; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -instcombine < %s | FileCheck %s ; If we have a umin feeding an unsigned or equality icmp that shares an ; operand with the umin, the compare should always be folded. ; Test all 4 foldable predicates (eq,ne,uge,ult) * 4 commutation ; possibilities for each predicate. Note that folds to true/false ; (predicate is ule/ugt) or folds to an existing instruction should be ; handled by InstSimplify. ; umin(X, Y) == X --> X <= Y define i1 @eq_umin1(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_umin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp eq i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @eq_umin2(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_umin2( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp eq i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @eq_umin3(i32 %a, i32 %y) { ; CHECK-LABEL: @eq_umin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp eq i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @eq_umin4(i32 %a, i32 %y) { ; CHECK-LABEL: @eq_umin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp eq i32 %x, %sel ret i1 %cmp2 } ; umin(X, Y) >= X --> X <= Y define i1 @uge_umin1(i32 %x, i32 %y) { ; CHECK-LABEL: @uge_umin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp uge i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @uge_umin2(i32 %x, i32 %y) { ; CHECK-LABEL: @uge_umin2( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp uge i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @uge_umin3(i32 %a, i32 %y) { ; CHECK-LABEL: @uge_umin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ule i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @uge_umin4(i32 %a, i32 %y) { ; CHECK-LABEL: @uge_umin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ule i32 %x, %sel ret i1 %cmp2 } ; umin(X, Y) != X --> X > Y define i1 @ne_umin1(i32 %x, i32 %y) { ; CHECK-LABEL: @ne_umin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ne i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @ne_umin2(i32 %x, i32 %y) { ; CHECK-LABEL: @ne_umin2( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x ; CHECK-NEXT: ret i1 [[CMP1]] ; %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ne i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @ne_umin3(i32 %a, i32 %y) { ; CHECK-LABEL: @ne_umin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ne i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @ne_umin4(i32 %a, i32 %y) { ; CHECK-LABEL: @ne_umin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP1]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ne i32 %x, %sel ret i1 %cmp2 } ; umin(X, Y) < X --> X > Y define i1 @ult_umin1(i32 %x, i32 %y) { ; CHECK-LABEL: @ult_umin1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ult i32 %sel, %x ret i1 %cmp2 } ; Commute min operands. define i1 @ult_umin2(i32 %x, i32 %y) { ; CHECK-LABEL: @ult_umin2( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x ; CHECK-NEXT: ret i1 [[CMP1]] ; %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ult i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the min op to the RHS. define i1 @ult_umin3(i32 %a, i32 %y) { ; CHECK-LABEL: @ult_umin3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ugt i32 %x, %sel ret i1 %cmp2 } ; Commute min operands. define i1 @ult_umin4(i32 %a, i32 %y) { ; CHECK-LABEL: @ult_umin4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP1]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ult i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ugt i32 %x, %sel ret i1 %cmp2 }