• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *****************************************************************************
3  * Copyright (C) 1996-2006, International Business Machines Corporation and  *
4  * others. All Rights Reserved.                                              *
5  *****************************************************************************
6  */
7 
8 #include "unicode/utypes.h"
9 
10 #if !UCONFIG_NO_NORMALIZATION
11 
12 #include "unicode/uset.h"
13 #include "unicode/ustring.h"
14 #include "hash.h"
15 #include "unormimp.h"
16 #include "unicode/caniter.h"
17 #include "unicode/normlzr.h"
18 #include "unicode/uchar.h"
19 #include "cmemory.h"
20 
21 /**
22  * This class allows one to iterate through all the strings that are canonically equivalent to a given
23  * string. For example, here are some sample results:
24 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
25 1: \u0041\u030A\u0064\u0307\u0327
26  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
27 2: \u0041\u030A\u0064\u0327\u0307
28  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
29 3: \u0041\u030A\u1E0B\u0327
30  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
31 4: \u0041\u030A\u1E11\u0307
32  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
33 5: \u00C5\u0064\u0307\u0327
34  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
35 6: \u00C5\u0064\u0327\u0307
36  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
37 7: \u00C5\u1E0B\u0327
38  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
39 8: \u00C5\u1E11\u0307
40  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
41 9: \u212B\u0064\u0307\u0327
42  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
43 10: \u212B\u0064\u0327\u0307
44  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
45 11: \u212B\u1E0B\u0327
46  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
47 12: \u212B\u1E11\u0307
48  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
49  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
50  * since it has not been optimized for that situation.
51  *@author M. Davis
52  *@draft
53  */
54 
55 // public
56 
57 U_NAMESPACE_BEGIN
58 
59 // TODO: add boilerplate methods.
60 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)61 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
62 
63 /**
64  *@param source string to get results for
65  */
66 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
67     pieces(NULL),
68     pieces_length(0),
69     pieces_lengths(NULL),
70     current(NULL),
71     current_length(0)
72 {
73     if(U_SUCCESS(status)) {
74       setSource(sourceStr, status);
75     }
76 }
77 
~CanonicalIterator()78 CanonicalIterator::~CanonicalIterator() {
79   cleanPieces();
80 }
81 
cleanPieces()82 void CanonicalIterator::cleanPieces() {
83     int32_t i = 0;
84     if(pieces != NULL) {
85         for(i = 0; i < pieces_length; i++) {
86             if(pieces[i] != NULL) {
87                 delete[] pieces[i];
88             }
89         }
90         uprv_free(pieces);
91         pieces = NULL;
92         pieces_length = 0;
93     }
94     if(pieces_lengths != NULL) {
95         uprv_free(pieces_lengths);
96         pieces_lengths = NULL;
97     }
98     if(current != NULL) {
99         uprv_free(current);
100         current = NULL;
101         current_length = 0;
102     }
103 }
104 
105 /**
106  *@return gets the source: NOTE: it is the NFD form of source
107  */
getSource()108 UnicodeString CanonicalIterator::getSource() {
109   return source;
110 }
111 
112 /**
113  * Resets the iterator so that one can start again from the beginning.
114  */
reset()115 void CanonicalIterator::reset() {
116     done = FALSE;
117     for (int i = 0; i < current_length; ++i) {
118         current[i] = 0;
119     }
120 }
121 
122 /**
123  *@return the next string that is canonically equivalent. The value null is returned when
124  * the iteration is done.
125  */
next()126 UnicodeString CanonicalIterator::next() {
127     int32_t i = 0;
128 
129     if (done) {
130       buffer.setToBogus();
131       return buffer;
132     }
133 
134     // delete old contents
135     buffer.remove();
136 
137     // construct return value
138 
139     for (i = 0; i < pieces_length; ++i) {
140         buffer.append(pieces[i][current[i]]);
141     }
142     //String result = buffer.toString(); // not needed
143 
144     // find next value for next time
145 
146     for (i = current_length - 1; ; --i) {
147         if (i < 0) {
148             done = TRUE;
149             break;
150         }
151         current[i]++;
152         if (current[i] < pieces_lengths[i]) break; // got sequence
153         current[i] = 0;
154     }
155     return buffer;
156 }
157 
158 /**
159  *@param set the source string to iterate against. This allows the same iterator to be used
160  * while changing the source string, saving object creation.
161  */
setSource(const UnicodeString & newSource,UErrorCode & status)162 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
163     int32_t list_length = 0;
164     UChar32 cp = 0;
165     int32_t start = 0;
166     int32_t i = 0;
167     UnicodeString *list = NULL;
168 
169     Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
170     if(U_FAILURE(status)) {
171       return;
172     }
173     done = FALSE;
174 
175     cleanPieces();
176 
177     // catch degenerate case
178     if (newSource.length() == 0) {
179         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
180         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
181         pieces_length = 1;
182         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
183         current_length = 1;
184         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
185             status = U_MEMORY_ALLOCATION_ERROR;
186             goto CleanPartialInitialization;
187         }
188         current[0] = 0;
189         pieces[0] = new UnicodeString[1];
190         pieces_lengths[0] = 1;
191         if (pieces[0] == 0) {
192             status = U_MEMORY_ALLOCATION_ERROR;
193             goto CleanPartialInitialization;
194         }
195         return;
196     }
197 
198 
199     list = new UnicodeString[source.length()];
200     if (list == 0) {
201         status = U_MEMORY_ALLOCATION_ERROR;
202         goto CleanPartialInitialization;
203     }
204 
205     // i should initialy be the number of code units at the
206     // start of the string
207     i = UTF16_CHAR_LENGTH(source.char32At(0));
208     //int32_t i = 1;
209     // find the segments
210     // This code iterates through the source string and
211     // extracts segments that end up on a codepoint that
212     // doesn't start any decompositions. (Analysis is done
213     // on the NFD form - see above).
214     for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
215         cp = source.char32At(i);
216         if (unorm_isCanonSafeStart(cp)) {
217             source.extract(start, i-start, list[list_length++]); // add up to i
218             start = i;
219         }
220     }
221     source.extract(start, i-start, list[list_length++]); // add last one
222 
223 
224     // allocate the arrays, and find the strings that are CE to each segment
225     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
226     pieces_length = list_length;
227     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
228     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
229     current_length = list_length;
230     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
231         status = U_MEMORY_ALLOCATION_ERROR;
232         goto CleanPartialInitialization;
233     }
234 
235     for (i = 0; i < current_length; i++) {
236         current[i] = 0;
237     }
238     // for each segment, get all the combinations that can produce
239     // it after NFD normalization
240     for (i = 0; i < pieces_length; ++i) {
241         //if (PROGRESS) printf("SEGMENT\n");
242         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
243     }
244 
245     delete[] list;
246     return;
247 // Common section to cleanup all local variables and reset object variables.
248 CleanPartialInitialization:
249     if (list != NULL) {
250         delete[] list;
251     }
252     cleanPieces();
253 }
254 
255 /**
256  * Dumb recursive implementation of permutation.
257  * TODO: optimize
258  * @param source the string to find permutations for
259  * @return the results in a set.
260  */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status)261 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
262     if(U_FAILURE(status)) {
263         return;
264     }
265     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
266     int32_t i = 0;
267 
268     // optimization:
269     // if zero or one character, just return a set with it
270     // we check for length < 2 to keep from counting code points all the time
271     if (source.length() <= 2 && source.countChar32() <= 1) {
272         UnicodeString *toPut = new UnicodeString(source);
273         /* test for NULL */
274         if (toPut == 0) {
275             status = U_MEMORY_ALLOCATION_ERROR;
276             return;
277         }
278         result->put(source, toPut, status);
279         return;
280     }
281 
282     // otherwise iterate through the string, and recursively permute all the other characters
283     UChar32 cp;
284     Hashtable subpermute(status);
285     if(U_FAILURE(status)) {
286         return;
287     }
288     subpermute.setValueDeleter(uhash_deleteUnicodeString);
289 
290     for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
291         cp = source.char32At(i);
292         const UHashElement *ne = NULL;
293         int32_t el = -1;
294         UnicodeString subPermuteString = source;
295 
296         // optimization:
297         // if the character is canonical combining class zero,
298         // don't permute it
299         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
300             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
301             continue;
302         }
303 
304         subpermute.removeAll();
305 
306         // see what the permutations of the characters before and after this one are
307         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
308         permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
309         /* Test for buffer overflows */
310         if(U_FAILURE(status)) {
311             return;
312         }
313         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
314         // of source at this point.
315 
316         // prefix this character to all of them
317         ne = subpermute.nextElement(el);
318         while (ne != NULL) {
319             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
320             UnicodeString *chStr = new UnicodeString(cp);
321             //test for  NULL
322             if (chStr == NULL) {
323                 status = U_MEMORY_ALLOCATION_ERROR;
324                 return;
325             }
326             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
327             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
328             result->put(*chStr, chStr, status);
329             ne = subpermute.nextElement(el);
330         }
331     }
332     //return result;
333 }
334 
335 // privates
336 
337 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)338 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
339     Hashtable result(status);
340     Hashtable permutations(status);
341     Hashtable basic(status);
342     if (U_FAILURE(status)) {
343         return 0;
344     }
345     result.setValueDeleter(uhash_deleteUnicodeString);
346     permutations.setValueDeleter(uhash_deleteUnicodeString);
347     basic.setValueDeleter(uhash_deleteUnicodeString);
348 
349     UChar USeg[256];
350     int32_t segLen = segment.extract(USeg, 256, status);
351     getEquivalents2(&basic, USeg, segLen, status);
352 
353     // now get all the permutations
354     // add only the ones that are canonically equivalent
355     // TODO: optimize by not permuting any class zero.
356 
357     const UHashElement *ne = NULL;
358     int32_t el = -1;
359     //Iterator it = basic.iterator();
360     ne = basic.nextElement(el);
361     //while (it.hasNext())
362     while (ne != NULL) {
363         //String item = (String) it.next();
364         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
365 
366         permutations.removeAll();
367         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
368         const UHashElement *ne2 = NULL;
369         int32_t el2 = -1;
370         //Iterator it2 = permutations.iterator();
371         ne2 = permutations.nextElement(el2);
372         //while (it2.hasNext())
373         while (ne2 != NULL) {
374             //String possible = (String) it2.next();
375             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
376             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
377             UnicodeString attempt;
378             Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status);
379 
380             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
381             if (attempt==segment) {
382                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
383                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
384                 result.put(possible, new UnicodeString(possible), status); //add(possible);
385             } else {
386                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
387             }
388 
389             ne2 = permutations.nextElement(el2);
390         }
391         ne = basic.nextElement(el);
392     }
393 
394     /* Test for buffer overflows */
395     if(U_FAILURE(status)) {
396         return 0;
397     }
398     // convert into a String[] to clean up storage
399     //String[] finalResult = new String[result.size()];
400     UnicodeString *finalResult = NULL;
401     int32_t resultCount;
402     if((resultCount = result.count())) {
403         finalResult = new UnicodeString[resultCount];
404         if (finalResult == 0) {
405             status = U_MEMORY_ALLOCATION_ERROR;
406             return NULL;
407         }
408     }
409     else {
410         status = U_ILLEGAL_ARGUMENT_ERROR;
411         return NULL;
412     }
413     //result.toArray(finalResult);
414     result_len = 0;
415     el = -1;
416     ne = result.nextElement(el);
417     while(ne != NULL) {
418         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
419         ne = result.nextElement(el);
420     }
421 
422 
423     return finalResult;
424 }
425 
getEquivalents2(Hashtable * fillinResult,const UChar * segment,int32_t segLen,UErrorCode & status)426 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
427 
428     if (U_FAILURE(status)) {
429         return NULL;
430     }
431 
432     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
433 
434     UnicodeString toPut(segment, segLen);
435 
436     fillinResult->put(toPut, new UnicodeString(toPut), status);
437 
438     USerializedSet starts;
439 
440     // cycle through all the characters
441     UChar32 cp, end = 0;
442     int32_t i = 0, j;
443     for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
444         // see if any character is at the start of some decomposition
445         UTF_GET_CHAR(segment, 0, i, segLen, cp);
446         if (!unorm_getCanonStartSet(cp, &starts)) {
447             continue;
448         }
449         // if so, see which decompositions match
450         for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) {
451             Hashtable remainder(status);
452             remainder.setValueDeleter(uhash_deleteUnicodeString);
453             if (extract(&remainder, cp, segment, segLen, i, status) == NULL) {
454                 continue;
455             }
456 
457             // there were some matches, so add all the possibilities to the set.
458             UnicodeString prefix(segment, i);
459             prefix += cp;
460 
461             int32_t el = -1;
462             const UHashElement *ne = remainder.nextElement(el);
463             while (ne != NULL) {
464                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
465                 UnicodeString *toAdd = new UnicodeString(prefix);
466                 /* test for NULL */
467                 if (toAdd == 0) {
468                     status = U_MEMORY_ALLOCATION_ERROR;
469                     return NULL;
470                 }
471                 *toAdd += item;
472                 fillinResult->put(*toAdd, toAdd, status);
473 
474                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
475 
476                 ne = remainder.nextElement(el);
477             }
478         }
479     }
480 
481     /* Test for buffer overflows */
482     if(U_FAILURE(status)) {
483         return NULL;
484     }
485     return fillinResult;
486 }
487 
488 /**
489  * See if the decomposition of cp2 is at segment starting at segmentPos
490  * (with canonical rearrangment!)
491  * If so, take the remainder, and return the equivalents
492  */
extract(Hashtable * fillinResult,UChar32 comp,const UChar * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)493 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
494 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
495     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
496     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
497 
498     if (U_FAILURE(status)) {
499         return NULL;
500     }
501 
502     const int32_t bufSize = 256;
503     int32_t bufLen = 0;
504     UChar temp[bufSize];
505 
506     int32_t inputLen = 0, decompLen;
507     UChar stackBuffer[4];
508     const UChar *decomp;
509 
510     U16_APPEND_UNSAFE(temp, inputLen, comp);
511     decomp = unorm_getCanonicalDecomposition(comp, stackBuffer, &decompLen);
512     if(decomp == NULL) {
513         /* copy temp */
514         stackBuffer[0] = temp[0];
515         if(inputLen > 1) {
516             stackBuffer[1] = temp[1];
517         }
518         decomp = stackBuffer;
519         decompLen = inputLen;
520     }
521 
522     UChar *buff = temp+inputLen;
523 
524     // See if it matches the start of segment (at segmentPos)
525     UBool ok = FALSE;
526     UChar32 cp;
527     int32_t decompPos = 0;
528     UChar32 decompCp;
529     UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp);
530 
531     int32_t i;
532     UBool overflow = FALSE;
533 
534     i = segmentPos;
535     while(i < segLen) {
536         UTF_NEXT_CHAR(segment, i, segLen, cp);
537 
538         if (cp == decompCp) { // if equal, eat another cp from decomp
539 
540             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
541 
542             if (decompPos == decompLen) { // done, have all decomp characters!
543                 //u_strcat(buff+bufLen, segment+i);
544                 uprv_memcpy(buff+bufLen, segment+i, (segLen-i)*sizeof(UChar));
545                 bufLen+=segLen-i;
546 
547                 ok = TRUE;
548                 break;
549             }
550             UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp);
551         } else {
552             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
553 
554             // brute force approach
555 
556             U16_APPEND(buff, bufLen, bufSize, cp, overflow);
557 
558             if(overflow) {
559                 /*
560                  * ### TODO handle buffer overflow
561                  * The buffer is large, but an overflow may still happen with
562                  * unusual input (many combining marks?).
563                  * Reallocate buffer and continue.
564                  * markus 20020929
565                  */
566 
567                 overflow = FALSE;
568             }
569 
570             /* TODO: optimize
571             // since we know that the classes are monotonically increasing, after zero
572             // e.g. 0 5 7 9 0 3
573             // we can do an optimization
574             // there are only a few cases that work: zero, less, same, greater
575             // if both classes are the same, we fail
576             // if the decomp class < the segment class, we fail
577 
578             segClass = getClass(cp);
579             if (decompClass <= segClass) return null;
580             */
581         }
582     }
583     if (!ok)
584         return NULL; // we failed, characters left over
585 
586     //if (PROGRESS) printf("Matches\n");
587 
588     if (bufLen == 0) {
589         fillinResult->put(UnicodeString(), new UnicodeString(), status);
590         return fillinResult; // succeed, but no remainder
591     }
592 
593     // brute force approach
594     // check to make sure result is canonically equivalent
595     int32_t tempLen = inputLen + bufLen;
596 
597     UChar trial[bufSize];
598     unorm_decompose(trial, bufSize, temp, tempLen, FALSE, 0, &status);
599 
600     if(U_FAILURE(status)
601         || uprv_memcmp(segment+segmentPos, trial, (segLen - segmentPos)*sizeof(UChar)) != 0)
602     {
603         return NULL;
604     }
605 
606     return getEquivalents2(fillinResult, buff, bufLen, status);
607 }
608 
609 U_NAMESPACE_END
610 
611 #endif /* #if !UCONFIG_NO_NORMALIZATION */
612