; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -instcombine < %s | FileCheck %s ; If we have an smin feeding a signed or equality icmp that shares an ; operand with the smin, the compare should always be folded. ; Test all 6 foldable predicates (eq,ne,sge,sgt,sle,slt) * 4 commutation ; possibilities for each predicate. Note that folds to true/false or ; folds to an existing instruction may be handled by InstSimplify. ; smin(X, Y) == X --> X <= Y define i1 @eq_smin1(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_smin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp eq i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @eq_smin2(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_smin2( ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp eq i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @eq_smin3(i32 %a, i32 %y) { ; CHECK-LABEL: @eq_smin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp eq i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @eq_smin4(i32 %a, i32 %y) { ; CHECK-LABEL: @eq_smin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp eq i32 %x, %sel ret i1 %cmp2 } ; smin(X, Y) >= X --> X <= Y define i1 @sge_smin1(i32 %x, i32 %y) { ; CHECK-LABEL: @sge_smin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp sge i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @sge_smin2(i32 %x, i32 %y) { ; CHECK-LABEL: @sge_smin2( ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp sge i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @sge_smin3(i32 %a, i32 %y) { ; CHECK-LABEL: @sge_smin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp sle i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @sge_smin4(i32 %a, i32 %y) { ; CHECK-LABEL: @sge_smin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp sle i32 %x, %sel ret i1 %cmp2 } ; smin(X, Y) != X --> X > Y define i1 @ne_smin1(i32 %x, i32 %y) { ; CHECK-LABEL: @ne_smin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ne i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @ne_smin2(i32 %x, i32 %y) { ; CHECK-LABEL: @ne_smin2( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 %y, %x ; CHECK-NEXT: ret i1 [[CMP1]] ; %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ne i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @ne_smin3(i32 %a, i32 %y) { ; CHECK-LABEL: @ne_smin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ne i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @ne_smin4(i32 %a, i32 %y) { ; CHECK-LABEL: @ne_smin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP1]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ne i32 %x, %sel ret i1 %cmp2 } ; smin(X, Y) < X --> X > Y define i1 @slt_smin1(i32 %x, i32 %y) { ; CHECK-LABEL: @slt_smin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp slt i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @slt_smin2(i32 %x, i32 %y) { ; CHECK-LABEL: @slt_smin2( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 %y, %x ; CHECK-NEXT: ret i1 [[CMP1]] ; %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp slt i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @slt_smin3(i32 %a, i32 %y) { ; CHECK-LABEL: @slt_smin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp sgt i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @slt_smin4(i32 %a, i32 %y) { ; CHECK-LABEL: @slt_smin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP1]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp sgt i32 %x, %sel ret i1 %cmp2 } ; smin(X, Y) <= X --> true define i1 @sle_smin1(i32 %x, i32 %y) { ; CHECK-LABEL: @sle_smin1( ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp sle i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @sle_smin2(i32 %x, i32 %y) { ; CHECK-LABEL: @sle_smin2( ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp sle i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @sle_smin3(i32 %a, i32 %y) { ; CHECK-LABEL: @sle_smin3( ; CHECK-NEXT: ret i1 true ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp sge i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @sle_smin4(i32 %a, i32 %y) { ; CHECK-LABEL: @sle_smin4( ; CHECK-NEXT: ret i1 true ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp sge i32 %x, %sel ret i1 %cmp2 } ; smin(X, Y) > X --> false define i1 @sgt_smin1(i32 %x, i32 %y) { ; CHECK-LABEL: @sgt_smin1( ; CHECK-NEXT: ret i1 false ; %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp sgt i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @sgt_smin2(i32 %x, i32 %y) { ; CHECK-LABEL: @sgt_smin2( ; CHECK-NEXT: ret i1 false ; %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp sgt i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @sgt_smin3(i32 %a, i32 %y) { ; CHECK-LABEL: @sgt_smin3( ; CHECK-NEXT: ret i1 false ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp slt i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @sgt_smin4(i32 %a, i32 %y) { ; CHECK-LABEL: @sgt_smin4( ; CHECK-NEXT: ret i1 false ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp slt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp slt i32 %x, %sel ret i1 %cmp2 }