; Test 32-bit arithmetic shifts right. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s ; Check the low end of the SRAG range. define i64 @f1(i64 %a) { ; CHECK-LABEL: f1: ; CHECK: srag %r2, %r2, 1 ; CHECK: br %r14 %shift = ashr i64 %a, 1 ret i64 %shift } ; Check the high end of the defined SRAG range. define i64 @f2(i64 %a) { ; CHECK-LABEL: f2: ; CHECK: srag %r2, %r2, 63 ; CHECK: br %r14 %shift = ashr i64 %a, 63 ret i64 %shift } ; We don't generate shifts by out-of-range values. define i64 @f3(i64 %a) { ; CHECK-LABEL: f3: ; CHECK-NOT: srag ; CHECK: br %r14 %shift = ashr i64 %a, 64 ret i64 %shift } ; Check variable shifts. define i64 @f4(i64 %a, i64 %amt) { ; CHECK-LABEL: f4: ; CHECK: srag %r2, %r2, 0(%r3) ; CHECK: br %r14 %shift = ashr i64 %a, %amt ret i64 %shift } ; Check shift amounts that have a constant term. define i64 @f5(i64 %a, i64 %amt) { ; CHECK-LABEL: f5: ; CHECK: srag %r2, %r2, 10(%r3) ; CHECK: br %r14 %add = add i64 %amt, 10 %shift = ashr i64 %a, %add ret i64 %shift } ; ...and again with a sign-extended 32-bit shift amount. define i64 @f6(i64 %a, i32 %amt) { ; CHECK-LABEL: f6: ; CHECK: srag %r2, %r2, 10(%r3) ; CHECK: br %r14 %add = add i32 %amt, 10 %addext = sext i32 %add to i64 %shift = ashr i64 %a, %addext ret i64 %shift } ; ...and now with a zero-extended 32-bit shift amount. define i64 @f7(i64 %a, i32 %amt) { ; CHECK-LABEL: f7: ; CHECK: srag %r2, %r2, 10(%r3) ; CHECK: br %r14 %add = add i32 %amt, 10 %addext = zext i32 %add to i64 %shift = ashr i64 %a, %addext ret i64 %shift } ; Check shift amounts that have the largest in-range constant term. We could ; mask the amount instead. define i64 @f8(i64 %a, i64 %amt) { ; CHECK-LABEL: f8: ; CHECK: srag %r2, %r2, 524287(%r3) ; CHECK: br %r14 %add = add i64 %amt, 524287 %shift = ashr i64 %a, %add ret i64 %shift } ; Check the next value up, which without masking must use a separate ; addition. define i64 @f9(i64 %a, i64 %amt) { ; CHECK-LABEL: f9: ; CHECK: a{{g?}}fi %r3, 524288 ; CHECK: srag %r2, %r2, 0(%r3) ; CHECK: br %r14 %add = add i64 %amt, 524288 %shift = ashr i64 %a, %add ret i64 %shift } ; Check cases where 1 is subtracted from the shift amount. define i64 @f10(i64 %a, i64 %amt) { ; CHECK-LABEL: f10: ; CHECK: srag %r2, %r2, -1(%r3) ; CHECK: br %r14 %sub = sub i64 %amt, 1 %shift = ashr i64 %a, %sub ret i64 %shift } ; Check the lowest value that can be subtracted from the shift amount. ; Again, we could mask the shift amount instead. define i64 @f11(i64 %a, i64 %amt) { ; CHECK-LABEL: f11: ; CHECK: srag %r2, %r2, -524288(%r3) ; CHECK: br %r14 %sub = sub i64 %amt, 524288 %shift = ashr i64 %a, %sub ret i64 %shift } ; Check the next value down, which without masking must use a separate ; addition. define i64 @f12(i64 %a, i64 %amt) { ; CHECK-LABEL: f12: ; CHECK: a{{g?}}fi %r3, -524289 ; CHECK: srag %r2, %r2, 0(%r3) ; CHECK: br %r14 %sub = sub i64 %amt, 524289 %shift = ashr i64 %a, %sub ret i64 %shift } ; Check that we don't try to generate "indexed" shifts. define i64 @f13(i64 %a, i64 %b, i64 %c) { ; CHECK-LABEL: f13: ; CHECK: a{{g?}}r {{%r3, %r4|%r4, %r3}} ; CHECK: srag %r2, %r2, 0({{%r[34]}}) ; CHECK: br %r14 %add = add i64 %b, %c %shift = ashr i64 %a, %add ret i64 %shift } ; Check that the shift amount uses an address register. It cannot be in %r0. define i64 @f14(i64 %a, i64 *%ptr) { ; CHECK-LABEL: f14: ; CHECK: l %r1, 4(%r3) ; CHECK: srag %r2, %r2, 0(%r1) ; CHECK: br %r14 %amt = load i64, i64 *%ptr %shift = ashr i64 %a, %amt ret i64 %shift }