; This test checks that when SSE instructions access memory and require full ; alignment, memory operands are limited to properly aligned stack operands. ; This would only happen when we fuse a load instruction with another ; instruction, which currently only happens with non-scalarized Arithmetic ; instructions. ; RUN: %p2i -i %s --filetype=obj --disassemble --args -O2 | FileCheck %s ; RUN: %p2i -i %s --filetype=obj --disassemble --args -Om1 | FileCheck %s ; RUN: %if --need=target_MIPS32 --need=allow_dump \ ; RUN: --command %p2i --filetype=asm --assemble --disassemble --target mips32\ ; RUN: -i %s --args -O2 \ ; RUN: | %if --need=target_MIPS32 --need=allow_dump \ ; RUN: --command FileCheck --check-prefix MIPS32 %s define internal <4 x i32> @test_add(i32 %addr_i, <4 x i32> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x i32>* %loaded = load <4 x i32>, <4 x i32>* %addr, align 4 %result = add <4 x i32> %addend, %loaded ret <4 x i32> %result } ; CHECK-LABEL: test_add ; CHECK-NOT: paddd xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: paddd xmm{{.}}, ; MIPS32-LABEL: test_add ; MIPS32: addu ; MIPS32: addu ; MIPS32: addu ; MIPS32: addu define internal <4 x i32> @test_and(i32 %addr_i, <4 x i32> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x i32>* %loaded = load <4 x i32>, <4 x i32>* %addr, align 4 %result = and <4 x i32> %addend, %loaded ret <4 x i32> %result } ; CHECK-LABEL: test_and ; CHECK-NOT: pand xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: pand xmm{{.}}, ; MIPS32-LABEL: test_and ; MIPS32: and ; MIPS32: and ; MIPS32: and ; MIPS32: and define internal <4 x i32> @test_or(i32 %addr_i, <4 x i32> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x i32>* %loaded = load <4 x i32>, <4 x i32>* %addr, align 4 %result = or <4 x i32> %addend, %loaded ret <4 x i32> %result } ; CHECK-LABEL: test_or ; CHECK-NOT: por xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: por xmm{{.}}, ; MIPS32-LABEL: test_or ; MIPS32: or ; MIPS32: or ; MIPS32: or ; MIPS32: or define internal <4 x i32> @test_xor(i32 %addr_i, <4 x i32> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x i32>* %loaded = load <4 x i32>, <4 x i32>* %addr, align 4 %result = xor <4 x i32> %addend, %loaded ret <4 x i32> %result } ; CHECK-LABEL: test_xor ; CHECK-NOT: pxor xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: pxor xmm{{.}}, ; MIPS32-LABEL: test_xor ; MIPS32: xor ; MIPS32: xor ; MIPS32: xor ; MIPS32: xor define internal <4 x i32> @test_sub(i32 %addr_i, <4 x i32> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x i32>* %loaded = load <4 x i32>, <4 x i32>* %addr, align 4 %result = sub <4 x i32> %addend, %loaded ret <4 x i32> %result } ; CHECK-LABEL: test_sub ; CHECK-NOT: psubd xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: psubd xmm{{.}}, ; MIPS32-LABEL: test_sub ; MIPS32: subu ; MIPS32: subu ; MIPS32: subu ; MIPS32: subu define internal <4 x float> @test_fadd(i32 %addr_i, <4 x float> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x float>* %loaded = load <4 x float>, <4 x float>* %addr, align 4 %result = fadd <4 x float> %addend, %loaded ret <4 x float> %result } ; CHECK-LABEL: test_fadd ; CHECK-NOT: addps xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: addps xmm{{.}}, ; MIPS32-LABEL: test_fadd ; MIPS32: add.s ; MIPS32: add.s ; MIPS32: add.s ; MIPS32: add.s define internal <4 x float> @test_fsub(i32 %addr_i, <4 x float> %addend) { entry: %addr = inttoptr i32 %addr_i to <4 x float>* %loaded = load <4 x float>, <4 x float>* %addr, align 4 %result = fsub <4 x float> %addend, %loaded ret <4 x float> %result } ; CHECK-LABEL: test_fsub ; CHECK-NOT: subps xmm{{.}},XMMWORD PTR [e{{ax|cx|dx|di|si|bx|bp}} ; CHECK: subps xmm{{.}}, ; MIPS32-LABEL: test_fsub ; MIPS32: sub.s ; MIPS32: sub.s ; MIPS32: sub.s ; MIPS32: sub.s