970                 }
971                 /*
972                  * We own the mutex, but other threads are able to change
973                  * the contents (e.g. promoting it to "contended"), so we
974                  * need to hold the global lock.
975                  */
976                 _recursive_lock();
977                 oldv         = mutex->value;
978                 counter      = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
979                 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
980                 _recursive_unlock();
981             }
982             else
983             {
984                 /*
985                  * If the new lock is available immediately, we grab it in
986                  * the "uncontended" state.
987                  */
988                 int new_lock_type = 1;
989 
990                 for (;;) {
991                     int  oldv;
992 
993                     _recursive_lock();
994                     oldv = mutex->value;
995                     if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
996                         mutex->value = ((tid << 16) | mtype | new_lock_type);
997                     } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
998                         oldv ^= 3;
999                         mutex->value = oldv;
1000                     }
1001                     _recursive_unlock();
1002 
1003                     if (oldv == mtype)
1004                         break;
1005 
1006                     /*
1007                      * The lock was held, possibly contended by others.  From
1008                      * now on, if we manage to acquire the lock, we have to
1009                      * assume that others are still contending for it so that
1010                      * we'll wake them when we unlock it.
1011                      */
1012                     new_lock_type = 2;
1013 
1014                     __futex_wait( &mutex->value, oldv, 0 );
1015                 }
1016             }
1017         }
1018         return 0;
1019     }
1020     return EINVAL;
1021 }
1022 
1023 
pthread_mutex_unlock(pthread_mutex_t * mutex)1024 int pthread_mutex_unlock(pthread_mutex_t *mutex)
1025 {
1026     if (__likely(mutex != NULL))
1027     {
1028         int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1029 
1030         if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1031             _normal_unlock(mutex);
1032         }
1033         else
1034         {
1035             int  tid = __get_thread()->kernel_id;
1036 
1037             if ( tid == MUTEX_OWNER(mutex) )
1038             {
1039                 int  oldv;
1040 
1041                 _recursive_lock();
1042                 oldv = mutex->value;
1043                 if (oldv & MUTEX_COUNTER_MASK) {
1044                     mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1045                     oldv = 0;
1046                 } else {
1047                     mutex->value = mtype;
1048                 }
1049                 _recursive_unlock();
1050 
1051                 if ((oldv & 3) == 2)
1052                     __futex_wake( &mutex->value, 1 );
1053             }
1054             else {
1055                 /* trying to unlock a lock we do not own */
1056                 return EPERM;
1057             }
1058         }
1059         return 0;
1060     }
1061     return EINVAL;
1062 }
1063 
1064 
pthread_mutex_trylock(pthread_mutex_t * mutex)1065 int pthread_mutex_trylock(pthread_mutex_t *mutex)
1066 {
1067     if (__likely(mutex != NULL))
1068     {
1069         int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1070 
1071         if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1072         {
1073             if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
1074                 return 0;
1075 
1076             return EBUSY;
1077         }
1078         else
1079         {
1080             int  tid = __get_thread()->kernel_id;
1081             int  oldv;
1082 
1083             if ( tid == MUTEX_OWNER(mutex) )
1084             {
1085                 int  oldv, counter;
1086 
1087                 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1088                     /* already locked by ourselves */
1089                     return EDEADLK;
1090                 }
1091 
1092                 _recursive_lock();
1093                 oldv = mutex->value;
1094                 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1095                 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1096                 _recursive_unlock();
1097                 return 0;
1098             }
1099 
1100             /* try to lock it */
1101             _recursive_lock();
1102             oldv = mutex->value;
1103             if (oldv == mtype)  /* uncontended released lock => state 1 */
1104                 mutex->value = ((tid << 16) | mtype | 1);
1105             _recursive_unlock();
1106 
1107             if (oldv != mtype)
1108                 return EBUSY;
1109 
1110             return 0;
1111         }
1112     }
1113     return EINVAL;
1114 }
1115 
1116 
1117 /* XXX *technically* there is a race condition that could allow
1118  * XXX a signal to be missed.  If thread A is preempted in _wait()
1119  * XXX after unlocking the mutex and before waiting, and if other
1120  * XXX threads call signal or broadcast UINT_MAX times (exactly),
1121  * XXX before thread A is scheduled again and calls futex_wait(),
1122  * XXX then the signal will be lost.
1123  */
1124 
pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t * attr)1125 int pthread_cond_init(pthread_cond_t *cond,
1126                       const pthread_condattr_t *attr)
1127 {
1128     cond->value = 0;
1129     return 0;
1130 }
1131 
pthread_cond_destroy(pthread_cond_t * cond)1132 int pthread_cond_destroy(pthread_cond_t *cond)
1133 {
1134     cond->value = 0xdeadc04d;
1135     return 0;
1136 }
1137 
pthread_cond_broadcast(pthread_cond_t * cond)1138 int pthread_cond_broadcast(pthread_cond_t *cond)
1139 {
1140     __atomic_dec(&cond->value);
1141     __futex_wake(&cond->value, INT_MAX);
1142     return 0;
1143 }
1144 
pthread_cond_signal(pthread_cond_t * cond)1145 int pthread_cond_signal(pthread_cond_t *cond)
1146 {
1147     __atomic_dec(&cond->value);
1148     __futex_wake(&cond->value, 1);
1149     return 0;
1150 }
1151 
pthread_cond_wait(pthread_cond_t * cond,pthread_mutex_t * mutex)1152 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1153 {
1154     return pthread_cond_timedwait(cond, mutex, NULL);
1155 }
1156 
__pthread_cond_timedwait_relative(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1157 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1158                                       pthread_mutex_t * mutex,
1159                                       const struct timespec *reltime)
1160 {
1161     int  status;
1162     int  oldvalue = cond->value;
1163 
1164     pthread_mutex_unlock(mutex);
1165     status = __futex_wait(&cond->value, oldvalue, reltime);
1166     pthread_mutex_lock(mutex);
1167 
1168     if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1169     return 0;
1170 }
1171 
__pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime,clockid_t clock)1172 int __pthread_cond_timedwait(pthread_cond_t *cond,
1173                              pthread_mutex_t * mutex,
1174                              const struct timespec *abstime,
1175                              clockid_t clock)
1176 {
1177     struct timespec ts;
1178     struct timespec * tsp;
1179 
1180     if (abstime != NULL) {
1181         clock_gettime(clock, &ts);
1182         ts.tv_sec = abstime->tv_sec - ts.tv_sec;
1183         ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec;
1184         if (ts.tv_nsec < 0) {
1185             ts.tv_sec--;
1186             ts.tv_nsec += 1000000000;
1187         }
1188         if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) {
1189             return ETIMEDOUT;
1190         }
1191         tsp = &ts;
1192     } else {
1193         tsp = NULL;
1194     }
1195 
1196     return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1197 }
1198 
pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1199 int pthread_cond_timedwait(pthread_cond_t *cond,
1200                            pthread_mutex_t * mutex,
1201                            const struct timespec *abstime)
1202 {
1203     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1204 }
1205 
1206 
pthread_cond_timedwait_monotonic(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1207 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1208                                      pthread_mutex_t * mutex,
1209                                      const struct timespec *abstime)
1210 {
1211     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1212 }
1213 
pthread_cond_timeout_np(pthread_cond_t * cond,pthread_mutex_t * mutex,unsigned msecs)1214 int pthread_cond_timeout_np(pthread_cond_t *cond,
1215                             pthread_mutex_t * mutex,
1216                             unsigned msecs)
1217 {
1218     int oldvalue;
1219     struct timespec ts;
1220     int status;
1221 
1222     ts.tv_sec = msecs / 1000;
1223     ts.tv_nsec = (msecs % 1000) * 1000000;
1224 
1225     oldvalue = cond->value;
1226 
1227     pthread_mutex_unlock(mutex);
1228     status = __futex_wait(&cond->value, oldvalue, &ts);
1229     pthread_mutex_lock(mutex);
1230 
1231     if(status == (-ETIMEDOUT)) return ETIMEDOUT;
1232 
1233     return 0;
1234 }
1235 
1236 
1237 
1238 /* A technical note regarding our thread-local-storage (TLS) implementation:
1239  *
1240  * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1241  * though the first TLSMAP_START keys are reserved for Bionic to hold
1242  * special thread-specific variables like errno or a pointer to
1243  * the current thread's descriptor.
1244  *
1245  * while stored in the TLS area, these entries cannot be accessed through
1246  * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1247  *
1248  * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1249  * to greatly simplify and speedup some OpenGL-related operations. though the
1250  * initialy value will be NULL on all threads.
1251  *
1252  * you can use pthread_getspecific()/setspecific() on these, and in theory
1253  * you could also call pthread_key_delete() as well, though this would
1254  * probably break some apps.
1255  *
1256  * The 'tlsmap_t' type defined below implements a shared global map of
1257  * currently created/allocated TLS keys and the destructors associated
1258  * with them. You should use tlsmap_lock/unlock to access it to avoid
1259  * any race condition.
1260  *
1261  * the global TLS map simply contains a bitmap of allocated keys, and
1262  * an array of destructors.
1263  *
1264  * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1265  * pointers. the TLS area of the main thread is stack-allocated in
1266  * __libc_init_common, while the TLS area of other threads is placed at
1267  * the top of their stack in pthread_create.
1268  *
1269  * when pthread_key_create() is called, it finds the first free key in the
1270  * bitmap, then set it to 1, saving the destructor altogether
1271  *
1272  * when pthread_key_delete() is called. it will erase the key's bitmap bit
1273  * and its destructor, and will also clear the key data in the TLS area of
1274  * all created threads. As mandated by Posix, it is the responsability of
1275  * the caller of pthread_key_delete() to properly reclaim the objects that
1276  * were pointed to by these data fields (either before or after the call).
1277  *
1278  */
1279 
1280 /* TLS Map implementation
1281  */
1282 
1283 #define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1284 #define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1285 #define TLSMAP_BITS       32
1286 #define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1287 #define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1288 #define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1289 
1290 /* this macro is used to quickly check that a key belongs to a reasonable range */
1291 #define TLSMAP_VALIDATE_KEY(key)  \
1292     ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1293 
1294 /* the type of tls key destructor functions */
1295 typedef void (*tls_dtor_t)(void*);
1296 
1297 typedef struct {
1298     int         init;                  /* see comment in tlsmap_lock() */
1299     uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1300     tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1301 } tlsmap_t;
1302 
1303 static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1304 static tlsmap_t         _tlsmap;
1305 
1306 /* lock the global TLS map lock and return a handle to it */
tlsmap_lock(void)1307 static __inline__ tlsmap_t* tlsmap_lock(void)
1308 {
1309     tlsmap_t*   m = &_tlsmap;
1310 
1311     pthread_mutex_lock(&_tlsmap_lock);
1312     /* we need to initialize the first entry of the 'map' array
1313      * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1314      * when declaring _tlsmap is a bit awkward and is going to
1315      * produce warnings, so do it the first time we use the map
1316      * instead
1317      */
1318     if (__unlikely(!m->init)) {
1319         TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1320         m->init          = 1;
1321     }
1322     return m;
1323 }
1324 
1325 /* unlock the global TLS map */
tlsmap_unlock(tlsmap_t * m)1326 static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1327 {
1328     pthread_mutex_unlock(&_tlsmap_lock);
1329     (void)m;  /* a good compiler is a happy compiler */
1330 }
1331 
1332 /* test to see wether a key is allocated */
tlsmap_test(tlsmap_t * m,int key)1333 static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1334 {
1335     return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1336 }
1337 
1338 /* set the destructor and bit flag on a newly allocated key */
tlsmap_set(tlsmap_t * m,int key,tls_dtor_t dtor)1339 static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1340 {
1341     TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1342     m->dtors[key]       = dtor;
1343 }
1344 
1345 /* clear the destructor and bit flag on an existing key */
tlsmap_clear(tlsmap_t * m,int key)1346 static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1347 {
1348     TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1349     m->dtors[key]       = NULL;
1350 }
1351 
1352 /* allocate a new TLS key, return -1 if no room left */
tlsmap_alloc(tlsmap_t * m,tls_dtor_t dtor)1353 static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1354 {
1355     int  key;
1356 
1357     for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1358         if ( !tlsmap_test(m, key) ) {
1359             tlsmap_set(m, key, dtor);
1360             return key;
1361         }
1362     }
1363     return -1;
1364 }
1365 
1366 
pthread_key_create(pthread_key_t * key,void (* destructor_function)(void *))1367 int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1368 {
1369     uint32_t   err = ENOMEM;
1370     tlsmap_t*  map = tlsmap_lock();
1371     int        k   = tlsmap_alloc(map, destructor_function);
1372 
1373     if (k >= 0) {
1374         *key = k;
1375         err  = 0;
1376     }
1377     tlsmap_unlock(map);
1378     return err;
1379 }
1380 
1381 
1382 /* This deletes a pthread_key_t. note that the standard mandates that this does
1383  * not call the destructor of non-NULL key values. Instead, it is the
1384  * responsability of the caller to properly dispose of the corresponding data
1385  * and resources, using any mean it finds suitable.
1386  *
1387  * On the other hand, this function will clear the corresponding key data
1388  * values in all known threads. this prevents later (invalid) calls to
1389  * pthread_getspecific() to receive invalid/stale values.
1390  */
pthread_key_delete(pthread_key_t key)1391 int pthread_key_delete(pthread_key_t key)
1392 {
1393     uint32_t             err;
1394     pthread_internal_t*  thr;
1395     tlsmap_t*            map;
1396 
1397     if (!TLSMAP_VALIDATE_KEY(key)) {
1398         return EINVAL;
1399     }
1400 
1401     map = tlsmap_lock();
1402 
1403     if (!tlsmap_test(map, key)) {
1404         err = EINVAL;
1405         goto err1;
1406     }
1407 
1408     /* clear value in all threads */
1409     pthread_mutex_lock(&gThreadListLock);
1410     for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1411         /* avoid zombie threads with a negative 'join_count'. these are really
1412          * already dead and don't have a TLS area anymore.
1413          *
1414          * similarly, it is possible to have thr->tls == NULL for threads that
1415          * were just recently created through pthread_create() but whose
1416          * startup trampoline (__thread_entry) hasn't been run yet by the
1417          * scheduler. so check for this too.
1418          */
1419         if (thr->join_count < 0 || !thr->tls)
1420             continue;
1421 
1422         thr->tls[key] = NULL;
1423     }
1424     tlsmap_clear(map, key);
1425 
1426     pthread_mutex_unlock(&gThreadListLock);
1427     err = 0;
1428 
1429 err1:
1430     tlsmap_unlock(map);
1431     return err;
1432 }
1433 
1434 
pthread_setspecific(pthread_key_t key,const void * ptr)1435 int pthread_setspecific(pthread_key_t key, const void *ptr)
1436 {
1437     int        err = EINVAL;
1438     tlsmap_t*  map;
1439 
1440     if (TLSMAP_VALIDATE_KEY(key)) {
1441         /* check that we're trying to set data for an allocated key */
1442         map = tlsmap_lock();
1443         if (tlsmap_test(map, key)) {
1444             ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1445             err = 0;
1446         }
1447         tlsmap_unlock(map);
1448     }
1449     return err;
1450 }
1451 
pthread_getspecific(pthread_key_t key)1452 void * pthread_getspecific(pthread_key_t key)
1453 {
1454     if (!TLSMAP_VALIDATE_KEY(key)) {
1455         return NULL;
1456     }
1457 
1458     /* for performance reason, we do not lock/unlock the global TLS map
1459      * to check that the key is properly allocated. if the key was not
1460      * allocated, the value read from the TLS should always be NULL
1461      * due to pthread_key_delete() clearing the values for all threads.
1462      */
1463     return (void *)(((unsigned *)__get_tls())[key]);
1464 }
1465 
1466 /* Posix mandates that this be defined in <limits.h> but we don't have
1467  * it just yet.
1468  */
1469 #ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1470 #  define PTHREAD_DESTRUCTOR_ITERATIONS  4
1471 #endif
1472 
1473 /* this function is called from pthread_exit() to remove all TLS key data
1474  * from this thread's TLS area. this must call the destructor of all keys
1475  * that have a non-NULL data value (and a non-NULL destructor).
1476  *
1477  * because destructors can do funky things like deleting/creating other
1478  * keys, we need to implement this in a loop
1479  */
pthread_key_clean_all(void)1480 static void pthread_key_clean_all(void)
1481 {
1482     tlsmap_t*    map;
1483     void**       tls = (void**)__get_tls();
1484     int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1485 
1486     map = tlsmap_lock();
1487 
1488     for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1489     {
1490         int  kk, count = 0;
1491 
1492         for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1493             if ( tlsmap_test(map, kk) )
1494             {
1495                 void*       data = tls[kk];
1496                 tls_dtor_t  dtor = map->dtors[kk];
1497 
1498                 if (data != NULL && dtor != NULL)
1499                 {
1500                    /* we need to clear the key data now, this will prevent the
1501                     * destructor (or a later one) from seeing the old value if
1502                     * it calls pthread_getspecific() for some odd reason
1503                     *
1504                     * we do not do this if 'dtor == NULL' just in case another
1505                     * destructor function might be responsible for manually
1506                     * releasing the corresponding data.
1507                     */
1508                     tls[kk] = NULL;
1509 
1510                    /* because the destructor is free to call pthread_key_create
1511                     * and/or pthread_key_delete, we need to temporarily unlock
1512                     * the TLS map
1513                     */
1514                     tlsmap_unlock(map);
1515                     (*dtor)(data);
1516                     map = tlsmap_lock();
1517 
1518                     count += 1;
1519                 }
1520             }
1521         }
1522 
1523         /* if we didn't call any destructor, there is no need to check the
1524          * TLS data again
1525          */
1526         if (count == 0)
1527             break;
1528     }
1529     tlsmap_unlock(map);
1530 }
1531 
1532 // man says this should be in <linux/unistd.h>, but it isn't
1533 extern int tkill(int tid, int sig);
1534 
pthread_kill(pthread_t tid,int sig)1535 int pthread_kill(pthread_t tid, int sig)
1536 {
1537     int  ret;
1538     int  old_errno = errno;
1539     pthread_internal_t * thread = (pthread_internal_t *)tid;
1540 
1541     ret = tkill(thread->kernel_id, sig);
1542     if (ret < 0) {
1543         ret = errno;
1544         errno = old_errno;
1545     }
1546 
1547     return ret;
1548 }
1549 
1550 extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1551 
pthread_sigmask(int how,const sigset_t * set,sigset_t * oset)1552 int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1553 {
1554     return __rt_sigprocmask(how, set, oset, _NSIG / 8);
1555 }
1556 
1557 
pthread_getcpuclockid(pthread_t tid,clockid_t * clockid)1558 int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
1559 {
1560     const int            CLOCK_IDTYPE_BITS = 3;
1561     pthread_internal_t*  thread = (pthread_internal_t*)tid;
1562 
1563     if (!thread)
1564         return ESRCH;
1565 
1566     *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1567     return 0;
1568 }
1569 
1570 
1571 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
1572  *       or calls fork()
1573  */
pthread_once(pthread_once_t * once_control,void (* init_routine)(void))1574 int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
1575 {
1576     static pthread_mutex_t   once_lock = PTHREAD_MUTEX_INITIALIZER;
1577 
1578     if (*once_control == PTHREAD_ONCE_INIT) {
1579         _normal_lock( &once_lock );
1580         if (*once_control == PTHREAD_ONCE_INIT) {
1581             (*init_routine)();
1582             *once_control = ~PTHREAD_ONCE_INIT;
1583         }
1584         _normal_unlock( &once_lock );
1585     }
1586     return 0;
1587 }
1588