• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 
12 /**
13    @file saferp.c
14    SAFER+ Implementation by Tom St Denis
15 */
16 #include "tomcrypt.h"
17 
18 #ifdef SAFERP
19 
20 const struct ltc_cipher_descriptor saferp_desc =
21 {
22     "safer+",
23     4,
24     16, 32, 16, 8,
25     &saferp_setup,
26     &saferp_ecb_encrypt,
27     &saferp_ecb_decrypt,
28     &saferp_test,
29     &saferp_done,
30     &saferp_keysize,
31     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
32 };
33 
34 /* ROUND(b,i)
35  *
36  * This is one forward key application.  Note the basic form is
37  * key addition, substitution, key addition.  The safer_ebox and safer_lbox
38  * are the exponentiation box and logarithm boxes respectively.
39  * The value of 'i' is the current round number which allows this
40  * function to be unrolled massively.  Most of SAFER+'s speed
41  * comes from not having to compute indirect accesses into the
42  * array of 16 bytes b[0..15] which is the block of data
43 */
44 
45 extern const unsigned char safer_ebox[], safer_lbox[];
46 
47 #define ROUND(b, i)                                                                        \
48     b[0]  = (safer_ebox[(b[0] ^ skey->saferp.K[i][0]) & 255] + skey->saferp.K[i+1][0]) & 255;    \
49     b[1]  = safer_lbox[(b[1] + skey->saferp.K[i][1]) & 255] ^ skey->saferp.K[i+1][1];            \
50     b[2]  = safer_lbox[(b[2] + skey->saferp.K[i][2]) & 255] ^ skey->saferp.K[i+1][2];            \
51     b[3]  = (safer_ebox[(b[3] ^ skey->saferp.K[i][3]) & 255] + skey->saferp.K[i+1][3]) & 255;    \
52     b[4]  = (safer_ebox[(b[4] ^ skey->saferp.K[i][4]) & 255] + skey->saferp.K[i+1][4]) & 255;    \
53     b[5]  = safer_lbox[(b[5] + skey->saferp.K[i][5]) & 255] ^ skey->saferp.K[i+1][5];            \
54     b[6]  = safer_lbox[(b[6] + skey->saferp.K[i][6]) & 255] ^ skey->saferp.K[i+1][6];            \
55     b[7]  = (safer_ebox[(b[7] ^ skey->saferp.K[i][7]) & 255] + skey->saferp.K[i+1][7]) & 255;    \
56     b[8]  = (safer_ebox[(b[8] ^ skey->saferp.K[i][8]) & 255] + skey->saferp.K[i+1][8]) & 255;    \
57     b[9]  = safer_lbox[(b[9] + skey->saferp.K[i][9]) & 255] ^ skey->saferp.K[i+1][9];            \
58     b[10] = safer_lbox[(b[10] + skey->saferp.K[i][10]) & 255] ^ skey->saferp.K[i+1][10];         \
59     b[11] = (safer_ebox[(b[11] ^ skey->saferp.K[i][11]) & 255] + skey->saferp.K[i+1][11]) & 255; \
60     b[12] = (safer_ebox[(b[12] ^ skey->saferp.K[i][12]) & 255] + skey->saferp.K[i+1][12]) & 255; \
61     b[13] = safer_lbox[(b[13] + skey->saferp.K[i][13]) & 255] ^ skey->saferp.K[i+1][13];         \
62     b[14] = safer_lbox[(b[14] + skey->saferp.K[i][14]) & 255] ^ skey->saferp.K[i+1][14];         \
63     b[15] = (safer_ebox[(b[15] ^ skey->saferp.K[i][15]) & 255] + skey->saferp.K[i+1][15]) & 255;
64 
65 /* This is one inverse key application */
66 #define iROUND(b, i)                                                                       \
67     b[0]  = safer_lbox[(b[0] - skey->saferp.K[i+1][0]) & 255] ^ skey->saferp.K[i][0];            \
68     b[1]  = (safer_ebox[(b[1] ^ skey->saferp.K[i+1][1]) & 255] - skey->saferp.K[i][1]) & 255;    \
69     b[2]  = (safer_ebox[(b[2] ^ skey->saferp.K[i+1][2]) & 255] - skey->saferp.K[i][2]) & 255;    \
70     b[3]  = safer_lbox[(b[3] - skey->saferp.K[i+1][3]) & 255] ^ skey->saferp.K[i][3];            \
71     b[4]  = safer_lbox[(b[4] - skey->saferp.K[i+1][4]) & 255] ^ skey->saferp.K[i][4];            \
72     b[5]  = (safer_ebox[(b[5] ^ skey->saferp.K[i+1][5]) & 255] - skey->saferp.K[i][5]) & 255;    \
73     b[6]  = (safer_ebox[(b[6] ^ skey->saferp.K[i+1][6]) & 255] - skey->saferp.K[i][6]) & 255;    \
74     b[7]  = safer_lbox[(b[7] - skey->saferp.K[i+1][7]) & 255] ^ skey->saferp.K[i][7];            \
75     b[8]  = safer_lbox[(b[8] - skey->saferp.K[i+1][8]) & 255] ^ skey->saferp.K[i][8];            \
76     b[9]  = (safer_ebox[(b[9] ^ skey->saferp.K[i+1][9]) & 255] - skey->saferp.K[i][9]) & 255;    \
77     b[10] = (safer_ebox[(b[10] ^ skey->saferp.K[i+1][10]) & 255] - skey->saferp.K[i][10]) & 255; \
78     b[11] = safer_lbox[(b[11] - skey->saferp.K[i+1][11]) & 255] ^ skey->saferp.K[i][11];         \
79     b[12] = safer_lbox[(b[12] - skey->saferp.K[i+1][12]) & 255] ^ skey->saferp.K[i][12];         \
80     b[13] = (safer_ebox[(b[13] ^ skey->saferp.K[i+1][13]) & 255] - skey->saferp.K[i][13]) & 255; \
81     b[14] = (safer_ebox[(b[14] ^ skey->saferp.K[i+1][14]) & 255] - skey->saferp.K[i][14]) & 255; \
82     b[15] = safer_lbox[(b[15] - skey->saferp.K[i+1][15]) & 255] ^ skey->saferp.K[i][15];
83 
84 /* This is a forward single layer PHT transform.  */
85 #define PHT(b)                                               \
86     b[0]  = (b[0] + (b[1] = (b[0] + b[1]) & 255)) & 255;     \
87     b[2]  = (b[2] + (b[3] = (b[3] + b[2]) & 255)) & 255;     \
88     b[4]  = (b[4] + (b[5] = (b[5] + b[4]) & 255)) & 255;     \
89     b[6]  = (b[6] + (b[7] = (b[7] + b[6]) & 255)) & 255;     \
90     b[8]  = (b[8] + (b[9] = (b[9] + b[8]) & 255)) & 255;     \
91     b[10] = (b[10] + (b[11] = (b[11] + b[10]) & 255)) & 255; \
92     b[12] = (b[12] + (b[13] = (b[13] + b[12]) & 255)) & 255; \
93     b[14] = (b[14] + (b[15] = (b[15] + b[14]) & 255)) & 255;
94 
95 /* This is an inverse single layer PHT transform */
96 #define iPHT(b)                                               \
97     b[15] = (b[15] - (b[14] = (b[14] - b[15]) & 255)) & 255;  \
98     b[13] = (b[13] - (b[12] = (b[12] - b[13]) & 255)) & 255;  \
99     b[11] = (b[11] - (b[10] = (b[10] - b[11]) & 255)) & 255;  \
100     b[9]  = (b[9] - (b[8] = (b[8] - b[9]) & 255)) & 255;      \
101     b[7]  = (b[7] - (b[6] = (b[6] - b[7]) & 255)) & 255;      \
102     b[5]  = (b[5] - (b[4] = (b[4] - b[5]) & 255)) & 255;      \
103     b[3]  = (b[3] - (b[2] = (b[2] - b[3]) & 255)) & 255;      \
104     b[1]  = (b[1] - (b[0] = (b[0] - b[1]) & 255)) & 255;      \
105 
106 /* This is the "Armenian" Shuffle.  It takes the input from b and stores it in b2 */
107 #define SHUF(b, b2)                                              \
108     b2[0] = b[8]; b2[1] = b[11]; b2[2] = b[12]; b2[3] = b[15];   \
109     b2[4] = b[2]; b2[5] = b[1]; b2[6] = b[6]; b2[7] = b[5];      \
110     b2[8] = b[10]; b2[9] = b[9]; b2[10] = b[14]; b2[11] = b[13]; \
111     b2[12] = b[0]; b2[13] = b[7]; b2[14] = b[4]; b2[15] = b[3];
112 
113 /* This is the inverse shuffle.  It takes from b and gives to b2 */
114 #define iSHUF(b, b2)                                               \
115     b2[0] = b[12]; b2[1] = b[5]; b2[2] = b[4]; b2[3] = b[15];      \
116     b2[4] = b[14]; b2[5] = b[7]; b2[6] = b[6]; b2[7] = b[13];      \
117     b2[8] = b[0]; b2[9] = b[9]; b2[10] = b[8]; b2[11] = b[1];      \
118     b2[12] = b[2]; b2[13] = b[11]; b2[14] = b[10]; b2[15] = b[3];
119 
120 /* The complete forward Linear Transform layer.
121  * Note that alternating usage of b and b2.
122  * Each round of LT starts in 'b' and ends in 'b2'.
123  */
124 #define LT(b, b2)             \
125     PHT(b);  SHUF(b, b2);     \
126     PHT(b2); SHUF(b2, b);     \
127     PHT(b);  SHUF(b, b2);     \
128     PHT(b2);
129 
130 /* This is the inverse linear transform layer.  */
131 #define iLT(b, b2)            \
132     iPHT(b);                  \
133     iSHUF(b, b2); iPHT(b2);   \
134     iSHUF(b2, b); iPHT(b);    \
135     iSHUF(b, b2); iPHT(b2);
136 
137 #ifdef LTC_SMALL_CODE
138 
_round(unsigned char * b,int i,symmetric_key * skey)139 static void _round(unsigned char *b, int i, symmetric_key *skey)
140 {
141    ROUND(b, i);
142 }
143 
_iround(unsigned char * b,int i,symmetric_key * skey)144 static void _iround(unsigned char *b, int i, symmetric_key *skey)
145 {
146    iROUND(b, i);
147 }
148 
_lt(unsigned char * b,unsigned char * b2)149 static void _lt(unsigned char *b, unsigned char *b2)
150 {
151    LT(b, b2);
152 }
153 
_ilt(unsigned char * b,unsigned char * b2)154 static void _ilt(unsigned char *b, unsigned char *b2)
155 {
156    iLT(b, b2);
157 }
158 
159 #undef ROUND
160 #define ROUND(b, i) _round(b, i, skey)
161 
162 #undef iROUND
163 #define iROUND(b, i) _iround(b, i, skey)
164 
165 #undef LT
166 #define LT(b, b2) _lt(b, b2)
167 
168 #undef iLT
169 #define iLT(b, b2) _ilt(b, b2)
170 
171 #endif
172 
173 /* These are the 33, 128-bit bias words for the key schedule */
174 static const unsigned char safer_bias[33][16] = {
175 {  70, 151, 177, 186, 163, 183,  16,  10, 197,  55, 179, 201,  90,  40, 172, 100},
176 { 236, 171, 170, 198, 103, 149,  88,  13, 248, 154, 246, 110, 102, 220,   5,  61},
177 { 138, 195, 216, 137, 106, 233,  54,  73,  67, 191, 235, 212, 150, 155, 104, 160},
178 {  93,  87, 146,  31, 213, 113,  92, 187,  34, 193, 190, 123, 188, 153,  99, 148},
179 {  42,  97, 184,  52,  50,  25, 253, 251,  23,  64, 230,  81,  29,  65,  68, 143},
180 { 221,   4, 128, 222, 231,  49, 214, 127,   1, 162, 247,  57, 218, 111,  35, 202},
181 {  58, 208,  28, 209,  48,  62,  18, 161, 205,  15, 224, 168, 175, 130,  89,  44},
182 { 125, 173, 178, 239, 194, 135, 206, 117,   6,  19,   2, 144,  79,  46, 114,  51},
183 { 192, 141, 207, 169, 129, 226, 196,  39,  47, 108, 122, 159,  82, 225,  21,  56},
184 { 252,  32,  66, 199,   8, 228,   9,  85,  94, 140,  20, 118,  96, 255, 223, 215},
185 { 250,  11,  33,   0,  26, 249, 166, 185, 232, 158,  98,  76, 217, 145,  80, 210},
186 {  24, 180,   7, 132, 234,  91, 164, 200,  14, 203,  72, 105,  75,  78, 156,  53},
187 {  69,  77,  84, 229,  37,  60,  12,  74, 139,  63, 204, 167, 219, 107, 174, 244},
188 {  45, 243, 124, 109, 157, 181,  38, 116, 242, 147,  83, 176, 240,  17, 237, 131},
189 { 182,   3,  22, 115,  59,  30, 142, 112, 189, 134,  27,  71, 126,  36,  86, 241},
190 { 136,  70, 151, 177, 186, 163, 183,  16,  10, 197,  55, 179, 201,  90,  40, 172},
191 { 220, 134, 119, 215, 166,  17, 251, 244, 186, 146, 145, 100, 131, 241,  51, 239},
192 {  44, 181, 178,  43, 136, 209, 153, 203, 140, 132,  29,  20, 129, 151, 113, 202},
193 { 163, 139,  87,  60, 130, 196,  82,  92,  28, 232, 160,   4, 180, 133,  74, 246},
194 {  84, 182, 223,  12,  26, 142, 222, 224,  57, 252,  32, 155,  36,  78, 169, 152},
195 { 171, 242,  96, 208, 108, 234, 250, 199, 217,   0, 212,  31, 110,  67, 188, 236},
196 { 137, 254, 122,  93,  73, 201,  50, 194, 249, 154, 248, 109,  22, 219,  89, 150},
197 { 233, 205, 230,  70,  66, 143,  10, 193, 204, 185, 101, 176, 210, 198, 172,  30},
198 {  98,  41,  46,  14, 116,  80,   2,  90, 195,  37, 123, 138,  42,  91, 240,   6},
199 {  71, 111, 112, 157, 126,  16, 206,  18,  39, 213,  76,  79, 214, 121,  48, 104},
200 { 117, 125, 228, 237, 128, 106, 144,  55, 162,  94, 118, 170, 197, 127,  61, 175},
201 { 229,  25,  97, 253,  77, 124, 183,  11, 238, 173,  75,  34, 245, 231, 115,  35},
202 { 200,   5, 225, 102, 221, 179,  88, 105,  99,  86,  15, 161,  49, 149,  23,   7},
203 {  40,   1,  45, 226, 147, 190,  69,  21, 174, 120,   3, 135, 164, 184,  56, 207},
204 {   8, 103,   9, 148, 235,  38, 168, 107, 189,  24,  52,  27, 187, 191, 114, 247},
205 {  53,  72, 156,  81,  47,  59,  85, 227, 192, 159, 216, 211, 243, 141, 177, 255},
206 {  62, 220, 134, 119, 215, 166,  17, 251, 244, 186, 146, 145, 100, 131, 241,  51}};
207 
208  /**
209     Initialize the SAFER+ block cipher
210     @param key The symmetric key you wish to pass
211     @param keylen The key length in bytes
212     @param num_rounds The number of rounds desired (0 for default)
213     @param skey The key in as scheduled by this function.
214     @return CRYPT_OK if successful
215  */
saferp_setup(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)216 int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
217 {
218    unsigned x, y, z;
219    unsigned char t[33];
220    static const int rounds[3] = { 8, 12, 16 };
221 
222    LTC_ARGCHK(key  != NULL);
223    LTC_ARGCHK(skey != NULL);
224 
225    /* check arguments */
226    if (keylen != 16 && keylen != 24 && keylen != 32) {
227       return CRYPT_INVALID_KEYSIZE;
228    }
229 
230    /* Is the number of rounds valid?  Either use zero for default or
231     * 8,12,16 rounds for 16,24,32 byte keys
232     */
233    if (num_rounds != 0 && num_rounds != rounds[(keylen/8)-2]) {
234       return CRYPT_INVALID_ROUNDS;
235    }
236 
237    /* 128 bit key version */
238    if (keylen == 16) {
239        /* copy key into t */
240        for (x = y = 0; x < 16; x++) {
241            t[x] = key[x];
242            y ^= key[x];
243        }
244        t[16] = y;
245 
246        /* make round keys */
247        for (x = 0; x < 16; x++) {
248            skey->saferp.K[0][x] = t[x];
249        }
250 
251        /* make the 16 other keys as a transformation of the first key */
252        for (x = 1; x < 17; x++) {
253            /* rotate 3 bits each */
254            for (y = 0; y < 17; y++) {
255                t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
256            }
257 
258            /* select and add */
259            z = x;
260            for (y = 0; y < 16; y++) {
261                skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
262                if (++z == 17) { z = 0; }
263            }
264        }
265        skey->saferp.rounds = 8;
266    } else if (keylen == 24) {
267        /* copy key into t */
268        for (x = y = 0; x < 24; x++) {
269            t[x] = key[x];
270            y ^= key[x];
271        }
272        t[24] = y;
273 
274        /* make round keys */
275        for (x = 0; x < 16; x++) {
276            skey->saferp.K[0][x] = t[x];
277        }
278 
279        for (x = 1; x < 25; x++) {
280            /* rotate 3 bits each */
281            for (y = 0; y < 25; y++) {
282                t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
283            }
284 
285            /* select and add */
286            z = x;
287            for (y = 0; y < 16; y++) {
288                skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
289                if (++z == 25) { z = 0; }
290            }
291        }
292        skey->saferp.rounds = 12;
293    } else {
294        /* copy key into t */
295        for (x = y = 0; x < 32; x++) {
296            t[x] = key[x];
297            y ^= key[x];
298        }
299        t[32] = y;
300 
301        /* make round keys */
302        for (x = 0; x < 16; x++) {
303            skey->saferp.K[0][x] = t[x];
304        }
305 
306        for (x = 1; x < 33; x++) {
307            /* rotate 3 bits each */
308            for (y = 0; y < 33; y++) {
309                t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
310            }
311 
312            /* select and add */
313            z = x;
314            for (y = 0; y < 16; y++) {
315                skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
316                if (++z == 33) { z = 0; }
317            }
318        }
319        skey->saferp.rounds = 16;
320    }
321 #ifdef LTC_CLEAN_STACK
322    zeromem(t, sizeof(t));
323 #endif
324    return CRYPT_OK;
325 }
326 
327 /**
328   Encrypts a block of text with SAFER+
329   @param pt The input plaintext (16 bytes)
330   @param ct The output ciphertext (16 bytes)
331   @param skey The key as scheduled
332   @return CRYPT_OK if successful
333 */
saferp_ecb_encrypt(const unsigned char * pt,unsigned char * ct,symmetric_key * skey)334 int saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
335 {
336    unsigned char b[16];
337    int x;
338 
339    LTC_ARGCHK(pt   != NULL);
340    LTC_ARGCHK(ct   != NULL);
341    LTC_ARGCHK(skey != NULL);
342 
343    /* do eight rounds */
344    for (x = 0; x < 16; x++) {
345        b[x] = pt[x];
346    }
347    ROUND(b,  0);  LT(b, ct);
348    ROUND(ct, 2);  LT(ct, b);
349    ROUND(b,  4);  LT(b, ct);
350    ROUND(ct, 6);  LT(ct, b);
351    ROUND(b,  8);  LT(b, ct);
352    ROUND(ct, 10); LT(ct, b);
353    ROUND(b,  12); LT(b, ct);
354    ROUND(ct, 14); LT(ct, b);
355    /* 192-bit key? */
356    if (skey->saferp.rounds > 8) {
357       ROUND(b, 16);  LT(b, ct);
358       ROUND(ct, 18); LT(ct, b);
359       ROUND(b, 20);  LT(b, ct);
360       ROUND(ct, 22); LT(ct, b);
361    }
362    /* 256-bit key? */
363    if (skey->saferp.rounds > 12) {
364       ROUND(b, 24);  LT(b, ct);
365       ROUND(ct, 26); LT(ct, b);
366       ROUND(b, 28);  LT(b, ct);
367       ROUND(ct, 30); LT(ct, b);
368    }
369    ct[0] = b[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
370    ct[1] = (b[1] + skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
371    ct[2] = (b[2] + skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
372    ct[3] = b[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
373    ct[4] = b[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
374    ct[5] = (b[5] + skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
375    ct[6] = (b[6] + skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
376    ct[7] = b[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
377    ct[8] = b[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
378    ct[9] = (b[9] + skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
379    ct[10] = (b[10] + skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
380    ct[11] = b[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
381    ct[12] = b[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
382    ct[13] = (b[13] + skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
383    ct[14] = (b[14] + skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
384    ct[15] = b[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
385 #ifdef LTC_CLEAN_STACK
386    zeromem(b, sizeof(b));
387 #endif
388    return CRYPT_OK;
389 }
390 
391 /**
392   Decrypts a block of text with SAFER+
393   @param ct The input ciphertext (16 bytes)
394   @param pt The output plaintext (16 bytes)
395   @param skey The key as scheduled
396   @return CRYPT_OK if successful
397 */
saferp_ecb_decrypt(const unsigned char * ct,unsigned char * pt,symmetric_key * skey)398 int saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
399 {
400    unsigned char b[16];
401    int x;
402 
403    LTC_ARGCHK(pt   != NULL);
404    LTC_ARGCHK(ct   != NULL);
405    LTC_ARGCHK(skey != NULL);
406 
407    /* do eight rounds */
408    b[0] = ct[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
409    b[1] = (ct[1] - skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
410    b[2] = (ct[2] - skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
411    b[3] = ct[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
412    b[4] = ct[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
413    b[5] = (ct[5] - skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
414    b[6] = (ct[6] - skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
415    b[7] = ct[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
416    b[8] = ct[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
417    b[9] = (ct[9] - skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
418    b[10] = (ct[10] - skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
419    b[11] = ct[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
420    b[12] = ct[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
421    b[13] = (ct[13] - skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
422    b[14] = (ct[14] - skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
423    b[15] = ct[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
424    /* 256-bit key? */
425    if (skey->saferp.rounds > 12) {
426       iLT(b, pt); iROUND(pt, 30);
427       iLT(pt, b); iROUND(b, 28);
428       iLT(b, pt); iROUND(pt, 26);
429       iLT(pt, b); iROUND(b, 24);
430    }
431    /* 192-bit key? */
432    if (skey->saferp.rounds > 8) {
433       iLT(b, pt); iROUND(pt, 22);
434       iLT(pt, b); iROUND(b, 20);
435       iLT(b, pt); iROUND(pt, 18);
436       iLT(pt, b); iROUND(b, 16);
437    }
438    iLT(b, pt); iROUND(pt, 14);
439    iLT(pt, b); iROUND(b, 12);
440    iLT(b, pt); iROUND(pt,10);
441    iLT(pt, b); iROUND(b, 8);
442    iLT(b, pt); iROUND(pt,6);
443    iLT(pt, b); iROUND(b, 4);
444    iLT(b, pt); iROUND(pt,2);
445    iLT(pt, b); iROUND(b, 0);
446    for (x = 0; x < 16; x++) {
447        pt[x] = b[x];
448    }
449 #ifdef LTC_CLEAN_STACK
450    zeromem(b, sizeof(b));
451 #endif
452    return CRYPT_OK;
453 }
454 
455 /**
456   Performs a self-test of the SAFER+ block cipher
457   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
458 */
saferp_test(void)459 int saferp_test(void)
460 {
461  #ifndef LTC_TEST
462     return CRYPT_NOP;
463  #else
464    static const struct {
465        int keylen;
466        unsigned char key[32], pt[16], ct[16];
467    } tests[] = {
468        {
469            16,
470            { 41, 35, 190, 132, 225, 108, 214, 174,
471              82, 144, 73, 241, 241, 187, 233, 235 },
472            { 179, 166, 219, 60, 135, 12, 62, 153,
473              36, 94, 13, 28, 6, 183, 71, 222 },
474            { 224, 31, 182, 10, 12, 255, 84, 70,
475              127, 13, 89, 249, 9, 57, 165, 220 }
476        }, {
477            24,
478            { 72, 211, 143, 117, 230, 217, 29, 42,
479              229, 192, 247, 43, 120, 129, 135, 68,
480              14, 95, 80, 0, 212, 97, 141, 190 },
481            { 123, 5, 21, 7, 59, 51, 130, 31,
482              24, 112, 146, 218, 100, 84, 206, 177 },
483            { 92, 136, 4, 63, 57, 95, 100, 0,
484              150, 130, 130, 16, 193, 111, 219, 133 }
485        }, {
486            32,
487            { 243, 168, 141, 254, 190, 242, 235, 113,
488              255, 160, 208, 59, 117, 6, 140, 126,
489              135, 120, 115, 77, 208, 190, 130, 190,
490              219, 194, 70, 65, 43, 140, 250, 48 },
491            { 127, 112, 240, 167, 84, 134, 50, 149,
492              170, 91, 104, 19, 11, 230, 252, 245 },
493            { 88, 11, 25, 36, 172, 229, 202, 213,
494              170, 65, 105, 153, 220, 104, 153, 138 }
495        }
496     };
497 
498    unsigned char tmp[2][16];
499    symmetric_key skey;
500    int err, i, y;
501 
502    for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
503       if ((err = saferp_setup(tests[i].key, tests[i].keylen, 0, &skey)) != CRYPT_OK)  {
504          return err;
505       }
506       saferp_ecb_encrypt(tests[i].pt, tmp[0], &skey);
507       saferp_ecb_decrypt(tmp[0], tmp[1], &skey);
508 
509       /* compare */
510       if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) {
511          return CRYPT_FAIL_TESTVECTOR;
512       }
513 
514       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
515       for (y = 0; y < 16; y++) tmp[0][y] = 0;
516       for (y = 0; y < 1000; y++) saferp_ecb_encrypt(tmp[0], tmp[0], &skey);
517       for (y = 0; y < 1000; y++) saferp_ecb_decrypt(tmp[0], tmp[0], &skey);
518       for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
519    }
520 
521    return CRYPT_OK;
522  #endif
523 }
524 
525 /** Terminate the context
526    @param skey    The scheduled key
527 */
saferp_done(symmetric_key * skey)528 void saferp_done(symmetric_key *skey)
529 {
530 }
531 
532 /**
533   Gets suitable key size
534   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
535   @return CRYPT_OK if the input key size is acceptable.
536 */
saferp_keysize(int * keysize)537 int saferp_keysize(int *keysize)
538 {
539    LTC_ARGCHK(keysize != NULL);
540 
541    if (*keysize < 16)
542       return CRYPT_INVALID_KEYSIZE;
543    if (*keysize < 24) {
544       *keysize = 16;
545    } else if (*keysize < 32) {
546       *keysize = 24;
547    } else {
548       *keysize = 32;
549    }
550    return CRYPT_OK;
551 }
552 
553 #endif
554 
555 
556 
557 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/safer/saferp.c,v $ */
558 /* $Revision: 1.12 $ */
559 /* $Date: 2006/11/08 23:01:06 $ */
560