// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package diff implements an algorithm for producing edit-scripts. // The edit-script is a sequence of operations needed to transform one list // of symbols into another (or vice-versa). The edits allowed are insertions, // deletions, and modifications. The summation of all edits is called the // Levenshtein distance as this problem is well-known in computer science. // // This package prioritizes performance over accuracy. That is, the run time // is more important than obtaining a minimal Levenshtein distance. package diff // EditType represents a single operation within an edit-script. type EditType uint8 const ( // Identity indicates that a symbol pair is identical in both list X and Y. Identity EditType = iota // UniqueX indicates that a symbol only exists in X and not Y. UniqueX // UniqueY indicates that a symbol only exists in Y and not X. UniqueY // Modified indicates that a symbol pair is a modification of each other. Modified ) // EditScript represents the series of differences between two lists. type EditScript []EditType // String returns a human-readable string representing the edit-script where // Identity, UniqueX, UniqueY, and Modified are represented by the // '.', 'X', 'Y', and 'M' characters, respectively. func (es EditScript) String() string { b := make([]byte, len(es)) for i, e := range es { switch e { case Identity: b[i] = '.' case UniqueX: b[i] = 'X' case UniqueY: b[i] = 'Y' case Modified: b[i] = 'M' default: panic("invalid edit-type") } } return string(b) } // stats returns a histogram of the number of each type of edit operation. func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) { for _, e := range es { switch e { case Identity: s.NI++ case UniqueX: s.NX++ case UniqueY: s.NY++ case Modified: s.NM++ default: panic("invalid edit-type") } } return } // Dist is the Levenshtein distance and is guaranteed to be 0 if and only if // lists X and Y are equal. func (es EditScript) Dist() int { return len(es) - es.stats().NI } // LenX is the length of the X list. func (es EditScript) LenX() int { return len(es) - es.stats().NY } // LenY is the length of the Y list. func (es EditScript) LenY() int { return len(es) - es.stats().NX } // EqualFunc reports whether the symbols at indexes ix and iy are equal. // When called by Difference, the index is guaranteed to be within nx and ny. type EqualFunc func(ix int, iy int) Result // Result is the result of comparison. // NSame is the number of sub-elements that are equal. // NDiff is the number of sub-elements that are not equal. type Result struct{ NSame, NDiff int } // Equal indicates whether the symbols are equal. Two symbols are equal // if and only if NDiff == 0. If Equal, then they are also Similar. func (r Result) Equal() bool { return r.NDiff == 0 } // Similar indicates whether two symbols are similar and may be represented // by using the Modified type. As a special case, we consider binary comparisons // (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar. // // The exact ratio of NSame to NDiff to determine similarity may change. func (r Result) Similar() bool { // Use NSame+1 to offset NSame so that binary comparisons are similar. return r.NSame+1 >= r.NDiff } // Difference reports whether two lists of lengths nx and ny are equal // given the definition of equality provided as f. // // This function may return a edit-script, which is a sequence of operations // needed to convert one list into the other. If non-nil, the following // invariants for the edit-script are maintained: // • eq == (es.Dist()==0) // • nx == es.LenX() // • ny == es.LenY() // // This algorithm is not guaranteed to be an optimal solution (i.e., one that // produces an edit-script with a minimal Levenshtein distance). This algorithm // favors performance over optimality. The exact output is not guaranteed to // be stable and may change over time. func Difference(nx, ny int, f EqualFunc) (eq bool, es EditScript) { es = searchGraph(nx, ny, f) st := es.stats() eq = len(es) == st.NI if !eq && st.NI < (nx+ny)/4 { return eq, nil // Edit-script more distracting than helpful } return eq, es } func searchGraph(nx, ny int, f EqualFunc) EditScript { // This algorithm is based on traversing what is known as an "edit-graph". // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations" // by Eugene W. Myers. Since D can be as large as N itself, this is // effectively O(N^2). Unlike the algorithm from that paper, we are not // interested in the optimal path, but at least some "decent" path. // // For example, let X and Y be lists of symbols: // X = [A B C A B B A] // Y = [C B A B A C] // // The edit-graph can be drawn as the following: // A B C A B B A // ┌─────────────┐ // C │_|_|\|_|_|_|_│ 0 // B │_|\|_|_|\|\|_│ 1 // A │\|_|_|\|_|_|\│ 2 // B │_|\|_|_|\|\|_│ 3 // A │\|_|_|\|_|_|\│ 4 // C │ | |\| | | | │ 5 // └─────────────┘ 6 // 0 1 2 3 4 5 6 7 // // List X is written along the horizontal axis, while list Y is written // along the vertical axis. At any point on this grid, if the symbol in // list X matches the corresponding symbol in list Y, then a '\' is drawn. // The goal of any minimal edit-script algorithm is to find a path from the // top-left corner to the bottom-right corner, while traveling through the // fewest horizontal or vertical edges. // A horizontal edge is equivalent to inserting a symbol from list X. // A vertical edge is equivalent to inserting a symbol from list Y. // A diagonal edge is equivalent to a matching symbol between both X and Y. // Invariants: // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny // // In general: // • fwdFrontier.X < revFrontier.X // • fwdFrontier.Y < revFrontier.Y // Unless, it is time for the algorithm to terminate. fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)} revPath := path{-1, point{nx, ny}, make(EditScript, 0)} fwdFrontier := fwdPath.point // Forward search frontier revFrontier := revPath.point // Reverse search frontier // Search budget bounds the cost of searching for better paths. // The longest sequence of non-matching symbols that can be tolerated is // approximately the square-root of the search budget. searchBudget := 4 * (nx + ny) // O(n) // The algorithm below is a greedy, meet-in-the-middle algorithm for // computing sub-optimal edit-scripts between two lists. // // The algorithm is approximately as follows: // • Searching for differences switches back-and-forth between // a search that starts at the beginning (the top-left corner), and // a search that starts at the end (the bottom-right corner). The goal of // the search is connect with the search from the opposite corner. // • As we search, we build a path in a greedy manner, where the first // match seen is added to the path (this is sub-optimal, but provides a // decent result in practice). When matches are found, we try the next pair // of symbols in the lists and follow all matches as far as possible. // • When searching for matches, we search along a diagonal going through // through the "frontier" point. If no matches are found, we advance the // frontier towards the opposite corner. // • This algorithm terminates when either the X coordinates or the // Y coordinates of the forward and reverse frontier points ever intersect. // // This algorithm is correct even if searching only in the forward direction // or in the reverse direction. We do both because it is commonly observed // that two lists commonly differ because elements were added to the front // or end of the other list. // // Running the tests with the "debug" build tag prints a visualization of // the algorithm running in real-time. This is educational for understanding // how the algorithm works. See debug_enable.go. f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es) for { // Forward search from the beginning. if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { break } for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { // Search in a diagonal pattern for a match. z := zigzag(i) p := point{fwdFrontier.X + z, fwdFrontier.Y - z} switch { case p.X >= revPath.X || p.Y < fwdPath.Y: stop1 = true // Hit top-right corner case p.Y >= revPath.Y || p.X < fwdPath.X: stop2 = true // Hit bottom-left corner case f(p.X, p.Y).Equal(): // Match found, so connect the path to this point. fwdPath.connect(p, f) fwdPath.append(Identity) // Follow sequence of matches as far as possible. for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { if !f(fwdPath.X, fwdPath.Y).Equal() { break } fwdPath.append(Identity) } fwdFrontier = fwdPath.point stop1, stop2 = true, true default: searchBudget-- // Match not found } debug.Update() } // Advance the frontier towards reverse point. if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y { fwdFrontier.X++ } else { fwdFrontier.Y++ } // Reverse search from the end. if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { break } for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { // Search in a diagonal pattern for a match. z := zigzag(i) p := point{revFrontier.X - z, revFrontier.Y + z} switch { case fwdPath.X >= p.X || revPath.Y < p.Y: stop1 = true // Hit bottom-left corner case fwdPath.Y >= p.Y || revPath.X < p.X: stop2 = true // Hit top-right corner case f(p.X-1, p.Y-1).Equal(): // Match found, so connect the path to this point. revPath.connect(p, f) revPath.append(Identity) // Follow sequence of matches as far as possible. for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { if !f(revPath.X-1, revPath.Y-1).Equal() { break } revPath.append(Identity) } revFrontier = revPath.point stop1, stop2 = true, true default: searchBudget-- // Match not found } debug.Update() } // Advance the frontier towards forward point. if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y { revFrontier.X-- } else { revFrontier.Y-- } } // Join the forward and reverse paths and then append the reverse path. fwdPath.connect(revPath.point, f) for i := len(revPath.es) - 1; i >= 0; i-- { t := revPath.es[i] revPath.es = revPath.es[:i] fwdPath.append(t) } debug.Finish() return fwdPath.es } type path struct { dir int // +1 if forward, -1 if reverse point // Leading point of the EditScript path es EditScript } // connect appends any necessary Identity, Modified, UniqueX, or UniqueY types // to the edit-script to connect p.point to dst. func (p *path) connect(dst point, f EqualFunc) { if p.dir > 0 { // Connect in forward direction. for dst.X > p.X && dst.Y > p.Y { switch r := f(p.X, p.Y); { case r.Equal(): p.append(Identity) case r.Similar(): p.append(Modified) case dst.X-p.X >= dst.Y-p.Y: p.append(UniqueX) default: p.append(UniqueY) } } for dst.X > p.X { p.append(UniqueX) } for dst.Y > p.Y { p.append(UniqueY) } } else { // Connect in reverse direction. for p.X > dst.X && p.Y > dst.Y { switch r := f(p.X-1, p.Y-1); { case r.Equal(): p.append(Identity) case r.Similar(): p.append(Modified) case p.Y-dst.Y >= p.X-dst.X: p.append(UniqueY) default: p.append(UniqueX) } } for p.X > dst.X { p.append(UniqueX) } for p.Y > dst.Y { p.append(UniqueY) } } } func (p *path) append(t EditType) { p.es = append(p.es, t) switch t { case Identity, Modified: p.add(p.dir, p.dir) case UniqueX: p.add(p.dir, 0) case UniqueY: p.add(0, p.dir) } debug.Update() } type point struct{ X, Y int } func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy } // zigzag maps a consecutive sequence of integers to a zig-zag sequence. // [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...] func zigzag(x int) int { if x&1 != 0 { x = ^x } return x >> 1 }