1 /* Native implementation of soft float functions. Only a single status
2 context is supported */
3 #include "softfloat.h"
4 #include <math.h>
5
set_float_rounding_mode(int val STATUS_PARAM)6 void set_float_rounding_mode(int val STATUS_PARAM)
7 {
8 STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10 fpsetround(val);
11 #elif defined(__arm__)
12 /* nothing to do */
13 #else
14 fesetround(val);
15 #endif
16 }
17
18 #ifdef FLOATX80
set_floatx80_rounding_precision(int val STATUS_PARAM)19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
20 {
21 STATUS(floatx80_rounding_precision) = val;
22 }
23 #endif
24
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d) ((int32_t)rint(d))
27 #define llrint(d) ((int64_t)rint(d))
28 #define lrintf(f) ((int32_t)rint(f))
29 #define llrintf(f) ((int64_t)rint(f))
30 #define sqrtf(f) ((float)sqrt(f))
31 #define remainderf(fa, fb) ((float)remainder(fa, fb))
32 #define rintf(f) ((float)rint(f))
33 #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
34 extern long double rintl(long double);
35 extern long double scalbnl(long double, int);
36
37 long long
llrintl(long double x)38 llrintl(long double x) {
39 return ((long long) rintl(x));
40 }
41
42 long
lrintl(long double x)43 lrintl(long double x) {
44 return ((long) rintl(x));
45 }
46
47 long double
ldexpl(long double x,int n)48 ldexpl(long double x, int n) {
49 return (scalbnl(x, n));
50 }
51 #endif
52 #endif
53
54 #if defined(__powerpc__)
55
56 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
qemu_rint(double x)57 double qemu_rint(double x)
58 {
59 double y = 4503599627370496.0;
60 if (fabs(x) >= y)
61 return x;
62 if (x < 0)
63 y = -y;
64 y = (x + y) - y;
65 if (y == 0.0)
66 y = copysign(y, x);
67 return y;
68 }
69
70 #define rint qemu_rint
71 #endif
72
73 /*----------------------------------------------------------------------------
74 | Software IEC/IEEE integer-to-floating-point conversion routines.
75 *----------------------------------------------------------------------------*/
int32_to_float32(int v STATUS_PARAM)76 float32 int32_to_float32(int v STATUS_PARAM)
77 {
78 return (float32)v;
79 }
80
uint32_to_float32(unsigned int v STATUS_PARAM)81 float32 uint32_to_float32(unsigned int v STATUS_PARAM)
82 {
83 return (float32)v;
84 }
85
int32_to_float64(int v STATUS_PARAM)86 float64 int32_to_float64(int v STATUS_PARAM)
87 {
88 return (float64)v;
89 }
90
uint32_to_float64(unsigned int v STATUS_PARAM)91 float64 uint32_to_float64(unsigned int v STATUS_PARAM)
92 {
93 return (float64)v;
94 }
95
96 #ifdef FLOATX80
int32_to_floatx80(int v STATUS_PARAM)97 floatx80 int32_to_floatx80(int v STATUS_PARAM)
98 {
99 return (floatx80)v;
100 }
101 #endif
int64_to_float32(int64_t v STATUS_PARAM)102 float32 int64_to_float32( int64_t v STATUS_PARAM)
103 {
104 return (float32)v;
105 }
uint64_to_float32(uint64_t v STATUS_PARAM)106 float32 uint64_to_float32( uint64_t v STATUS_PARAM)
107 {
108 return (float32)v;
109 }
int64_to_float64(int64_t v STATUS_PARAM)110 float64 int64_to_float64( int64_t v STATUS_PARAM)
111 {
112 return (float64)v;
113 }
uint64_to_float64(uint64_t v STATUS_PARAM)114 float64 uint64_to_float64( uint64_t v STATUS_PARAM)
115 {
116 return (float64)v;
117 }
118 #ifdef FLOATX80
int64_to_floatx80(int64_t v STATUS_PARAM)119 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
120 {
121 return (floatx80)v;
122 }
123 #endif
124
125 /* XXX: this code implements the x86 behaviour, not the IEEE one. */
126 #if HOST_LONG_BITS == 32
long_to_int32(long a)127 static inline int long_to_int32(long a)
128 {
129 return a;
130 }
131 #else
long_to_int32(long a)132 static inline int long_to_int32(long a)
133 {
134 if (a != (int32_t)a)
135 a = 0x80000000;
136 return a;
137 }
138 #endif
139
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE single-precision conversion routines.
142 *----------------------------------------------------------------------------*/
float32_to_int32(float32 a STATUS_PARAM)143 int float32_to_int32( float32 a STATUS_PARAM)
144 {
145 return long_to_int32(lrintf(a));
146 }
float32_to_int32_round_to_zero(float32 a STATUS_PARAM)147 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
148 {
149 return (int)a;
150 }
float32_to_int64(float32 a STATUS_PARAM)151 int64_t float32_to_int64( float32 a STATUS_PARAM)
152 {
153 return llrintf(a);
154 }
155
float32_to_int64_round_to_zero(float32 a STATUS_PARAM)156 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
157 {
158 return (int64_t)a;
159 }
160
float32_to_float64(float32 a STATUS_PARAM)161 float64 float32_to_float64( float32 a STATUS_PARAM)
162 {
163 return a;
164 }
165 #ifdef FLOATX80
float32_to_floatx80(float32 a STATUS_PARAM)166 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
167 {
168 return a;
169 }
170 #endif
171
float32_to_uint32(float32 a STATUS_PARAM)172 unsigned int float32_to_uint32( float32 a STATUS_PARAM)
173 {
174 int64_t v;
175 unsigned int res;
176
177 v = llrintf(a);
178 if (v < 0) {
179 res = 0;
180 } else if (v > 0xffffffff) {
181 res = 0xffffffff;
182 } else {
183 res = v;
184 }
185 return res;
186 }
float32_to_uint32_round_to_zero(float32 a STATUS_PARAM)187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
188 {
189 int64_t v;
190 unsigned int res;
191
192 v = (int64_t)a;
193 if (v < 0) {
194 res = 0;
195 } else if (v > 0xffffffff) {
196 res = 0xffffffff;
197 } else {
198 res = v;
199 }
200 return res;
201 }
202
203 /*----------------------------------------------------------------------------
204 | Software IEC/IEEE single-precision operations.
205 *----------------------------------------------------------------------------*/
float32_round_to_int(float32 a STATUS_PARAM)206 float32 float32_round_to_int( float32 a STATUS_PARAM)
207 {
208 return rintf(a);
209 }
210
float32_rem(float32 a,float32 b STATUS_PARAM)211 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
212 {
213 return remainderf(a, b);
214 }
215
float32_sqrt(float32 a STATUS_PARAM)216 float32 float32_sqrt( float32 a STATUS_PARAM)
217 {
218 return sqrtf(a);
219 }
float32_compare(float32 a,float32 b STATUS_PARAM)220 int float32_compare( float32 a, float32 b STATUS_PARAM )
221 {
222 if (a < b) {
223 return -1;
224 } else if (a == b) {
225 return 0;
226 } else if (a > b) {
227 return 1;
228 } else {
229 return 2;
230 }
231 }
float32_compare_quiet(float32 a,float32 b STATUS_PARAM)232 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
233 {
234 if (isless(a, b)) {
235 return -1;
236 } else if (a == b) {
237 return 0;
238 } else if (isgreater(a, b)) {
239 return 1;
240 } else {
241 return 2;
242 }
243 }
float32_is_signaling_nan(float32 a1)244 int float32_is_signaling_nan( float32 a1)
245 {
246 float32u u;
247 uint32_t a;
248 u.f = a1;
249 a = u.i;
250 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
251 }
252
253 /*----------------------------------------------------------------------------
254 | Software IEC/IEEE double-precision conversion routines.
255 *----------------------------------------------------------------------------*/
float64_to_int32(float64 a STATUS_PARAM)256 int float64_to_int32( float64 a STATUS_PARAM)
257 {
258 return long_to_int32(lrint(a));
259 }
float64_to_int32_round_to_zero(float64 a STATUS_PARAM)260 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
261 {
262 return (int)a;
263 }
float64_to_int64(float64 a STATUS_PARAM)264 int64_t float64_to_int64( float64 a STATUS_PARAM)
265 {
266 return llrint(a);
267 }
float64_to_int64_round_to_zero(float64 a STATUS_PARAM)268 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
269 {
270 return (int64_t)a;
271 }
float64_to_float32(float64 a STATUS_PARAM)272 float32 float64_to_float32( float64 a STATUS_PARAM)
273 {
274 return a;
275 }
276 #ifdef FLOATX80
float64_to_floatx80(float64 a STATUS_PARAM)277 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
278 {
279 return a;
280 }
281 #endif
282 #ifdef FLOAT128
float64_to_float128(float64 a STATUS_PARAM)283 float128 float64_to_float128( float64 a STATUS_PARAM)
284 {
285 return a;
286 }
287 #endif
288
float64_to_uint32(float64 a STATUS_PARAM)289 unsigned int float64_to_uint32( float64 a STATUS_PARAM)
290 {
291 int64_t v;
292 unsigned int res;
293
294 v = llrint(a);
295 if (v < 0) {
296 res = 0;
297 } else if (v > 0xffffffff) {
298 res = 0xffffffff;
299 } else {
300 res = v;
301 }
302 return res;
303 }
float64_to_uint32_round_to_zero(float64 a STATUS_PARAM)304 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
305 {
306 int64_t v;
307 unsigned int res;
308
309 v = (int64_t)a;
310 if (v < 0) {
311 res = 0;
312 } else if (v > 0xffffffff) {
313 res = 0xffffffff;
314 } else {
315 res = v;
316 }
317 return res;
318 }
float64_to_uint64(float64 a STATUS_PARAM)319 uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
320 {
321 int64_t v;
322
323 v = llrint(a + (float64)INT64_MIN);
324
325 return v - INT64_MIN;
326 }
float64_to_uint64_round_to_zero(float64 a STATUS_PARAM)327 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
328 {
329 int64_t v;
330
331 v = (int64_t)(a + (float64)INT64_MIN);
332
333 return v - INT64_MIN;
334 }
335
336 /*----------------------------------------------------------------------------
337 | Software IEC/IEEE double-precision operations.
338 *----------------------------------------------------------------------------*/
339 #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
trunc(float64 x)340 static inline float64 trunc(float64 x)
341 {
342 return x < 0 ? -floor(-x) : floor(x);
343 }
344 #endif
float64_trunc_to_int(float64 a STATUS_PARAM)345 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
346 {
347 return trunc(a);
348 }
349
float64_round_to_int(float64 a STATUS_PARAM)350 float64 float64_round_to_int( float64 a STATUS_PARAM )
351 {
352 #if defined(__arm__)
353 switch(STATUS(float_rounding_mode)) {
354 default:
355 case float_round_nearest_even:
356 asm("rndd %0, %1" : "=f" (a) : "f"(a));
357 break;
358 case float_round_down:
359 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
360 break;
361 case float_round_up:
362 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
363 break;
364 case float_round_to_zero:
365 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
366 break;
367 }
368 #else
369 return rint(a);
370 #endif
371 }
372
float64_rem(float64 a,float64 b STATUS_PARAM)373 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
374 {
375 return remainder(a, b);
376 }
377
float64_sqrt(float64 a STATUS_PARAM)378 float64 float64_sqrt( float64 a STATUS_PARAM)
379 {
380 return sqrt(a);
381 }
float64_compare(float64 a,float64 b STATUS_PARAM)382 int float64_compare( float64 a, float64 b STATUS_PARAM )
383 {
384 if (a < b) {
385 return -1;
386 } else if (a == b) {
387 return 0;
388 } else if (a > b) {
389 return 1;
390 } else {
391 return 2;
392 }
393 }
float64_compare_quiet(float64 a,float64 b STATUS_PARAM)394 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
395 {
396 if (isless(a, b)) {
397 return -1;
398 } else if (a == b) {
399 return 0;
400 } else if (isgreater(a, b)) {
401 return 1;
402 } else {
403 return 2;
404 }
405 }
float64_is_signaling_nan(float64 a1)406 int float64_is_signaling_nan( float64 a1)
407 {
408 float64u u;
409 uint64_t a;
410 u.f = a1;
411 a = u.i;
412 return
413 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
414 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
415
416 }
417
float64_is_nan(float64 a1)418 int float64_is_nan( float64 a1 )
419 {
420 float64u u;
421 uint64_t a;
422 u.f = a1;
423 a = u.i;
424
425 return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
426
427 }
428
429 #ifdef FLOATX80
430
431 /*----------------------------------------------------------------------------
432 | Software IEC/IEEE extended double-precision conversion routines.
433 *----------------------------------------------------------------------------*/
floatx80_to_int32(floatx80 a STATUS_PARAM)434 int floatx80_to_int32( floatx80 a STATUS_PARAM)
435 {
436 return long_to_int32(lrintl(a));
437 }
floatx80_to_int32_round_to_zero(floatx80 a STATUS_PARAM)438 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
439 {
440 return (int)a;
441 }
floatx80_to_int64(floatx80 a STATUS_PARAM)442 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
443 {
444 return llrintl(a);
445 }
floatx80_to_int64_round_to_zero(floatx80 a STATUS_PARAM)446 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
447 {
448 return (int64_t)a;
449 }
floatx80_to_float32(floatx80 a STATUS_PARAM)450 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
451 {
452 return a;
453 }
floatx80_to_float64(floatx80 a STATUS_PARAM)454 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
455 {
456 return a;
457 }
458
459 /*----------------------------------------------------------------------------
460 | Software IEC/IEEE extended double-precision operations.
461 *----------------------------------------------------------------------------*/
floatx80_round_to_int(floatx80 a STATUS_PARAM)462 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
463 {
464 return rintl(a);
465 }
floatx80_rem(floatx80 a,floatx80 b STATUS_PARAM)466 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
467 {
468 return remainderl(a, b);
469 }
floatx80_sqrt(floatx80 a STATUS_PARAM)470 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
471 {
472 return sqrtl(a);
473 }
floatx80_compare(floatx80 a,floatx80 b STATUS_PARAM)474 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
475 {
476 if (a < b) {
477 return -1;
478 } else if (a == b) {
479 return 0;
480 } else if (a > b) {
481 return 1;
482 } else {
483 return 2;
484 }
485 }
floatx80_compare_quiet(floatx80 a,floatx80 b STATUS_PARAM)486 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
487 {
488 if (isless(a, b)) {
489 return -1;
490 } else if (a == b) {
491 return 0;
492 } else if (isgreater(a, b)) {
493 return 1;
494 } else {
495 return 2;
496 }
497 }
floatx80_is_signaling_nan(floatx80 a1)498 int floatx80_is_signaling_nan( floatx80 a1)
499 {
500 floatx80u u;
501 u.f = a1;
502 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
503 }
504
505 #endif
506