• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 /*
17  * DDM-related heap functions
18  */
19 #include <sys/time.h>
20 #include <time.h>
21 
22 #include "Dalvik.h"
23 #include "alloc/Heap.h"
24 #include "alloc/HeapInternal.h"
25 #include "alloc/DdmHeap.h"
26 #include "alloc/HeapSource.h"
27 
28 #define DEFAULT_HEAP_ID  1
29 
30 enum HpifWhen {
31     HPIF_WHEN_NEVER = 0,
32     HPIF_WHEN_NOW = 1,
33     HPIF_WHEN_NEXT_GC = 2,
34     HPIF_WHEN_EVERY_GC = 3
35 };
36 
37 /*
38  * Chunk HPIF (client --> server)
39  *
40  * Heap Info. General information about the heap,
41  * suitable for a summary display.
42  *
43  *   [u4]: number of heaps
44  *
45  *   For each heap:
46  *     [u4]: heap ID
47  *     [u8]: timestamp in ms since Unix epoch
48  *     [u1]: capture reason (same as 'when' value from server)
49  *     [u4]: max heap size in bytes (-Xmx)
50  *     [u4]: current heap size in bytes
51  *     [u4]: current number of bytes allocated
52  *     [u4]: current number of objects allocated
53  */
54 #define HPIF_SIZE(numHeaps) \
55         (sizeof(u4) + (numHeaps) * (5 * sizeof(u4) + sizeof(u1) + sizeof(u8)))
56 void
dvmDdmSendHeapInfo(int reason,bool shouldLock)57 dvmDdmSendHeapInfo(int reason, bool shouldLock)
58 {
59     struct timeval now;
60     u8 nowMs;
61     u1 *buf, *b;
62 
63     buf = (u1 *)malloc(HPIF_SIZE(1));
64     if (buf == NULL) {
65         return;
66     }
67     b = buf;
68 
69     /* If there's a one-shot 'when', reset it.
70      */
71     if (reason == gDvm.gcHeap->ddmHpifWhen) {
72         if (shouldLock && ! dvmLockHeap()) {
73             LOGW("%s(): can't lock heap to clear when\n", __func__);
74             goto skip_when;
75         }
76         if (reason == gDvm.gcHeap->ddmHpifWhen) {
77             if (gDvm.gcHeap->ddmHpifWhen == HPIF_WHEN_NEXT_GC) {
78                 gDvm.gcHeap->ddmHpifWhen = HPIF_WHEN_NEVER;
79             }
80         }
81         if (shouldLock) {
82             dvmUnlockHeap();
83         }
84     }
85 skip_when:
86 
87     /* The current time, in milliseconds since 0:00 GMT, 1/1/70.
88      */
89     if (gettimeofday(&now, NULL) < 0) {
90         nowMs = 0;
91     } else {
92         nowMs = (u8)now.tv_sec * 1000 + now.tv_usec / 1000;
93     }
94 
95     /* number of heaps */
96     set4BE(b, 1); b += 4;
97 
98     /* For each heap (of which there is one) */
99     {
100         /* heap ID */
101         set4BE(b, DEFAULT_HEAP_ID); b += 4;
102 
103         /* timestamp */
104         set8BE(b, nowMs); b += 8;
105 
106         /* 'when' value */
107         *b++ = (u1)reason;
108 
109         /* max allowed heap size in bytes */
110         set4BE(b, gDvm.heapSizeMax); b += 4;
111 
112         /* current heap size in bytes */
113         set4BE(b, dvmHeapSourceGetValue(HS_FOOTPRINT, NULL, 0)); b += 4;
114 
115         /* number of bytes allocated */
116         set4BE(b, dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0)); b += 4;
117 
118         /* number of objects allocated */
119         set4BE(b, dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0)); b += 4;
120     }
121     assert((intptr_t)b == (intptr_t)buf + (intptr_t)HPIF_SIZE(1));
122 
123     dvmDbgDdmSendChunk(CHUNK_TYPE("HPIF"), b - buf, buf);
124 }
125 
126 bool
dvmDdmHandleHpifChunk(int when)127 dvmDdmHandleHpifChunk(int when)
128 {
129     switch (when) {
130     case HPIF_WHEN_NOW:
131         dvmDdmSendHeapInfo(when, true);
132         break;
133     case HPIF_WHEN_NEVER:
134     case HPIF_WHEN_NEXT_GC:
135     case HPIF_WHEN_EVERY_GC:
136         if (dvmLockHeap()) {
137             gDvm.gcHeap->ddmHpifWhen = when;
138             dvmUnlockHeap();
139         } else {
140             LOGI("%s(): can't lock heap to set when\n", __func__);
141             return false;
142         }
143         break;
144     default:
145         LOGI("%s(): bad when value 0x%08x\n", __func__, when);
146         return false;
147     }
148 
149     return true;
150 }
151 
152 enum HpsgSolidity {
153     SOLIDITY_FREE = 0,
154     SOLIDITY_HARD = 1,
155     SOLIDITY_SOFT = 2,
156     SOLIDITY_WEAK = 3,
157     SOLIDITY_PHANTOM = 4,
158     SOLIDITY_FINALIZABLE = 5,
159     SOLIDITY_SWEEP = 6,
160 };
161 
162 enum HpsgKind {
163     KIND_OBJECT = 0,
164     KIND_CLASS_OBJECT = 1,
165     KIND_ARRAY_1 = 2,
166     KIND_ARRAY_2 = 3,
167     KIND_ARRAY_4 = 4,
168     KIND_ARRAY_8 = 5,
169     KIND_UNKNOWN = 6,
170     KIND_NATIVE = 7,
171 };
172 
173 #define HPSG_PARTIAL (1<<7)
174 #define HPSG_STATE(solidity, kind) \
175     ((u1)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))
176 
177 typedef struct HeapChunkContext {
178     u1 *buf;
179     u1 *p;
180     u1 *pieceLenField;
181     size_t bufLen;
182     size_t totalAllocationUnits;
183     int type;
184     bool merge;
185     bool needHeader;
186 } HeapChunkContext;
187 
188 #define ALLOCATION_UNIT_SIZE 8
189 
190 static void
flush_hpsg_chunk(HeapChunkContext * ctx)191 flush_hpsg_chunk(HeapChunkContext *ctx)
192 {
193     /* Patch the "length of piece" field.
194      */
195     assert(ctx->buf <= ctx->pieceLenField &&
196             ctx->pieceLenField <= ctx->p);
197     set4BE(ctx->pieceLenField, ctx->totalAllocationUnits);
198 
199     /* Send the chunk.
200      */
201     dvmDbgDdmSendChunk(ctx->type, ctx->p - ctx->buf, ctx->buf);
202 
203     /* Reset the context.
204      */
205     ctx->p = ctx->buf;
206     ctx->totalAllocationUnits = 0;
207     ctx->needHeader = true;
208     ctx->pieceLenField = NULL;
209 }
210 
211 static void
heap_chunk_callback(const void * chunkptr,size_t chunklen,const void * userptr,size_t userlen,void * arg)212 heap_chunk_callback(const void *chunkptr, size_t chunklen,
213                     const void *userptr, size_t userlen, void *arg)
214 {
215     HeapChunkContext *ctx = (HeapChunkContext *)arg;
216     u1 state;
217 
218     UNUSED_PARAMETER(userlen);
219 
220     assert((chunklen & (ALLOCATION_UNIT_SIZE-1)) == 0);
221 
222     /* Make sure there's enough room left in the buffer.
223      * We need to use two bytes for every fractional 256
224      * allocation units used by the chunk.
225      */
226     {
227         size_t bytesLeft = ctx->bufLen - (size_t)(ctx->p - ctx->buf);
228         if (bytesLeft < (((chunklen/ALLOCATION_UNIT_SIZE + 255) / 256) * 2)) {
229             flush_hpsg_chunk(ctx);
230         }
231     }
232 
233 //TODO: notice when there's a gap and start a new heap, or at least a new range.
234     if (ctx->needHeader) {
235         /*
236          * Start a new HPSx chunk.
237          */
238 
239         /* [u4]: heap ID */
240         set4BE(ctx->p, DEFAULT_HEAP_ID); ctx->p += 4;
241 
242         /* [u1]: size of allocation unit, in bytes */
243         *ctx->p++ = 8;
244 
245         /* [u4]: virtual address of segment start */
246         set4BE(ctx->p, (uintptr_t)chunkptr); ctx->p += 4;
247 
248         /* [u4]: offset of this piece (relative to the virtual address) */
249         set4BE(ctx->p, 0); ctx->p += 4;
250 
251         /* [u4]: length of piece, in allocation units
252          * We won't know this until we're done, so save the offset
253          * and stuff in a dummy value.
254          */
255         ctx->pieceLenField = ctx->p;
256         set4BE(ctx->p, 0x55555555); ctx->p += 4;
257 
258         ctx->needHeader = false;
259     }
260 
261     /* Determine the type of this chunk.
262      */
263     if (userptr == NULL) {
264         /* It's a free chunk.
265          */
266         state = HPSG_STATE(SOLIDITY_FREE, 0);
267     } else {
268         const DvmHeapChunk *hc = (const DvmHeapChunk *)userptr;
269         const Object *obj = chunk2ptr(hc);
270         /* If we're looking at the native heap, we'll just return
271          * (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks
272          */
273         bool native = ctx->type == CHUNK_TYPE("NHSG");
274 
275         /* It's an allocated chunk.  Figure out what it is.
276          */
277 //TODO: if ctx.merge, see if this chunk is different from the last chunk.
278 //      If it's the same, we should combine them.
279         if (!native && dvmIsValidObject(obj)) {
280             ClassObject *clazz = obj->clazz;
281             if (clazz == NULL) {
282                 /* The object was probably just created
283                  * but hasn't been initialized yet.
284                  */
285                 state = HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
286             } else if (clazz == gDvm.unlinkedJavaLangClass ||
287                        clazz == gDvm.classJavaLangClass)
288             {
289                 state = HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
290             } else if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) {
291                 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOBJECTARRAY)) {
292                     state = HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
293                 } else {
294                     switch (clazz->elementClass->primitiveType) {
295                     case PRIM_BOOLEAN:
296                     case PRIM_BYTE:
297                         state = HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
298                         break;
299                     case PRIM_CHAR:
300                     case PRIM_SHORT:
301                         state = HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
302                         break;
303                     case PRIM_INT:
304                     case PRIM_FLOAT:
305                         state = HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
306                         break;
307                     case PRIM_DOUBLE:
308                     case PRIM_LONG:
309                         state = HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
310                         break;
311                     default:
312                         assert(!"Unknown GC heap object type");
313                         state = HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
314                         break;
315                     }
316                 }
317             } else {
318                 state = HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
319             }
320         } else {
321             obj = NULL; // it's not actually an object
322             state = HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
323         }
324     }
325 
326     /* Write out the chunk description.
327      */
328     chunklen /= ALLOCATION_UNIT_SIZE;   // convert to allocation units
329     ctx->totalAllocationUnits += chunklen;
330     while (chunklen > 256) {
331         *ctx->p++ = state | HPSG_PARTIAL;
332         *ctx->p++ = 255;     // length - 1
333         chunklen -= 256;
334     }
335     *ctx->p++ = state;
336     *ctx->p++ = chunklen - 1;
337 }
338 
339 enum HpsgWhen {
340     HPSG_WHEN_NEVER = 0,
341     HPSG_WHEN_EVERY_GC = 1,
342 };
343 enum HpsgWhat {
344     HPSG_WHAT_MERGED_OBJECTS = 0,
345     HPSG_WHAT_DISTINCT_OBJECTS = 1,
346 };
347 
348 #define HPSx_CHUNK_SIZE (4096 - 16)
349 
350 void dlmalloc_walk_heap(void(*)(const void*, size_t, const void*, size_t, void*),void*);
351 
352 static void
walkHeap(bool merge,bool native)353 walkHeap(bool merge, bool native)
354 {
355     HeapChunkContext ctx;
356 
357     memset(&ctx, 0, sizeof(ctx));
358     ctx.bufLen = HPSx_CHUNK_SIZE;
359     ctx.buf = (u1 *)malloc(ctx.bufLen);
360     if (ctx.buf == NULL) {
361         return;
362     }
363 
364     ctx.merge = merge;
365     if (native) {
366         ctx.type = CHUNK_TYPE("NHSG");
367     } else {
368         if (ctx.merge) {
369             ctx.type = CHUNK_TYPE("HPSG");
370         } else {
371             ctx.type = CHUNK_TYPE("HPSO");
372         }
373     }
374 
375     ctx.p = ctx.buf;
376     ctx.needHeader = true;
377     if (native) {
378         dlmalloc_walk_heap(heap_chunk_callback, (void *)&ctx);
379     } else {
380         dvmHeapSourceWalk(heap_chunk_callback, (void *)&ctx);
381     }
382     if (ctx.p > ctx.buf) {
383         flush_hpsg_chunk(&ctx);
384     }
385 
386     free(ctx.buf);
387 }
388 
389 void
dvmDdmSendHeapSegments(bool shouldLock,bool native)390 dvmDdmSendHeapSegments(bool shouldLock, bool native)
391 {
392     u1 heapId[sizeof(u4)];
393     GcHeap *gcHeap = gDvm.gcHeap;
394     int when, what;
395     bool merge;
396 
397     /* Don't even grab the lock if there's nothing to do when we're called.
398      */
399     if (!native) {
400         when = gcHeap->ddmHpsgWhen;
401         what = gcHeap->ddmHpsgWhat;
402         if (when == HPSG_WHEN_NEVER) {
403             return;
404         }
405     } else {
406         when = gcHeap->ddmNhsgWhen;
407         what = gcHeap->ddmNhsgWhat;
408         if (when == HPSG_WHEN_NEVER) {
409             return;
410         }
411     }
412     if (shouldLock && !dvmLockHeap()) {
413         LOGW("Can't lock heap for DDM HPSx dump\n");
414         return;
415     }
416 
417     /* Figure out what kind of chunks we'll be sending.
418      */
419     if (what == HPSG_WHAT_MERGED_OBJECTS) {
420         merge = true;
421     } else if (what == HPSG_WHAT_DISTINCT_OBJECTS) {
422         merge = false;
423     } else {
424         assert(!"bad HPSG.what value");
425         return;
426     }
427 
428     /* First, send a heap start chunk.
429      */
430     set4BE(heapId, DEFAULT_HEAP_ID);
431     dvmDbgDdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"),
432         sizeof(u4), heapId);
433 
434     /* Send a series of heap segment chunks.
435      */
436     walkHeap(merge, native);
437 
438     /* Finally, send a heap end chunk.
439      */
440     dvmDbgDdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"),
441         sizeof(u4), heapId);
442 
443     if (shouldLock) {
444         dvmUnlockHeap();
445     }
446 }
447 
448 bool
dvmDdmHandleHpsgNhsgChunk(int when,int what,bool native)449 dvmDdmHandleHpsgNhsgChunk(int when, int what, bool native)
450 {
451     LOGI("dvmDdmHandleHpsgChunk(when %d, what %d, heap %d)\n", when, what,
452          native);
453     switch (when) {
454     case HPSG_WHEN_NEVER:
455     case HPSG_WHEN_EVERY_GC:
456         break;
457     default:
458         LOGI("%s(): bad when value 0x%08x\n", __func__, when);
459         return false;
460     }
461 
462     switch (what) {
463     case HPSG_WHAT_MERGED_OBJECTS:
464     case HPSG_WHAT_DISTINCT_OBJECTS:
465         break;
466     default:
467         LOGI("%s(): bad what value 0x%08x\n", __func__, what);
468         return false;
469     }
470 
471     if (dvmLockHeap()) {
472         if (!native) {
473             gDvm.gcHeap->ddmHpsgWhen = when;
474             gDvm.gcHeap->ddmHpsgWhat = what;
475         } else {
476             gDvm.gcHeap->ddmNhsgWhen = when;
477             gDvm.gcHeap->ddmNhsgWhat = what;
478         }
479 //TODO: if what says we should dump immediately, signal (or do) it from here
480         dvmUnlockHeap();
481     } else {
482         LOGI("%s(): can't lock heap to set when/what\n", __func__);
483         return false;
484     }
485 
486     return true;
487 }
488