• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* k_tanf.c -- float version of k_tan.c
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  * Optimized by Bruce D. Evans.
4  */
5 
6 /*
7  * ====================================================
8  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
9  *
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #ifndef INLINE_KERNEL_TANDF
17 #ifndef lint
18 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tanf.c,v 1.20 2005/11/28 11:46:20 bde Exp $";
19 #endif
20 #endif
21 
22 #include "math.h"
23 #include "math_private.h"
24 
25 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
26 static const double
27 T[] =  {
28   0x15554d3418c99f.0p-54,	/* 0.333331395030791399758 */
29   0x1112fd38999f72.0p-55,	/* 0.133392002712976742718 */
30   0x1b54c91d865afe.0p-57,	/* 0.0533812378445670393523 */
31   0x191df3908c33ce.0p-58,	/* 0.0245283181166547278873 */
32   0x185dadfcecf44e.0p-61,	/* 0.00297435743359967304927 */
33   0x1362b9bf971bcd.0p-59,	/* 0.00946564784943673166728 */
34 };
35 
36 #ifdef INLINE_KERNEL_TANDF
37 extern inline
38 #endif
39 float
__kernel_tandf(double x,int iy)40 __kernel_tandf(double x, int iy)
41 {
42 	double z,r,w,s,t,u;
43 
44 	z	=  x*x;
45 	/*
46 	 * Split up the polynomial into small independent terms to give
47 	 * opportunities for parallel evaluation.  The chosen splitting is
48 	 * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
49 	 * relative to Horner's method on sequential machines.
50 	 *
51 	 * We add the small terms from lowest degree up for efficiency on
52 	 * non-sequential machines (the lowest degree terms tend to be ready
53 	 * earlier).  Apart from this, we don't care about order of
54 	 * operations, and don't need to to care since we have precision to
55 	 * spare.  However, the chosen splitting is good for accuracy too,
56 	 * and would give results as accurate as Horner's method if the
57 	 * small terms were added from highest degree down.
58 	 */
59 	r = T[4]+z*T[5];
60 	t = T[2]+z*T[3];
61 	w = z*z;
62 	s = z*x;
63 	u = T[0]+z*T[1];
64 	r = (x+s*u)+(s*w)*(t+w*r);
65 	if(iy==1) return r;
66 	else return -1.0/r;
67 }
68