//===- HexagonImmediates.td - Hexagon immediate processing -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illnois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// def s32ImmOperand : AsmOperandClass { let Name = "s32Imm"; } def s23_2ImmOperand : AsmOperandClass { let Name = "s23_2Imm"; } def s8ImmOperand : AsmOperandClass { let Name = "s8Imm"; } def s8Imm64Operand : AsmOperandClass { let Name = "s8Imm64"; } def s6ImmOperand : AsmOperandClass { let Name = "s6Imm"; } def s4ImmOperand : AsmOperandClass { let Name = "s4Imm"; } def s4_0ImmOperand : AsmOperandClass { let Name = "s4_0Imm"; } def s4_1ImmOperand : AsmOperandClass { let Name = "s4_1Imm"; } def s4_2ImmOperand : AsmOperandClass { let Name = "s4_2Imm"; } def s4_3ImmOperand : AsmOperandClass { let Name = "s4_3Imm"; } def s4_6ImmOperand : AsmOperandClass { let Name = "s4_6Imm"; } def s3_6ImmOperand : AsmOperandClass { let Name = "s3_6Imm"; } def u64ImmOperand : AsmOperandClass { let Name = "u64Imm"; } def u32ImmOperand : AsmOperandClass { let Name = "u32Imm"; } def u26_6ImmOperand : AsmOperandClass { let Name = "u26_6Imm"; } def u16ImmOperand : AsmOperandClass { let Name = "u16Imm"; } def u16_0ImmOperand : AsmOperandClass { let Name = "u16_0Imm"; } def u16_1ImmOperand : AsmOperandClass { let Name = "u16_1Imm"; } def u16_2ImmOperand : AsmOperandClass { let Name = "u16_2Imm"; } def u16_3ImmOperand : AsmOperandClass { let Name = "u16_3Imm"; } def u11_3ImmOperand : AsmOperandClass { let Name = "u11_3Imm"; } def u10ImmOperand : AsmOperandClass { let Name = "u10Imm"; } def u9ImmOperand : AsmOperandClass { let Name = "u9Imm"; } def u8ImmOperand : AsmOperandClass { let Name = "u8Imm"; } def u7ImmOperand : AsmOperandClass { let Name = "u7Imm"; } def u6ImmOperand : AsmOperandClass { let Name = "u6Imm"; } def u6_0ImmOperand : AsmOperandClass { let Name = "u6_0Imm"; } def u6_1ImmOperand : AsmOperandClass { let Name = "u6_1Imm"; } def u6_2ImmOperand : AsmOperandClass { let Name = "u6_2Imm"; } def u6_3ImmOperand : AsmOperandClass { let Name = "u6_3Imm"; } def u5ImmOperand : AsmOperandClass { let Name = "u5Imm"; } def u4ImmOperand : AsmOperandClass { let Name = "u4Imm"; } def u3ImmOperand : AsmOperandClass { let Name = "u3Imm"; } def u2ImmOperand : AsmOperandClass { let Name = "u2Imm"; } def u1ImmOperand : AsmOperandClass { let Name = "u1Imm"; } def n8ImmOperand : AsmOperandClass { let Name = "n8Imm"; } // Immediate operands. let OperandType = "OPERAND_IMMEDIATE", DecoderMethod = "unsignedImmDecoder" in { def s32Imm : Operand { let ParserMatchClass = s32ImmOperand; let DecoderMethod = "s32ImmDecoder"; } def s23_2Imm : Operand { let ParserMatchClass = s23_2ImmOperand; } def s8Imm : Operand { let ParserMatchClass = s8ImmOperand; let DecoderMethod = "s8ImmDecoder"; } def s8Imm64 : Operand { let ParserMatchClass = s8Imm64Operand; let DecoderMethod = "s8ImmDecoder"; } def s6Imm : Operand { let ParserMatchClass = s6ImmOperand; let DecoderMethod = "s6_0ImmDecoder"; } def s6_3Imm : Operand; def s4Imm : Operand { let ParserMatchClass = s4ImmOperand; let DecoderMethod = "s4_0ImmDecoder"; } def s4_0Imm : Operand { let ParserMatchClass = s4_0ImmOperand; let DecoderMethod = "s4_0ImmDecoder"; } def s4_1Imm : Operand { let ParserMatchClass = s4_1ImmOperand; let DecoderMethod = "s4_1ImmDecoder"; } def s4_2Imm : Operand { let ParserMatchClass = s4_2ImmOperand; let DecoderMethod = "s4_2ImmDecoder"; } def s4_3Imm : Operand { let ParserMatchClass = s4_3ImmOperand; let DecoderMethod = "s4_3ImmDecoder"; } def u64Imm : Operand { let ParserMatchClass = u64ImmOperand; } def u32Imm : Operand { let ParserMatchClass = u32ImmOperand; } def u26_6Imm : Operand { let ParserMatchClass = u26_6ImmOperand; } def u16Imm : Operand { let ParserMatchClass = u16ImmOperand; } def u16_0Imm : Operand { let ParserMatchClass = u16_0ImmOperand; } def u16_1Imm : Operand { let ParserMatchClass = u16_1ImmOperand; } def u16_2Imm : Operand { let ParserMatchClass = u16_2ImmOperand; } def u16_3Imm : Operand { let ParserMatchClass = u16_3ImmOperand; } def u11_3Imm : Operand { let ParserMatchClass = u11_3ImmOperand; } def u10Imm : Operand { let ParserMatchClass = u10ImmOperand; } def u9Imm : Operand { let ParserMatchClass = u9ImmOperand; } def u8Imm : Operand { let ParserMatchClass = u8ImmOperand; } def u7Imm : Operand { let ParserMatchClass = u7ImmOperand; } def u6Imm : Operand { let ParserMatchClass = u6ImmOperand; } def u6_0Imm : Operand { let ParserMatchClass = u6_0ImmOperand; } def u6_1Imm : Operand { let ParserMatchClass = u6_1ImmOperand; } def u6_2Imm : Operand { let ParserMatchClass = u6_2ImmOperand; } def u6_3Imm : Operand { let ParserMatchClass = u6_3ImmOperand; } def u5Imm : Operand { let ParserMatchClass = u5ImmOperand; } def u5_0Imm : Operand; def u5_1Imm : Operand; def u5_2Imm : Operand; def u5_3Imm : Operand; def u4Imm : Operand { let ParserMatchClass = u4ImmOperand; } def u4_0Imm : Operand; def u4_1Imm : Operand; def u4_2Imm : Operand; def u4_3Imm : Operand; def u3Imm : Operand { let ParserMatchClass = u3ImmOperand; } def u3_0Imm : Operand; def u3_1Imm : Operand; def u3_2Imm : Operand; def u3_3Imm : Operand; def u2Imm : Operand { let ParserMatchClass = u2ImmOperand; } def u1Imm : Operand { let ParserMatchClass = u1ImmOperand; } def n8Imm : Operand { let ParserMatchClass = n8ImmOperand; } } let OperandType = "OPERAND_IMMEDIATE" in { def s4_6Imm : Operand { let ParserMatchClass = s4_6ImmOperand; let PrintMethod = "prints4_6ImmOperand"; let DecoderMethod = "s4_6ImmDecoder";} def s4_7Imm : Operand { let PrintMethod = "prints4_7ImmOperand"; let DecoderMethod = "s4_6ImmDecoder";} def s3_6Imm : Operand { let ParserMatchClass = s3_6ImmOperand; let PrintMethod = "prints3_6ImmOperand"; let DecoderMethod = "s3_6ImmDecoder";} def s3_7Imm : Operand { let PrintMethod = "prints3_7ImmOperand"; let DecoderMethod = "s3_6ImmDecoder";} } // // Immediate predicates // def s32ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<32>(v); }]>; def s32_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<32>(v); }]>; def s31_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<31,1>(v); }]>; def s30_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<30,2>(v); }]>; def s29_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<29,3>(v); }]>; def s16ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<16>(v); }]>; def s11_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<11>(v); }]>; def s11_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,1>(v); }]>; def s11_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,2>(v); }]>; def s11_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,3>(v); }]>; def s10ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<10>(v); }]>; def s8ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<8>(v); }]>; def s8Imm64Pred : PatLeaf<(i64 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<8>(v); }]>; def s6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<6>(v); }]>; def s4_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<4>(v); }]>; def s4_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,1>(v); }]>; def s4_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,2>(v); }]>; def s4_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,3>(v); }]>; def u64ImmPred : PatLeaf<(i64 imm), [{ // Adding "N ||" to suppress gcc unused warning. return (N || true); }]>; def u32ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<32>(v); }]>; def u32_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<32>(v); }]>; def u31_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<31,1>(v); }]>; def u30_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<30,2>(v); }]>; def u29_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<29,3>(v); }]>; def u26_6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<26,6>(v); }]>; def u16_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<16>(v); }]>; def u16_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<16,1>(v); }]>; def u16_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<16,2>(v); }]>; def u11_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<11,3>(v); }]>; def u10ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<10>(v); }]>; def u9ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<9>(v); }]>; def u8ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<8>(v); }]>; def u7StrictPosImmPred : ImmLeaf(Imm) && Imm > 0; }]>; def u7ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<7>(v); }]>; def u6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); }]>; def u6_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); }]>; def u6_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,1>(v); }]>; def u6_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,2>(v); }]>; def u6_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,3>(v); }]>; def u5ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<5>(v); }]>; def u4ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<4>(v); }]>; def u3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<3>(v); }]>; def u2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<2>(v); }]>; def u1ImmPred : PatLeaf<(i1 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<1>(v); }]>; def u1ImmPred32 : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<1>(v); }]>; def m5BImmPred : PatLeaf<(i32 imm), [{ // m5BImmPred predicate - True if the (char) number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. // this is specific to the zero extending of a negative by CombineInstr int8_t v = (int8_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; def m5HImmPred : PatLeaf<(i32 imm), [{ // m5HImmPred predicate - True if the (short) number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. // this is specific to the zero extending of a negative by CombineInstr int16_t v = (int16_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; def m5ImmPred : PatLeaf<(i32 imm), [{ // m5ImmPred predicate - True if the number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. int64_t v = (int64_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; //InN means negative integers in [-(2^N - 1), 0] def n8ImmPred : PatLeaf<(i32 imm), [{ // n8ImmPred predicate - True if the immediate fits in a 8-bit signed // field. int64_t v = (int64_t)N->getSExtValue(); return (-255 <= v && v <= 0); }]>; def nOneImmPred : PatLeaf<(i32 imm), [{ // nOneImmPred predicate - True if the immediate is -1. int64_t v = (int64_t)N->getSExtValue(); return (-1 == v); }]>; def Set5ImmPred : PatLeaf<(i32 imm), [{ // Set5ImmPred predicate - True if the number is in the series of values. // [ 2^0, 2^1, ... 2^31 ] // For use in setbit immediate. uint32_t v = (int32_t)N->getSExtValue(); // Constrain to 32 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr5ImmPred : PatLeaf<(i32 imm), [{ // Clr5ImmPred predicate - True if the number is in the series of // bit negated values. // [ 2^0, 2^1, ... 2^31 ] // For use in clrbit immediate. // Note: we are bit NOTing the value. uint32_t v = ~ (int32_t)N->getSExtValue(); // Constrain to 32 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr5ImmPred : PatLeaf<(i32 imm), [{ // True if the immediate is in range 0..31. int32_t v = (int32_t)N->getSExtValue(); return (v >= 0 && v <= 31); }]>; def Set4ImmPred : PatLeaf<(i32 imm), [{ // Set4ImmPred predicate - True if the number is in the series of values: // [ 2^0, 2^1, ... 2^15 ]. // For use in setbit immediate. uint16_t v = (int16_t)N->getSExtValue(); // Constrain to 16 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr4ImmPred : PatLeaf<(i32 imm), [{ // Clr4ImmPred predicate - True if the number is in the series of // bit negated values: // [ 2^0, 2^1, ... 2^15 ]. // For use in setbit and clrbit immediate. uint16_t v = ~ (int16_t)N->getSExtValue(); // Constrain to 16 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr4ImmPred : PatLeaf<(i32 imm), [{ // True if the immediate is in the range 0..15. int16_t v = (int16_t)N->getSExtValue(); return (v >= 0 && v <= 15); }]>; def Set3ImmPred : PatLeaf<(i32 imm), [{ // True if the number is in the series of values: [ 2^0, 2^1, ... 2^7 ]. // For use in setbit immediate. uint8_t v = (int8_t)N->getSExtValue(); // Constrain to 8 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr3ImmPred : PatLeaf<(i32 imm), [{ // True if the number is in the series of bit negated values: [ 2^0, 2^1, ... 2^7 ]. // For use in setbit and clrbit immediate. uint8_t v = ~ (int8_t)N->getSExtValue(); // Constrain to 8 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr3ImmPred : PatLeaf<(i32 imm), [{ // True if the immediate is in the range 0..7. int8_t v = (int8_t)N->getSExtValue(); return (v >= 0 && v <= 7); }]>; // Extendable immediate operands. def f32ExtOperand : AsmOperandClass { let Name = "f32Ext"; } def s16ExtOperand : AsmOperandClass { let Name = "s16Ext"; } def s12ExtOperand : AsmOperandClass { let Name = "s12Ext"; } def s10ExtOperand : AsmOperandClass { let Name = "s10Ext"; } def s9ExtOperand : AsmOperandClass { let Name = "s9Ext"; } def s8ExtOperand : AsmOperandClass { let Name = "s8Ext"; } def s7ExtOperand : AsmOperandClass { let Name = "s7Ext"; } def s6ExtOperand : AsmOperandClass { let Name = "s6Ext"; } def s11_0ExtOperand : AsmOperandClass { let Name = "s11_0Ext"; } def s11_1ExtOperand : AsmOperandClass { let Name = "s11_1Ext"; } def s11_2ExtOperand : AsmOperandClass { let Name = "s11_2Ext"; } def s11_3ExtOperand : AsmOperandClass { let Name = "s11_3Ext"; } def u6ExtOperand : AsmOperandClass { let Name = "u6Ext"; } def u7ExtOperand : AsmOperandClass { let Name = "u7Ext"; } def u8ExtOperand : AsmOperandClass { let Name = "u8Ext"; } def u9ExtOperand : AsmOperandClass { let Name = "u9Ext"; } def u10ExtOperand : AsmOperandClass { let Name = "u10Ext"; } def u6_0ExtOperand : AsmOperandClass { let Name = "u6_0Ext"; } def u6_1ExtOperand : AsmOperandClass { let Name = "u6_1Ext"; } def u6_2ExtOperand : AsmOperandClass { let Name = "u6_2Ext"; } def u6_3ExtOperand : AsmOperandClass { let Name = "u6_3Ext"; } def u32MustExtOperand : AsmOperandClass { let Name = "u32MustExt"; } let OperandType = "OPERAND_IMMEDIATE", PrintMethod = "printExtOperand", DecoderMethod = "unsignedImmDecoder" in { def f32Ext : Operand { let ParserMatchClass = f32ExtOperand; } def s16Ext : Operand { let ParserMatchClass = s16ExtOperand; let DecoderMethod = "s16ImmDecoder"; } def s12Ext : Operand { let ParserMatchClass = s12ExtOperand; let DecoderMethod = "s12ImmDecoder"; } def s11_0Ext : Operand { let ParserMatchClass = s11_0ExtOperand; let DecoderMethod = "s11_0ImmDecoder"; } def s11_1Ext : Operand { let ParserMatchClass = s11_1ExtOperand; let DecoderMethod = "s11_1ImmDecoder"; } def s11_2Ext : Operand { let ParserMatchClass = s11_2ExtOperand; let DecoderMethod = "s11_2ImmDecoder"; } def s11_3Ext : Operand { let ParserMatchClass = s11_3ExtOperand; let DecoderMethod = "s11_3ImmDecoder"; } def s10Ext : Operand { let ParserMatchClass = s10ExtOperand; let DecoderMethod = "s10ImmDecoder"; } def s9Ext : Operand { let ParserMatchClass = s9ExtOperand; let DecoderMethod = "s90ImmDecoder"; } def s8Ext : Operand { let ParserMatchClass = s8ExtOperand; let DecoderMethod = "s8ImmDecoder"; } def s7Ext : Operand { let ParserMatchClass = s7ExtOperand; } def s6Ext : Operand { let ParserMatchClass = s6ExtOperand; let DecoderMethod = "s6_0ImmDecoder"; } def u6Ext : Operand { let ParserMatchClass = u6ExtOperand; } def u7Ext : Operand { let ParserMatchClass = u7ExtOperand; } def u8Ext : Operand { let ParserMatchClass = u8ExtOperand; } def u9Ext : Operand { let ParserMatchClass = u9ExtOperand; } def u10Ext : Operand { let ParserMatchClass = u10ExtOperand; } def u6_0Ext : Operand { let ParserMatchClass = u6_0ExtOperand; } def u6_1Ext : Operand { let ParserMatchClass = u6_1ExtOperand; } def u6_2Ext : Operand { let ParserMatchClass = u6_2ExtOperand; } def u6_3Ext : Operand { let ParserMatchClass = u6_3ExtOperand; } def u32MustExt : Operand { let ParserMatchClass = u32MustExtOperand; } } def s4_7ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (HST->hasV60TOps()) // Return true if the immediate can fit in a 10-bit sign extended field and // is 128-byte aligned. return isShiftedInt<4,7>(v); return false; }]>; def s3_7ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (HST->hasV60TOps()) // Return true if the immediate can fit in a 9-bit sign extended field and // is 128-byte aligned. return isShiftedInt<3,7>(v); return false; }]>; def s4_6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (HST->hasV60TOps()) // Return true if the immediate can fit in a 10-bit sign extended field and // is 64-byte aligned. return isShiftedInt<4,6>(v); return false; }]>; def s3_6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (HST->hasV60TOps()) // Return true if the immediate can fit in a 9-bit sign extended field and // is 64-byte aligned. return isShiftedInt<3,6>(v); return false; }]>; // This complex pattern exists only to create a machine instruction operand // of type "frame index". There doesn't seem to be a way to do that directly // in the patterns. def AddrFI : ComplexPattern; // These complex patterns are not strictly necessary, since global address // folding will happen during DAG combining. For distinguishing between GA // and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used. def AddrGA : ComplexPattern; def AddrGP : ComplexPattern; // Address operands. let PrintMethod = "printGlobalOperand" in { def globaladdress : Operand; def globaladdressExt : Operand; } let PrintMethod = "printJumpTable" in def jumptablebase : Operand; def brtarget : Operand { let DecoderMethod = "brtargetDecoder"; let PrintMethod = "printBrtarget"; } def brtargetExt : Operand { let DecoderMethod = "brtargetDecoder"; let PrintMethod = "printBrtarget"; } def calltarget : Operand { let DecoderMethod = "brtargetDecoder"; let PrintMethod = "printBrtarget"; } def bblabel : Operand; def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf, [], "BasicBlockSDNode">; // Return true if for a 32 to 64-bit sign-extended load. def is_sext_i32 : PatLeaf<(i64 DoubleRegs:$src1), [{ LoadSDNode *LD = dyn_cast(N); if (!LD) return false; return LD->getExtensionType() == ISD::SEXTLOAD && LD->getMemoryVT().getScalarType() == MVT::i32; }]>;