# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Libsvm decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.libsvm.ops import gen_libsvm_ops from tensorflow.contrib.util import loader from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.platform import resource_loader _libsvm_ops_so = loader.load_op_library( resource_loader.get_path_to_datafile("_libsvm_ops.so")) def decode_libsvm(content, num_features, dtype=None, label_dtype=None): """Convert Libsvm records to a tensor of label and a tensor of feature. Args: content: A `Tensor` of type `string`. Each string is a record/row in the Libsvm format. num_features: The number of features. dtype: The type of the output feature tensor. Default to tf.float32. label_dtype: The type of the output label tensor. Default to tf.int64. Returns: features: A `SparseTensor` of the shape `[input_shape, num_features]`. labels: A `Tensor` of the same shape as content. """ labels, indices, values, shape = gen_libsvm_ops.decode_libsvm( content, num_features, dtype=dtype, label_dtype=label_dtype) return sparse_tensor.SparseTensor(indices, values, shape), labels ops.NotDifferentiable("DecodeLibSVM")