# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os.path import its.caps import its.device import its.image import its.objects import numpy as np NAME = os.path.basename(__file__).split(".")[0] def main(): """Capture auto and manual shots that should look the same. Manual shots taken with just manual WB, and also with manual WB+tonemap. In all cases, the general color/look of the shots should be the same, however there can be variations in brightness/contrast due to different "auto" ISP blocks that may be disabled in the manual flows. """ with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.read_3a(props) and its.caps.per_frame_control(props)) mono_camera = its.caps.mono_camera(props) # Converge 3A and get the estimates. debug = its.caps.debug_mode() largest_yuv = its.objects.get_largest_yuv_format(props) if debug: fmt = largest_yuv else: match_ar = (largest_yuv["width"], largest_yuv["height"]) fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) sens, exp, gains, xform, focus = cam.do_3a(get_results=True, mono_camera=mono_camera) xform_rat = its.objects.float_to_rational(xform) print "AE sensitivity %d, exposure %dms" % (sens, exp/1000000.0) print "AWB gains", gains print "AWB transform", xform print "AF distance", focus # Auto capture. req = its.objects.auto_capture_request() cap_auto = cam.do_capture(req, fmt) img_auto = its.image.convert_capture_to_rgb_image(cap_auto) its.image.write_image(img_auto, "%s_auto.jpg" % (NAME)) xform_a = its.objects.rational_to_float( cap_auto["metadata"]["android.colorCorrection.transform"]) gains_a = cap_auto["metadata"]["android.colorCorrection.gains"] print "Auto gains:", gains_a print "Auto transform:", xform_a # Manual capture 1: WB req = its.objects.manual_capture_request(sens, exp, focus) req["android.colorCorrection.transform"] = xform_rat req["android.colorCorrection.gains"] = gains cap_man1 = cam.do_capture(req, fmt) img_man1 = its.image.convert_capture_to_rgb_image(cap_man1) its.image.write_image(img_man1, "%s_manual_wb.jpg" % (NAME)) xform_m1 = its.objects.rational_to_float( cap_man1["metadata"]["android.colorCorrection.transform"]) gains_m1 = cap_man1["metadata"]["android.colorCorrection.gains"] print "Manual wb gains:", gains_m1 print "Manual wb transform:", xform_m1 # Manual capture 2: WB + tonemap gamma = sum([[i/63.0, math.pow(i/63.0, 1/2.2)] for i in xrange(64)], []) req["android.tonemap.mode"] = 0 req["android.tonemap.curve"] = { "red": gamma, "green": gamma, "blue": gamma} cap_man2 = cam.do_capture(req, fmt) img_man2 = its.image.convert_capture_to_rgb_image(cap_man2) its.image.write_image(img_man2, "%s_manual_wb_tm.jpg" % (NAME)) xform_m2 = its.objects.rational_to_float( cap_man2["metadata"]["android.colorCorrection.transform"]) gains_m2 = cap_man2["metadata"]["android.colorCorrection.gains"] print "Manual wb+tm gains:", gains_m2 print "Manual wb+tm transform:", xform_m2 # Check that the WB gains and transform reported in each capture # result match with the original AWB estimate from do_3a. for g, x in [(gains_m1, xform_m1), (gains_m2, xform_m2)]: assert all([abs(xform[i] - x[i]) < 0.05 for i in range(9)]) assert all([abs(gains[i] - g[i]) < 0.05 for i in range(4)]) # Check that auto AWB settings are close assert all([np.isclose(xform_a[i], xform[i], rtol=0.25, atol=0.1) for i in range(9)]) assert all([np.isclose(gains_a[i], gains[i], rtol=0.25, atol=0.1) for i in range(4)]) if __name__ == "__main__": main()