• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Native implementation of soft float functions. Only a single status
2    context is supported */
3 #include "softfloat.h"
4 #include <math.h>
5 
set_float_rounding_mode(int val STATUS_PARAM)6 void set_float_rounding_mode(int val STATUS_PARAM)
7 {
8     STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10     fpsetround(val);
11 #elif defined(__arm__)
12     /* nothing to do */
13 #else
14     fesetround(val);
15 #endif
16 }
17 
18 #ifdef FLOATX80
set_floatx80_rounding_precision(int val STATUS_PARAM)19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
20 {
21     STATUS(floatx80_rounding_precision) = val;
22 }
23 #endif
24 
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d)		((int32_t)rint(d))
27 #define llrint(d)		((int64_t)rint(d))
28 #define lrintf(f)		((int32_t)rint(f))
29 #define llrintf(f)		((int64_t)rint(f))
30 #define sqrtf(f)		((float)sqrt(f))
31 #define remainderf(fa, fb)	((float)remainder(fa, fb))
32 #define rintf(f)		((float)rint(f))
33 #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
34 extern long double rintl(long double);
35 extern long double scalbnl(long double, int);
36 
37 long long
llrintl(long double x)38 llrintl(long double x) {
39 	return ((long long) rintl(x));
40 }
41 
42 long
lrintl(long double x)43 lrintl(long double x) {
44 	return ((long) rintl(x));
45 }
46 
47 long double
ldexpl(long double x,int n)48 ldexpl(long double x, int n) {
49 	return (scalbnl(x, n));
50 }
51 #endif
52 #endif
53 
54 #if defined(__powerpc__)
55 
56 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
qemu_rint(double x)57 double qemu_rint(double x)
58 {
59     double y = 4503599627370496.0;
60     if (fabs(x) >= y)
61         return x;
62     if (x < 0)
63         y = -y;
64     y = (x + y) - y;
65     if (y == 0.0)
66         y = copysign(y, x);
67     return y;
68 }
69 
70 #define rint qemu_rint
71 #endif
72 
73 /*----------------------------------------------------------------------------
74 | Software IEC/IEEE integer-to-floating-point conversion routines.
75 *----------------------------------------------------------------------------*/
int32_to_float32(int v STATUS_PARAM)76 float32 int32_to_float32(int v STATUS_PARAM)
77 {
78     return (float32)v;
79 }
80 
uint32_to_float32(unsigned int v STATUS_PARAM)81 float32 uint32_to_float32(unsigned int v STATUS_PARAM)
82 {
83     return (float32)v;
84 }
85 
int32_to_float64(int v STATUS_PARAM)86 float64 int32_to_float64(int v STATUS_PARAM)
87 {
88     return (float64)v;
89 }
90 
uint32_to_float64(unsigned int v STATUS_PARAM)91 float64 uint32_to_float64(unsigned int v STATUS_PARAM)
92 {
93     return (float64)v;
94 }
95 
96 #ifdef FLOATX80
int32_to_floatx80(int v STATUS_PARAM)97 floatx80 int32_to_floatx80(int v STATUS_PARAM)
98 {
99     return (floatx80)v;
100 }
101 #endif
int64_to_float32(int64_t v STATUS_PARAM)102 float32 int64_to_float32( int64_t v STATUS_PARAM)
103 {
104     return (float32)v;
105 }
uint64_to_float32(uint64_t v STATUS_PARAM)106 float32 uint64_to_float32( uint64_t v STATUS_PARAM)
107 {
108     return (float32)v;
109 }
int64_to_float64(int64_t v STATUS_PARAM)110 float64 int64_to_float64( int64_t v STATUS_PARAM)
111 {
112     return (float64)v;
113 }
uint64_to_float64(uint64_t v STATUS_PARAM)114 float64 uint64_to_float64( uint64_t v STATUS_PARAM)
115 {
116     return (float64)v;
117 }
118 #ifdef FLOATX80
int64_to_floatx80(int64_t v STATUS_PARAM)119 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
120 {
121     return (floatx80)v;
122 }
123 #endif
124 
125 /* XXX: this code implements the x86 behaviour, not the IEEE one.  */
126 #if HOST_LONG_BITS == 32
long_to_int32(long a)127 static inline int long_to_int32(long a)
128 {
129     return a;
130 }
131 #else
long_to_int32(long a)132 static inline int long_to_int32(long a)
133 {
134     if (a != (int32_t)a)
135         a = 0x80000000;
136     return a;
137 }
138 #endif
139 
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE single-precision conversion routines.
142 *----------------------------------------------------------------------------*/
float32_to_int32(float32 a STATUS_PARAM)143 int float32_to_int32( float32 a STATUS_PARAM)
144 {
145     return long_to_int32(lrintf(a));
146 }
float32_to_int32_round_to_zero(float32 a STATUS_PARAM)147 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
148 {
149     return (int)a;
150 }
float32_to_int64(float32 a STATUS_PARAM)151 int64_t float32_to_int64( float32 a STATUS_PARAM)
152 {
153     return llrintf(a);
154 }
155 
float32_to_int64_round_to_zero(float32 a STATUS_PARAM)156 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
157 {
158     return (int64_t)a;
159 }
160 
float32_to_float64(float32 a STATUS_PARAM)161 float64 float32_to_float64( float32 a STATUS_PARAM)
162 {
163     return a;
164 }
165 #ifdef FLOATX80
float32_to_floatx80(float32 a STATUS_PARAM)166 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
167 {
168     return a;
169 }
170 #endif
171 
float32_to_uint32(float32 a STATUS_PARAM)172 unsigned int float32_to_uint32( float32 a STATUS_PARAM)
173 {
174     int64_t v;
175     unsigned int res;
176 
177     v = llrintf(a);
178     if (v < 0) {
179         res = 0;
180     } else if (v > 0xffffffff) {
181         res = 0xffffffff;
182     } else {
183         res = v;
184     }
185     return res;
186 }
float32_to_uint32_round_to_zero(float32 a STATUS_PARAM)187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
188 {
189     int64_t v;
190     unsigned int res;
191 
192     v = (int64_t)a;
193     if (v < 0) {
194         res = 0;
195     } else if (v > 0xffffffff) {
196         res = 0xffffffff;
197     } else {
198         res = v;
199     }
200     return res;
201 }
202 
203 /*----------------------------------------------------------------------------
204 | Software IEC/IEEE single-precision operations.
205 *----------------------------------------------------------------------------*/
float32_round_to_int(float32 a STATUS_PARAM)206 float32 float32_round_to_int( float32 a STATUS_PARAM)
207 {
208     return rintf(a);
209 }
210 
float32_rem(float32 a,float32 b STATUS_PARAM)211 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
212 {
213     return remainderf(a, b);
214 }
215 
float32_sqrt(float32 a STATUS_PARAM)216 float32 float32_sqrt( float32 a STATUS_PARAM)
217 {
218     return sqrtf(a);
219 }
float32_compare(float32 a,float32 b STATUS_PARAM)220 int float32_compare( float32 a, float32 b STATUS_PARAM )
221 {
222     if (a < b) {
223         return -1;
224     } else if (a == b) {
225         return 0;
226     } else if (a > b) {
227         return 1;
228     } else {
229         return 2;
230     }
231 }
float32_compare_quiet(float32 a,float32 b STATUS_PARAM)232 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
233 {
234     if (isless(a, b)) {
235         return -1;
236     } else if (a == b) {
237         return 0;
238     } else if (isgreater(a, b)) {
239         return 1;
240     } else {
241         return 2;
242     }
243 }
float32_is_signaling_nan(float32 a1)244 int float32_is_signaling_nan( float32 a1)
245 {
246     float32u u;
247     uint32_t a;
248     u.f = a1;
249     a = u.i;
250     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
251 }
252 
253 /*----------------------------------------------------------------------------
254 | Software IEC/IEEE double-precision conversion routines.
255 *----------------------------------------------------------------------------*/
float64_to_int32(float64 a STATUS_PARAM)256 int float64_to_int32( float64 a STATUS_PARAM)
257 {
258     return long_to_int32(lrint(a));
259 }
float64_to_int32_round_to_zero(float64 a STATUS_PARAM)260 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
261 {
262     return (int)a;
263 }
float64_to_int64(float64 a STATUS_PARAM)264 int64_t float64_to_int64( float64 a STATUS_PARAM)
265 {
266     return llrint(a);
267 }
float64_to_int64_round_to_zero(float64 a STATUS_PARAM)268 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
269 {
270     return (int64_t)a;
271 }
float64_to_float32(float64 a STATUS_PARAM)272 float32 float64_to_float32( float64 a STATUS_PARAM)
273 {
274     return a;
275 }
276 #ifdef FLOATX80
float64_to_floatx80(float64 a STATUS_PARAM)277 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
278 {
279     return a;
280 }
281 #endif
282 #ifdef FLOAT128
float64_to_float128(float64 a STATUS_PARAM)283 float128 float64_to_float128( float64 a STATUS_PARAM)
284 {
285     return a;
286 }
287 #endif
288 
float64_to_uint32(float64 a STATUS_PARAM)289 unsigned int float64_to_uint32( float64 a STATUS_PARAM)
290 {
291     int64_t v;
292     unsigned int res;
293 
294     v = llrint(a);
295     if (v < 0) {
296         res = 0;
297     } else if (v > 0xffffffff) {
298         res = 0xffffffff;
299     } else {
300         res = v;
301     }
302     return res;
303 }
float64_to_uint32_round_to_zero(float64 a STATUS_PARAM)304 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
305 {
306     int64_t v;
307     unsigned int res;
308 
309     v = (int64_t)a;
310     if (v < 0) {
311         res = 0;
312     } else if (v > 0xffffffff) {
313         res = 0xffffffff;
314     } else {
315         res = v;
316     }
317     return res;
318 }
float64_to_uint64(float64 a STATUS_PARAM)319 uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
320 {
321     int64_t v;
322 
323     v = llrint(a + (float64)INT64_MIN);
324 
325     return v - INT64_MIN;
326 }
float64_to_uint64_round_to_zero(float64 a STATUS_PARAM)327 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
328 {
329     int64_t v;
330 
331     v = (int64_t)(a + (float64)INT64_MIN);
332 
333     return v - INT64_MIN;
334 }
335 
336 /*----------------------------------------------------------------------------
337 | Software IEC/IEEE double-precision operations.
338 *----------------------------------------------------------------------------*/
339 #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
trunc(float64 x)340 static inline float64 trunc(float64 x)
341 {
342     return x < 0 ? -floor(-x) : floor(x);
343 }
344 #endif
float64_trunc_to_int(float64 a STATUS_PARAM)345 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
346 {
347     return trunc(a);
348 }
349 
float64_round_to_int(float64 a STATUS_PARAM)350 float64 float64_round_to_int( float64 a STATUS_PARAM )
351 {
352 #if defined(__arm__)
353     switch(STATUS(float_rounding_mode)) {
354     default:
355     case float_round_nearest_even:
356         asm("rndd %0, %1" : "=f" (a) : "f"(a));
357         break;
358     case float_round_down:
359         asm("rnddm %0, %1" : "=f" (a) : "f"(a));
360         break;
361     case float_round_up:
362         asm("rnddp %0, %1" : "=f" (a) : "f"(a));
363         break;
364     case float_round_to_zero:
365         asm("rnddz %0, %1" : "=f" (a) : "f"(a));
366         break;
367     }
368 #else
369     return rint(a);
370 #endif
371 }
372 
float64_rem(float64 a,float64 b STATUS_PARAM)373 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
374 {
375     return remainder(a, b);
376 }
377 
float64_sqrt(float64 a STATUS_PARAM)378 float64 float64_sqrt( float64 a STATUS_PARAM)
379 {
380     return sqrt(a);
381 }
float64_compare(float64 a,float64 b STATUS_PARAM)382 int float64_compare( float64 a, float64 b STATUS_PARAM )
383 {
384     if (a < b) {
385         return -1;
386     } else if (a == b) {
387         return 0;
388     } else if (a > b) {
389         return 1;
390     } else {
391         return 2;
392     }
393 }
float64_compare_quiet(float64 a,float64 b STATUS_PARAM)394 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
395 {
396     if (isless(a, b)) {
397         return -1;
398     } else if (a == b) {
399         return 0;
400     } else if (isgreater(a, b)) {
401         return 1;
402     } else {
403         return 2;
404     }
405 }
float64_is_signaling_nan(float64 a1)406 int float64_is_signaling_nan( float64 a1)
407 {
408     float64u u;
409     uint64_t a;
410     u.f = a1;
411     a = u.i;
412     return
413            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
414         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
415 
416 }
417 
float64_is_nan(float64 a1)418 int float64_is_nan( float64 a1 )
419 {
420     float64u u;
421     uint64_t a;
422     u.f = a1;
423     a = u.i;
424 
425     return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
426 
427 }
428 
429 #ifdef FLOATX80
430 
431 /*----------------------------------------------------------------------------
432 | Software IEC/IEEE extended double-precision conversion routines.
433 *----------------------------------------------------------------------------*/
floatx80_to_int32(floatx80 a STATUS_PARAM)434 int floatx80_to_int32( floatx80 a STATUS_PARAM)
435 {
436     return long_to_int32(lrintl(a));
437 }
floatx80_to_int32_round_to_zero(floatx80 a STATUS_PARAM)438 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
439 {
440     return (int)a;
441 }
floatx80_to_int64(floatx80 a STATUS_PARAM)442 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
443 {
444     return llrintl(a);
445 }
floatx80_to_int64_round_to_zero(floatx80 a STATUS_PARAM)446 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
447 {
448     return (int64_t)a;
449 }
floatx80_to_float32(floatx80 a STATUS_PARAM)450 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
451 {
452     return a;
453 }
floatx80_to_float64(floatx80 a STATUS_PARAM)454 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
455 {
456     return a;
457 }
458 
459 /*----------------------------------------------------------------------------
460 | Software IEC/IEEE extended double-precision operations.
461 *----------------------------------------------------------------------------*/
floatx80_round_to_int(floatx80 a STATUS_PARAM)462 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
463 {
464     return rintl(a);
465 }
floatx80_rem(floatx80 a,floatx80 b STATUS_PARAM)466 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
467 {
468     return remainderl(a, b);
469 }
floatx80_sqrt(floatx80 a STATUS_PARAM)470 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
471 {
472     return sqrtl(a);
473 }
floatx80_compare(floatx80 a,floatx80 b STATUS_PARAM)474 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
475 {
476     if (a < b) {
477         return -1;
478     } else if (a == b) {
479         return 0;
480     } else if (a > b) {
481         return 1;
482     } else {
483         return 2;
484     }
485 }
floatx80_compare_quiet(floatx80 a,floatx80 b STATUS_PARAM)486 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
487 {
488     if (isless(a, b)) {
489         return -1;
490     } else if (a == b) {
491         return 0;
492     } else if (isgreater(a, b)) {
493         return 1;
494     } else {
495         return 2;
496     }
497 }
floatx80_is_signaling_nan(floatx80 a1)498 int floatx80_is_signaling_nan( floatx80 a1)
499 {
500     floatx80u u;
501     u.f = a1;
502     return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
503 }
504 
505 #endif
506