; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=x86_64-unknown-unknown < %s | FileCheck %s define float @fmul2_f32(float %x) { ; CHECK-LABEL: fmul2_f32: ; CHECK: # %bb.0: ; CHECK-NEXT: addss %xmm0, %xmm0 ; CHECK-NEXT: retq %y = fmul float %x, 2.0 ret float %y } ; fmul 2.0, x -> fadd x, x for vectors. define <4 x float> @fmul2_v4f32(<4 x float> %x) { ; CHECK-LABEL: fmul2_v4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: addps %xmm0, %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, ret <4 x float> %y } define <4 x float> @constant_fold_fmul_v4f32(<4 x float> %x) { ; CHECK-LABEL: constant_fold_fmul_v4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: movaps {{.*#+}} xmm0 = [8.000000e+00,8.000000e+00,8.000000e+00,8.000000e+00] ; CHECK-NEXT: retq %y = fmul <4 x float> , ret <4 x float> %y } define <4 x float> @fmul0_v4f32(<4 x float> %x) #0 { ; CHECK-LABEL: fmul0_v4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: xorps %xmm0, %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, ret <4 x float> %y } define <4 x float> @fmul_c2_c4_v4f32(<4 x float> %x) #0 { ; CHECK-LABEL: fmul_c2_c4_v4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, %z = fmul <4 x float> %y, ret <4 x float> %z } define <4 x float> @fmul_c3_c4_v4f32(<4 x float> %x) #0 { ; CHECK-LABEL: fmul_c3_c4_v4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, %z = fmul <4 x float> %y, ret <4 x float> %z } ; CHECK: float 5 ; CHECK: float 12 ; CHECK: float 21 ; CHECK: float 32 ; We should be able to pre-multiply the two constant vectors. define <4 x float> @fmul_v4f32_two_consts_no_splat(<4 x float> %x) #0 { ; CHECK-LABEL: fmul_v4f32_two_consts_no_splat: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, %z = fmul <4 x float> %y, ret <4 x float> %z } ; Same as above, but reverse operands to make sure non-canonical form is also handled. define <4 x float> @fmul_v4f32_two_consts_no_splat_non_canonical(<4 x float> %x) #0 { ; CHECK-LABEL: fmul_v4f32_two_consts_no_splat_non_canonical: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> , %x %z = fmul <4 x float> , %y ret <4 x float> %z } ; Node-level FMF and no function-level attributes. define <4 x float> @fmul_v4f32_two_consts_no_splat_reassoc(<4 x float> %x) { ; CHECK-LABEL: fmul_v4f32_two_consts_no_splat_reassoc: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, %z = fmul reassoc <4 x float> %y, ret <4 x float> %z } ; Multiplication by 2.0 is a special case because that gets converted to fadd x, x. define <4 x float> @fmul_v4f32_two_consts_no_splat_reassoc_2(<4 x float> %x) { ; CHECK-LABEL: fmul_v4f32_two_consts_no_splat_reassoc_2: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fadd <4 x float> %x, %x %z = fmul reassoc <4 x float> %y, ret <4 x float> %z } ; CHECK: float 6 ; CHECK: float 14 ; CHECK: float 24 ; CHECK: float 36 ; More than one use of a constant multiply should not inhibit the optimization. ; Instead of a chain of 2 dependent mults, this test will have 2 independent mults. define <4 x float> @fmul_v4f32_two_consts_no_splat_multiple_use(<4 x float> %x) #0 { ; CHECK-LABEL: fmul_v4f32_two_consts_no_splat_multiple_use: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul <4 x float> %x, %z = fmul <4 x float> %y, %a = fadd <4 x float> %y, %z ret <4 x float> %a } ; PR22698 - http://llvm.org/bugs/show_bug.cgi?id=22698 ; Make sure that we don't infinite loop swapping constants back and forth. ; CHECK: float 24 ; CHECK: float 24 ; CHECK: float 24 ; CHECK: float 24 define <4 x float> @PR22698_splats(<4 x float> %a) #0 { ; CHECK-LABEL: PR22698_splats: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %mul1 = fmul fast <4 x float> , %mul2 = fmul fast <4 x float> , %mul1 %mul3 = fmul fast <4 x float> %a, %mul2 ret <4 x float> %mul3 } ; Same as above, but verify that non-splat vectors are handled correctly too. ; CHECK: float 45 ; CHECK: float 120 ; CHECK: float 231 ; CHECK: float 384 define <4 x float> @PR22698_no_splats(<4 x float> %a) #0 { ; CHECK-LABEL: PR22698_no_splats: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %mul1 = fmul fast <4 x float> , %mul2 = fmul fast <4 x float> , %mul1 %mul3 = fmul fast <4 x float> %a, %mul2 ret <4 x float> %mul3 } define float @fmul_c2_c4_f32(float %x) #0 { ; CHECK-LABEL: fmul_c2_c4_f32: ; CHECK: # %bb.0: ; CHECK-NEXT: mulss {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul float %x, 2.0 %z = fmul float %y, 4.0 ret float %z } define float @fmul_c3_c4_f32(float %x) #0 { ; CHECK-LABEL: fmul_c3_c4_f32: ; CHECK: # %bb.0: ; CHECK-NEXT: mulss {{.*}}(%rip), %xmm0 ; CHECK-NEXT: retq %y = fmul float %x, 3.0 %z = fmul float %y, 4.0 ret float %z } define float @fmul_fneg_fneg_f32(float %x, float %y) { ; CHECK-LABEL: fmul_fneg_fneg_f32: ; CHECK: # %bb.0: ; CHECK-NEXT: mulss %xmm1, %xmm0 ; CHECK-NEXT: retq %x.neg = fsub float -0.0, %x %y.neg = fsub float -0.0, %y %mul = fmul float %x.neg, %y.neg ret float %mul } define <4 x float> @fmul_fneg_fneg_v4f32(<4 x float> %x, <4 x float> %y) { ; CHECK-LABEL: fmul_fneg_fneg_v4f32: ; CHECK: # %bb.0: ; CHECK-NEXT: mulps %xmm1, %xmm0 ; CHECK-NEXT: retq %x.neg = fsub <4 x float> , %x %y.neg = fsub <4 x float> , %y %mul = fmul <4 x float> %x.neg, %y.neg ret <4 x float> %mul } attributes #0 = { "less-precise-fpmad"="true" "no-infs-fp-math"="true" "no-nans-fp-math"="true" "unsafe-fp-math"="true" }