# Copyright 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import its.caps import its.device import its.image import its.objects import matplotlib from matplotlib import pylab import numpy as np AE_STATE_CONVERGED = 2 CONTROL_AE_STATE_FLASH_REQUIRED = 4 NAME = os.path.basename(__file__).split('.')[0] NUM_CAPTURE = 30 VALID_STABLE_LUMA_MIN = 0.1 VALID_STABLE_LUMA_MAX = 0.9 def is_awb_af_stable(prev_cap, cap): awb_gains_0 = prev_cap['metadata']['android.colorCorrection.gains'] awb_gains_1 = cap['metadata']['android.colorCorrection.gains'] ccm_0 = prev_cap['metadata']['android.colorCorrection.transform'] ccm_1 = cap['metadata']['android.colorCorrection.transform'] focus_distance_0 = prev_cap['metadata']['android.lens.focusDistance'] focus_distance_1 = cap['metadata']['android.lens.focusDistance'] return (np.allclose(awb_gains_0, awb_gains_1, rtol=0.01) and ccm_0 == ccm_1 and np.isclose(focus_distance_0, focus_distance_1, rtol=0.01)) def main(): """Tests PER_FRAME_CONTROL properties for auto capture requests. If debug is required, MANUAL_POSTPROCESSING capability is implied since its.caps.read_3a is valid for test. Debug can performed with a defined tonemap curve: req['android.tonemap.mode'] = 0 gamma = sum([[i/63.0,math.pow(i/63.0,1/2.2)] for i in xrange(64)],[]) req['android.tonemap.curve'] = { 'red': gamma, 'green': gamma, 'blue': gamma} """ with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.per_frame_control(props) and its.caps.read_3a(props)) debug = its.caps.debug_mode() largest_yuv = its.objects.get_largest_yuv_format(props) if debug: fmt = largest_yuv else: match_ar = (largest_yuv['width'], largest_yuv['height']) fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) req = its.objects.auto_capture_request() caps = cam.do_capture([req]*NUM_CAPTURE, fmt) total_gains = [] lumas = [] ae_states = [] for i, cap in enumerate(caps): print '=========== frame %d ==========' % i y = its.image.convert_capture_to_planes(cap)[0] tile = its.image.get_image_patch(y, 0.45, 0.45, 0.1, 0.1) luma = its.image.compute_image_means(tile)[0] ae_state = cap['metadata']['android.control.aeState'] iso = cap['metadata']['android.sensor.sensitivity'] isp_gain = cap['metadata']['android.control.postRawSensitivityBoost'] exp_time = cap['metadata']['android.sensor.exposureTime'] total_gain = iso*isp_gain/100.0*exp_time/1000000.0 awb_state = cap['metadata']['android.control.awbState'] awb_gains = cap['metadata']['android.colorCorrection.gains'] ccm = cap['metadata']['android.colorCorrection.transform'] focus_distance = cap['metadata']['android.lens.focusDistance'] # Convert CCM from rational to float, as numpy arrays. awb_ccm = np.array(its.objects.rational_to_float(ccm)).reshape(3, 3) print 'AE: %d ISO: %d ISP_sen: %d exp(ms): %d tot_gain: %f' % ( ae_state, iso, isp_gain, exp_time, total_gain), print 'luma: %f' % luma print 'fd: %f' % focus_distance print 'AWB: %d, AWB gains: %s\n AWB matrix: %s' % ( awb_state, str(awb_gains), str(awb_ccm)) print 'Tonemap curve:', cap['metadata']['android.tonemap.curve'] lumas.append(luma) total_gains.append(total_gain) ae_states.append(ae_state) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image(img, '%s_frame_%d.jpg'% (NAME, i)) norm_gains = [x / max(total_gains) * max(lumas) for x in total_gains] pylab.plot(range(len(lumas)), lumas, '-g.', label='Center patch brightness') pylab.plot(range(len(norm_gains)), norm_gains, '-r.', label='Metadata AE setting product') pylab.title(NAME) pylab.xlabel('frame index') pylab.legend() matplotlib.pyplot.savefig('%s_plot.png' % (NAME)) for i in range(1, len(caps)): if is_awb_af_stable(caps[i-1], caps[i]): prev_total_gain = total_gains[i-1] total_gain = total_gains[i] delta_gain = total_gain - prev_total_gain prev_luma = lumas[i-1] luma = lumas[i] delta_luma = luma - prev_luma # luma and total_gain should change in same direction msg = 'Frame %d to frame %d:' % (i-1, i) msg += ' metadata gain %f->%f (%s), luma %f->%f (%s)' % ( prev_total_gain, total_gain, 'increasing' if delta_gain > 0.0 else 'decreasing', prev_luma, luma, 'increasing' if delta_luma > 0.0 else 'decreasing') assert delta_gain * delta_luma >= 0.0, msg else: print 'Frame %d->%d AWB/AF changed' % (i-1, i) for i in range(len(lumas)): luma = lumas[i] ae_state = ae_states[i] if (ae_state == AE_STATE_CONVERGED or ae_state == CONTROL_AE_STATE_FLASH_REQUIRED): msg = 'Frame %d AE converged luma %f. valid range: (%f, %f)' % ( i, luma, VALID_STABLE_LUMA_MIN, VALID_STABLE_LUMA_MAX) assert VALID_STABLE_LUMA_MIN < luma < VALID_STABLE_LUMA_MAX, msg if __name__ == '__main__': main()