; Test 32-bit addition in which the second operand is a sign-extended ; i16 memory value. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s declare i32 @foo() ; Check the low end of the AH range. define zeroext i1 @f1(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f1: ; CHECK: ah %r3, 0(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %half = load i16, i16 *%src %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the high end of the aligned AH range. define zeroext i1 @f2(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f2: ; CHECK: ah %r3, 4094(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 2047 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the next halfword up, which should use AHY instead of AH. define zeroext i1 @f3(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f3: ; CHECK: ahy %r3, 4096(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 2048 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the high end of the aligned AHY range. define zeroext i1 @f4(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f4: ; CHECK: ahy %r3, 524286(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 262143 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the next halfword up, which needs separate address logic. ; Other sequences besides this one would be OK. define zeroext i1 @f5(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f5: ; CHECK: agfi %r4, 524288 ; CHECK: ah %r3, 0(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 262144 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the high end of the negative aligned AHY range. define zeroext i1 @f6(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f6: ; CHECK: ahy %r3, -2(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 -1 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the low end of the AHY range. define zeroext i1 @f7(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f7: ; CHECK: ahy %r3, -524288(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 -262144 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check the next halfword down, which needs separate address logic. ; Other sequences besides this one would be OK. define zeroext i1 @f8(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f8: ; CHECK: agfi %r4, -524290 ; CHECK: ah %r3, 0(%r4) ; CHECK-DAG: st %r3, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i16, i16 *%src, i64 -262145 %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check that AH allows an index. define zeroext i1 @f9(i64 %src, i64 %index, i32 %a, i32 *%res) { ; CHECK-LABEL: f9: ; CHECK: ah %r4, 4094({{%r3,%r2|%r2,%r3}}) ; CHECK-DAG: st %r4, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %add1 = add i64 %src, %index %add2 = add i64 %add1, 4094 %ptr = inttoptr i64 %add2 to i16 * %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check that AHY allows an index. define zeroext i1 @f10(i64 %src, i64 %index, i32 %a, i32 *%res) { ; CHECK-LABEL: f10: ; CHECK: ahy %r4, 4096({{%r3,%r2|%r2,%r3}}) ; CHECK-DAG: st %r4, 0(%r5) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %add1 = add i64 %src, %index %add2 = add i64 %add1, 4096 %ptr = inttoptr i64 %add2 to i16 * %half = load i16, i16 *%ptr %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res ret i1 %obit } ; Check using the overflow result for a branch. define void @f11(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f11: ; CHECK: ah %r3, 0(%r4) ; CHECK: st %r3, 0(%r5) ; CHECK: jgo foo@PLT ; CHECK: br %r14 %half = load i16, i16 *%src %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res br i1 %obit, label %call, label %exit call: tail call i32 @foo() br label %exit exit: ret void } ; ... and the same with the inverted direction. define void @f12(i32 %dummy, i32 %a, i16 *%src, i32 *%res) { ; CHECK-LABEL: f12: ; CHECK: ah %r3, 0(%r4) ; CHECK: st %r3, 0(%r5) ; CHECK: jgno foo@PLT ; CHECK: br %r14 %half = load i16, i16 *%src %b = sext i16 %half to i32 %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%res br i1 %obit, label %exit, label %call call: tail call i32 @foo() br label %exit exit: ret void } declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32) nounwind readnone