# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for Stack and ParallelStack Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import variables from tensorflow.python.platform import test def np_split_squeeze(array, axis): axis_len = array.shape[axis] return [ np.squeeze( arr, axis=(axis,)) for arr in np.split( array, axis_len, axis=axis) ] class StackOpTest(test.TestCase): @test_util.run_deprecated_v1 def testSimple(self): np.random.seed(7) with self.session(use_gpu=True): for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): for dtype in [np.bool, np.float32, np.int32, np.int64]: data = np.random.randn(*shape).astype(dtype) # Convert [data[0], data[1], ...] separately to tensorflow # TODO(irving): Remove list() once we handle maps correctly xs = list(map(constant_op.constant, data)) # Stack back into a single tensorflow tensor c = array_ops.stack(xs) self.assertAllEqual(c.eval(), data) @test_util.run_deprecated_v1 def testSimpleParallelCPU(self): np.random.seed(7) with self.session(use_gpu=False): for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): data = np.random.randn(*shape).astype(np.float32) xs = list(map(constant_op.constant, data)) c = array_ops.parallel_stack(xs) self.assertAllEqual(c.eval(), data) @test_util.run_deprecated_v1 def testSimpleParallelGPU(self): np.random.seed(7) with self.session(use_gpu=True): for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): data = np.random.randn(*shape).astype(np.float32) xs = list(map(constant_op.constant, data)) c = array_ops.parallel_stack(xs) self.assertAllEqual(c.eval(), data) @test_util.run_deprecated_v1 def testConst(self): np.random.seed(7) with self.session(use_gpu=True): for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): for dtype in [np.bool, np.float32, np.int16, np.int32, np.int64]: data = np.random.randn(*shape).astype(dtype) # Stack back into a single tensorflow tensor directly using np array c = array_ops.stack(data) # This is implemented via a Const: self.assertEqual(c.op.type, "Const") self.assertAllEqual(c.eval(), data) # Python lists also work for 1-D case: if len(shape) == 1: data_list = list(data) cl = array_ops.stack(data_list) self.assertEqual(cl.op.type, "Const") self.assertAllEqual(cl.eval(), data) # Verify that shape induction works with shapes produced via const stack a = constant_op.constant([1, 2, 3, 4, 5, 6]) b = array_ops.reshape(a, array_ops.stack([2, 3])) self.assertAllEqual(b.get_shape(), [2, 3]) @test_util.run_deprecated_v1 def testConstParallelCPU(self): np.random.seed(7) with self.session(use_gpu=False): for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): data = np.random.randn(*shape).astype(np.float32) if len(shape) == 1: data_list = list(data) cl = array_ops.parallel_stack(data_list) self.assertAllEqual(cl.eval(), data) data = np.random.randn(*shape).astype(np.float32) c = array_ops.parallel_stack(data) self.assertAllEqual(c.eval(), data) @test_util.run_deprecated_v1 def testConstParallelGPU(self): np.random.seed(7) with self.session(use_gpu=True): for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): data = np.random.randn(*shape).astype(np.float32) if len(shape) == 1: data_list = list(data) cl = array_ops.parallel_stack(data_list) self.assertAllEqual(cl.eval(), data) data = np.random.randn(*shape).astype(np.float32) c = array_ops.parallel_stack(data) self.assertAllEqual(c.eval(), data) @test_util.run_deprecated_v1 def testGradientsAxis0(self): np.random.seed(7) for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2): data = np.random.randn(*shape) shapes = [shape[1:]] * shape[0] with self.cached_session(use_gpu=True): # TODO(irving): Remove list() once we handle maps correctly xs = list(map(constant_op.constant, data)) c = array_ops.stack(xs) err = gradient_checker.compute_gradient_error(xs, shapes, c, shape) self.assertLess(err, 1e-6) @test_util.run_deprecated_v1 def testGradientsAxis1(self): np.random.seed(7) for shape in (2, 3), (3, 2), (4, 3, 2): data = np.random.randn(*shape) shapes = [shape[1:]] * shape[0] out_shape = list(shape[1:]) out_shape.insert(1, shape[0]) with self.cached_session(use_gpu=True): # TODO(irving): Remove list() once we handle maps correctly xs = list(map(constant_op.constant, data)) c = array_ops.stack(xs, axis=1) err = gradient_checker.compute_gradient_error(xs, shapes, c, out_shape) self.assertLess(err, 1e-6) @test_util.run_deprecated_v1 def testZeroSizeCPU(self): # Verify that stack doesn't crash for zero size inputs with self.session(use_gpu=False): for shape in (0,), (3, 0), (0, 3): x = np.zeros((2,) + shape).astype(np.int32) p = array_ops.stack(list(x)).eval() self.assertAllEqual(p, x) p = array_ops.parallel_stack(list(x)).eval() self.assertAllEqual(p, x) @test_util.run_deprecated_v1 def testZeroSizeGPU(self): # Verify that stack doesn't crash for zero size inputs with self.session(use_gpu=True): for shape in (0,), (3, 0), (0, 3): x = np.zeros((2,) + shape).astype(np.int32) p = array_ops.stack(list(x)).eval() self.assertAllEqual(p, x) p = array_ops.parallel_stack(list(x)).eval() self.assertAllEqual(p, x) @test_util.run_deprecated_v1 def testAxis0DefaultCPU(self): with self.session(use_gpu=False): t = [constant_op.constant([1, 2, 3]), constant_op.constant([4, 5, 6])] stacked = array_ops.stack(t).eval() parallel_stacked = array_ops.parallel_stack(t).eval() expected = np.array([[1, 2, 3], [4, 5, 6]]) self.assertAllEqual(stacked, expected) self.assertAllEqual(parallel_stacked, expected) @test_util.run_deprecated_v1 def testAxis0DefaultGPU(self): with self.session(use_gpu=True): t = [constant_op.constant([1, 2, 3]), constant_op.constant([4, 5, 6])] stacked = array_ops.stack(t).eval() parallel_stacked = array_ops.parallel_stack(t).eval() expected = np.array([[1, 2, 3], [4, 5, 6]]) self.assertAllEqual(stacked, expected) self.assertAllEqual(parallel_stacked, expected) def testAgainstNumpy(self): # For 1 to 5 dimensions. for i in range(1, 6): expected = np.random.random(np.random.permutation(i) + 1) # For all the possible axis to split it, including negative indices. for j in range(-i, i): test_arrays = np_split_squeeze(expected, j) with self.cached_session(use_gpu=True): actual_pack = array_ops.stack(test_arrays, axis=j) self.assertEqual(expected.shape, actual_pack.get_shape()) actual_pack = self.evaluate(actual_pack) actual_stack = array_ops.stack(test_arrays, axis=j) self.assertEqual(expected.shape, actual_stack.get_shape()) actual_stack = self.evaluate(actual_stack) self.assertNDArrayNear(expected, actual_stack, 1e-6) def testDimOutOfRange(self): t = [constant_op.constant([1, 2, 3]), constant_op.constant([4, 5, 6])] with self.assertRaisesRegexp(ValueError, r"axis = 2 not in \[-2, 2\)"): array_ops.stack(t, axis=2) def testDimOutOfNegativeRange(self): t = [constant_op.constant([1, 2, 3]), constant_op.constant([4, 5, 6])] with self.assertRaisesRegexp(ValueError, r"axis = -3 not in \[-2, 2\)"): array_ops.stack(t, axis=-3) class AutomaticStackingTest(test.TestCase): @test_util.run_deprecated_v1 def testSimple(self): with self.session(use_gpu=True): self.assertAllEqual( [1, 0, 2], ops.convert_to_tensor([1, constant_op.constant(0), 2]).eval()) self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]], ops.convert_to_tensor( [[0, 0, 0], [0, constant_op.constant(1), 0], [0, 0, 0]]).eval()) self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]], ops.convert_to_tensor( [[0, 0, 0], constant_op.constant([0, 1, 0]), [0, 0, 0]]).eval()) self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]], ops.convert_to_tensor([ constant_op.constant([0, 0, 0]), constant_op.constant([0, 1, 0]), constant_op.constant([0, 0, 0]) ]).eval()) def testWithNDArray(self): with self.session(use_gpu=True): result = ops.convert_to_tensor([[[0., 0.], constant_op.constant([1., 1.])], np.array( [[2., 2.], [3., 3.]], dtype=np.float32)]) self.assertAllEqual([[[0., 0.], [1., 1.]], [[2., 2.], [3., 3.]]], self.evaluate(result)) @test_util.run_deprecated_v1 def testVariable(self): with self.session(use_gpu=True): v = variables.Variable(17) result = ops.convert_to_tensor([[0, 0, 0], [0, v, 0], [0, 0, 0]]) v.initializer.run() self.assertAllEqual([[0, 0, 0], [0, 17, 0], [0, 0, 0]], self.evaluate(result)) v.assign(38).op.run() self.assertAllEqual([[0, 0, 0], [0, 38, 0], [0, 0, 0]], self.evaluate(result)) def testDtype(self): t_0 = ops.convert_to_tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) self.assertEqual(dtypes.float32, t_0.dtype) t_1 = ops.convert_to_tensor([[0., 0., 0.], constant_op.constant( [0., 0., 0.], dtype=dtypes.float64), [0., 0., 0.]]) self.assertEqual(dtypes.float64, t_1.dtype) t_2 = ops.convert_to_tensor( [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], dtype=dtypes.float64) self.assertEqual(dtypes.float64, t_2.dtype) t_3 = ops.convert_to_tensor( [[0., 0., 0.], constant_op.constant([0., 0., 0.], dtype=dtypes.float64), [0., 0., 0.] ], dtype=dtypes.float32) self.assertEqual(dtypes.float32, t_3.dtype) t_4 = ops.convert_to_tensor( [constant_op.constant([0., 0., 0.], dtype=dtypes.float64)], dtype=dtypes.float32) self.assertEqual(dtypes.float32, t_4.dtype) with self.assertRaises(TypeError): ops.convert_to_tensor([ constant_op.constant( [0., 0., 0.], dtype=dtypes.float32), constant_op.constant( [0., 0., 0.], dtype=dtypes.float64), [0., 0., 0.] ]) def testDtypeConversionWhenTensorDtypeMismatch(self): t_0 = ops.convert_to_tensor([0., 0., 0.]) self.assertEqual(dtypes.float32, t_0.dtype) t_1 = ops.convert_to_tensor([0, 0, 0]) self.assertEqual(dtypes.int32, t_1.dtype) t_2 = ops.convert_to_tensor([t_0, t_0, t_1], dtype=dtypes.float64) self.assertEqual(dtypes.float64, t_2.dtype) @test_util.run_deprecated_v1 def testPlaceholder(self): with self.session(use_gpu=True): # Test using placeholder with a defined shape. ph_0 = array_ops.placeholder(dtypes.int32, shape=[]) result_0 = ops.convert_to_tensor([[0, 0, 0], [0, ph_0, 0], [0, 0, 0]]) self.assertAllEqual( [[0, 0, 0], [0, 1, 0], [0, 0, 0]], result_0.eval(feed_dict={ph_0: 1})) self.assertAllEqual( [[0, 0, 0], [0, 2, 0], [0, 0, 0]], result_0.eval(feed_dict={ph_0: 2})) # Test using placeholder with an undefined shape. ph_1 = array_ops.placeholder(dtypes.int32) result_1 = ops.convert_to_tensor([[0, 0, 0], [0, ph_1, 0], [0, 0, 0]]) self.assertAllEqual( [[0, 0, 0], [0, 1, 0], [0, 0, 0]], result_1.eval(feed_dict={ph_1: 1})) self.assertAllEqual( [[0, 0, 0], [0, 2, 0], [0, 0, 0]], result_1.eval(feed_dict={ph_1: 2})) @test_util.run_deprecated_v1 def testShapeErrors(self): # Static shape error. ph_0 = array_ops.placeholder(dtypes.int32, shape=[1]) with self.assertRaises(ValueError): ops.convert_to_tensor([[0, 0, 0], [0, ph_0, 0], [0, 0, 0]]) # Dynamic shape error. ph_1 = array_ops.placeholder(dtypes.int32) result_1 = ops.convert_to_tensor([[0, 0, 0], [0, ph_1, 0], [0, 0, 0]]) with self.session(use_gpu=True): with self.assertRaises(errors_impl.InvalidArgumentError): result_1.eval(feed_dict={ph_1: [1]}) if __name__ == "__main__": test.main()