• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 Apple Inc. All Rights Reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #ifndef UnitBezier_h
27 #define UnitBezier_h
28 
29 #include <math.h>
30 
31 namespace WebCore {
32 
33     struct UnitBezier {
UnitBezierUnitBezier34         UnitBezier(double p1x, double p1y, double p2x, double p2y)
35         {
36             // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1).
37             cx = 3.0 * p1x;
38             bx = 3.0 * (p2x - p1x) - cx;
39             ax = 1.0 - cx -bx;
40 
41             cy = 3.0 * p1y;
42             by = 3.0 * (p2y - p1y) - cy;
43             ay = 1.0 - cy - by;
44         }
45 
sampleCurveXUnitBezier46         double sampleCurveX(double t)
47         {
48             // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
49             return ((ax * t + bx) * t + cx) * t;
50         }
51 
sampleCurveYUnitBezier52         double sampleCurveY(double t)
53         {
54             return ((ay * t + by) * t + cy) * t;
55         }
56 
sampleCurveDerivativeXUnitBezier57         double sampleCurveDerivativeX(double t)
58         {
59             return (3.0 * ax * t + 2.0 * bx) * t + cx;
60         }
61 
62         // Given an x value, find a parametric value it came from.
solveCurveXUnitBezier63         double solveCurveX(double x, double epsilon)
64         {
65             double t0;
66             double t1;
67             double t2;
68             double x2;
69             double d2;
70             int i;
71 
72             // First try a few iterations of Newton's method -- normally very fast.
73             for (t2 = x, i = 0; i < 8; i++) {
74                 x2 = sampleCurveX(t2) - x;
75                 if (fabs (x2) < epsilon)
76                     return t2;
77                 d2 = sampleCurveDerivativeX(t2);
78                 if (fabs(d2) < 1e-6)
79                     break;
80                 t2 = t2 - x2 / d2;
81             }
82 
83             // Fall back to the bisection method for reliability.
84             t0 = 0.0;
85             t1 = 1.0;
86             t2 = x;
87 
88             if (t2 < t0)
89                 return t0;
90             if (t2 > t1)
91                 return t1;
92 
93             while (t0 < t1) {
94                 x2 = sampleCurveX(t2);
95                 if (fabs(x2 - x) < epsilon)
96                     return t2;
97                 if (x > x2)
98                     t0 = t2;
99                 else
100                     t1 = t2;
101                 t2 = (t1 - t0) * .5 + t0;
102             }
103 
104             // Failure.
105             return t2;
106         }
107 
solveUnitBezier108         double solve(double x, double epsilon)
109         {
110             return sampleCurveY(solveCurveX(x, epsilon));
111         }
112 
113     private:
114         double ax;
115         double bx;
116         double cx;
117 
118         double ay;
119         double by;
120         double cy;
121     };
122 }
123 #endif
124