//===- WebAssemblyInstrControl.td-WebAssembly control-flow ------*- tablegen -*- // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// WebAssembly control-flow code-gen constructs. /// //===----------------------------------------------------------------------===// let Defs = [ARGUMENTS] in { let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in { // The condition operand is a boolean value which WebAssembly represents as i32. defm BR_IF : I<(outs), (ins bb_op:$dst, I32:$cond), (outs), (ins bb_op:$dst), [(brcond I32:$cond, bb:$dst)], "br_if \t$dst, $cond", "br_if \t$dst", 0x0d>; let isCodeGenOnly = 1 in defm BR_UNLESS : I<(outs), (ins bb_op:$dst, I32:$cond), (outs), (ins bb_op:$dst), []>; let isBarrier = 1 in { defm BR : NRI<(outs), (ins bb_op:$dst), [(br bb:$dst)], "br \t$dst", 0x0c>; } // isBarrier = 1 } // isBranch = 1, isTerminator = 1, hasCtrlDep = 1 } // Defs = [ARGUMENTS] def : Pat<(brcond (i32 (setne I32:$cond, 0)), bb:$dst), (BR_IF bb_op:$dst, I32:$cond)>; def : Pat<(brcond (i32 (seteq I32:$cond, 0)), bb:$dst), (BR_UNLESS bb_op:$dst, I32:$cond)>; let Defs = [ARGUMENTS] in { // TODO: SelectionDAG's lowering insists on using a pointer as the index for // jump tables, so in practice we don't ever use BR_TABLE_I64 in wasm32 mode // currently. // Set TSFlags{0} to 1 to indicate that the variable_ops are immediates. // Set TSFlags{1} to 1 to indicate that the immediates represent labels. // FIXME: this can't inherit from I<> since there is no way to inherit from a // multiclass and still have the let statements. let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in { def BR_TABLE_I32 : NI<(outs), (ins I32:$index, variable_ops), [(WebAssemblybr_table I32:$index)], 0, "br_table \t$index", 0x0e> { let TSFlags{0} = 1; let TSFlags{1} = 1; } def BR_TABLE_I32_S : NI<(outs), (ins I32:$index), [], 1, "br_table \t$index", 0x0e> { let TSFlags{0} = 1; let TSFlags{1} = 1; } def BR_TABLE_I64 : NI<(outs), (ins I64:$index, variable_ops), [(WebAssemblybr_table I64:$index)], 0, "br_table \t$index"> { let TSFlags{0} = 1; let TSFlags{1} = 1; } def BR_TABLE_I64_S : NI<(outs), (ins I64:$index), [], 1, "br_table \t$index"> { let TSFlags{0} = 1; let TSFlags{1} = 1; } } // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 // This is technically a control-flow instruction, since all it affects is the // IP. defm NOP : NRI<(outs), (ins), [], "nop", 0x01>; // Placemarkers to indicate the start or end of a block or loop scope. // These use/clobber VALUE_STACK to prevent them from being moved into the // middle of an expression tree. let Uses = [VALUE_STACK], Defs = [VALUE_STACK] in { defm BLOCK : NRI<(outs), (ins Signature:$sig), [], "block \t$sig", 0x02>; defm LOOP : NRI<(outs), (ins Signature:$sig), [], "loop \t$sig", 0x03>; // END_BLOCK, END_LOOP, and END_FUNCTION are represented with the same opcode in // wasm. defm END_BLOCK : NRI<(outs), (ins), [], "end_block", 0x0b>; defm END_LOOP : NRI<(outs), (ins), [], "end_loop", 0x0b>; let isTerminator = 1, isBarrier = 1 in defm END_FUNCTION : NRI<(outs), (ins), [], "end_function", 0x0b>; } // Uses = [VALUE_STACK], Defs = [VALUE_STACK] multiclass RETURN { defm RETURN_#vt : I<(outs), (ins vt:$val), (outs), (ins), [(WebAssemblyreturn vt:$val)], "return \t$val", "return", 0x0f>; // Equivalent to RETURN_#vt, for use at the end of a function when wasm // semantics return by falling off the end of the block. let isCodeGenOnly = 1 in defm FALLTHROUGH_RETURN_#vt : I<(outs), (ins vt:$val), (outs), (ins), []>; } multiclass SIMD_RETURN { defm RETURN_#vt : SIMD_I<(outs), (ins V128:$val), (outs), (ins), [(WebAssemblyreturn (vt V128:$val))], "return \t$val", "return", 0x0f>; // Equivalent to RETURN_#vt, for use at the end of a function when wasm // semantics return by falling off the end of the block. let isCodeGenOnly = 1 in defm FALLTHROUGH_RETURN_#vt : SIMD_I<(outs), (ins V128:$val), (outs), (ins), []>; } let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in { let isReturn = 1 in { defm "": RETURN; defm "": RETURN; defm "": RETURN; defm "": RETURN; defm "": RETURN; defm "": SIMD_RETURN; defm "": SIMD_RETURN; defm "": SIMD_RETURN; defm "": SIMD_RETURN; defm RETURN_VOID : NRI<(outs), (ins), [(WebAssemblyreturn)], "return", 0x0f>; // This is to RETURN_VOID what FALLTHROUGH_RETURN_#vt is to RETURN_#vt. let isCodeGenOnly = 1 in defm FALLTHROUGH_RETURN_VOID : NRI<(outs), (ins), []>; } // isReturn = 1 defm UNREACHABLE : NRI<(outs), (ins), [(trap)], "unreachable", 0x00>; } // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 //===----------------------------------------------------------------------===// // Exception handling instructions //===----------------------------------------------------------------------===// let Predicates = [HasExceptionHandling] in { // Throwing an exception: throw / rethrow let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in { defm THROW_I32 : I<(outs), (ins i32imm:$tag, I32:$val), (outs), (ins i32imm:$tag), [(int_wasm_throw imm:$tag, I32:$val)], "throw \t$tag, $val", "throw \t$tag", 0x08>; defm THROW_I64 : I<(outs), (ins i32imm:$tag, I64:$val), (outs), (ins i32imm:$tag), [(int_wasm_throw imm:$tag, I64:$val)], "throw \t$tag, $val", "throw \t$tag", 0x08>; defm RETHROW : NRI<(outs), (ins bb_op:$dst), [], "rethrow \t$dst", 0x09>; let isCodeGenOnly = 1 in // This is used when the destination for rethrow is the caller function. This // will be converted to a rethrow in CFGStackify. defm RETHROW_TO_CALLER : NRI<(outs), (ins), [], "rethrow">; } // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 // Region within which an exception is caught: try / end_try let Uses = [VALUE_STACK], Defs = [VALUE_STACK] in { defm TRY : NRI<(outs), (ins Signature:$sig), [], "try \t$sig", 0x06>; defm END_TRY : NRI<(outs), (ins), [], "end_try", 0x0b>; } // Uses = [VALUE_STACK], Defs = [VALUE_STACK] // Catching an exception: catch / catch_all let hasCtrlDep = 1 in { defm CATCH_I32 : I<(outs I32:$dst), (ins i32imm:$tag), (outs), (ins i32imm:$tag), [(set I32:$dst, (int_wasm_catch imm:$tag))], "i32.catch \t$dst, $tag", "i32.catch \t$tag", 0x07>; defm CATCH_I64 : I<(outs I64:$dst), (ins i32imm:$tag), (outs), (ins i32imm:$tag), [(set I64:$dst, (int_wasm_catch imm:$tag))], "i64.catch \t$dst, $tag", "i64.catch \t$tag", 0x07>; defm CATCH_ALL : NRI<(outs), (ins), [], "catch_all", 0x05>; } // Pseudo instructions: cleanupret / catchret // They are not return instructions in wasm, but setting 'isReturn' to true as // in X86 is necessary for computing EH scope membership. let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1, isReturn = 1 in { defm CLEANUPRET : NRI<(outs), (ins), [(cleanupret)], "", 0>; defm CATCHRET : NRI<(outs), (ins bb_op:$dst, bb_op:$from), [(catchret bb:$dst, bb:$from)], "", 0>; } } } // Defs = [ARGUMENTS]