path: "tensorflow.keras.callbacks.EarlyStopping" tf_class { is_instance: "" is_instance: "" is_instance: "" member_method { name: "__init__" argspec: "args=[\'self\', \'monitor\', \'min_delta\', \'patience\', \'verbose\', \'mode\', \'baseline\', \'restore_best_weights\'], varargs=None, keywords=None, defaults=[\'val_loss\', \'0\', \'0\', \'0\', \'auto\', \'None\', \'False\'], " } member_method { name: "get_monitor_value" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=None" } member_method { name: "on_batch_begin" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_batch_end" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_epoch_begin" argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_epoch_end" argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_predict_batch_begin" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_predict_batch_end" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_predict_begin" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_predict_end" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_test_batch_begin" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_test_batch_end" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_test_begin" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_test_end" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_train_batch_begin" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_train_batch_end" argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_train_begin" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "on_train_end" argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "set_model" argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None" } member_method { name: "set_params" argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None" } }