#!/usr/bin/python import optparse import sys import sqlite3 import scipy.stats import numpy from math import log10, floor import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import pylab import adbutil from devices import DEVICES DB_PATH="/data/data/com.android.benchmark/databases/BenchmarkResults" OUT_PATH = "db/" QUERY_BAD_FRAME = ("select run_id, name, iteration, total_duration from ui_results " "where total_duration >= 16 order by run_id, name, iteration") QUERY_PERCENT_JANK = ("select run_id, name, iteration, sum(jank_frame) as jank_count, count (*) as total " "from ui_results group by run_id, name, iteration") SKIP_TESTS = [ # "BMUpload", # "Low-hitrate text render", # "High-hitrate text render", # "Edit Text Input", # "List View Fling" ] INCLUDE_TESTS = [ #"BMUpload" #"Shadow Grid Fling" #"Image List View Fling" #"Edit Text Input" ] class IterationResult: def __init__(self): self.durations = [] self.jank_count = 0 self.total_count = 0 def get_scoremap(dbpath): db = sqlite3.connect(dbpath) rows = db.execute(QUERY_BAD_FRAME) scoremap = {} for row in rows: run_id = row[0] name = row[1] iteration = row[2] total_duration = row[3] if not run_id in scoremap: scoremap[run_id] = {} if not name in scoremap[run_id]: scoremap[run_id][name] = {} if not iteration in scoremap[run_id][name]: scoremap[run_id][name][iteration] = IterationResult() scoremap[run_id][name][iteration].durations.append(float(total_duration)) for row in db.execute(QUERY_PERCENT_JANK): run_id = row[0] name = row[1] iteration = row[2] jank_count = row[3] total_count = row[4] if run_id in scoremap.keys() and name in scoremap[run_id].keys() and iteration in scoremap[run_id][name].keys(): scoremap[run_id][name][iteration].jank_count = long(jank_count) scoremap[run_id][name][iteration].total_count = long(total_count) db.close() return scoremap def round_to_2(val): return val if val == 0: return val return round(val , -int(floor(log10(abs(val)))) + 1) def score_device(name, serial, pull = False, verbose = False): dbpath = OUT_PATH + name + ".db" if pull: adbutil.root(serial) adbutil.pull(serial, DB_PATH, dbpath) scoremap = None try: scoremap = get_scoremap(dbpath) except sqlite3.DatabaseError: print "Database corrupt, fetching..." adbutil.root(serial) adbutil.pull(serial, DB_PATH, dbpath) scoremap = get_scoremap(dbpath) per_test_score = {} per_test_sample_count = {} global_overall = {} for run_id in iter(scoremap): overall = [] if len(scoremap[run_id]) < 1: if verbose: print "Skipping short run %s" % run_id continue print "Run: %s" % run_id for test in iter(scoremap[run_id]): if test in SKIP_TESTS: continue if INCLUDE_TESTS and test not in INCLUDE_TESTS: continue if verbose: print "\t%s" % test scores = [] means = [] stddevs = [] pjs = [] sample_count = 0 hit_min_count = 0 # try pooling together all iterations for iteration in iter(scoremap[run_id][test]): res = scoremap[run_id][test][iteration] stddev = round_to_2(numpy.std(res.durations)) mean = round_to_2(numpy.mean(res.durations)) sample_count += len(res.durations) pj = round_to_2(100 * res.jank_count / float(res.total_count)) score = stddev * mean * pj score = 100 * len(res.durations) / float(res.total_count) if score == 0: score = 1 scores.append(score) means.append(mean) stddevs.append(stddev) pjs.append(pj) if verbose: print "\t%s: Score = %f x %f x %f = %f (%d samples)" % (iteration, stddev, mean, pj, score, len(res.durations)) if verbose: print "\tHit min: %d" % hit_min_count print "\tMean Variation: %0.2f%%" % (100 * scipy.stats.variation(means)) print "\tStdDev Variation: %0.2f%%" % (100 * scipy.stats.variation(stddevs)) print "\tPJ Variation: %0.2f%%" % (100 * scipy.stats.variation(pjs)) geo_run = numpy.mean(scores) if test not in per_test_score: per_test_score[test] = [] if test not in per_test_sample_count: per_test_sample_count[test] = [] sample_count /= len(scoremap[run_id][test]) per_test_score[test].append(geo_run) per_test_sample_count[test].append(int(sample_count)) overall.append(geo_run) if not verbose: print "\t%s:\t%0.2f (%0.2f avg. sample count)" % (test, geo_run, sample_count) else: print "\tOverall:\t%0.2f (%0.2f avg. sample count)" % (geo_run, sample_count) print "" global_overall[run_id] = scipy.stats.gmean(overall) print "Run Overall: %f" % global_overall[run_id] print "" print "" print "Variability (CV) - %s:" % name worst_offender_test = None worst_offender_variation = 0 for test in per_test_score: variation = 100 * scipy.stats.variation(per_test_score[test]) if worst_offender_variation < variation: worst_offender_test = test worst_offender_variation = variation print "\t%s:\t%0.2f%% (%0.2f avg sample count)" % (test, variation, numpy.mean(per_test_sample_count[test])) print "\tOverall: %0.2f%%" % (100 * scipy.stats.variation([x for x in global_overall.values()])) print "" return { "overall": global_overall.values(), "worst_offender_test": (name, worst_offender_test, worst_offender_variation) } def parse_options(argv): usage = 'Usage: %prog [options]' desc = 'Example: %prog' parser = optparse.OptionParser(usage=usage, description=desc) parser.add_option("-p", dest='pull', action="store_true") parser.add_option("-d", dest='device', action="store") parser.add_option("-v", dest='verbose', action="store_true") options, categories = parser.parse_args(argv[1:]) return options def main(): options = parse_options(sys.argv) if options.device != None: score_device(options.device, DEVICES[options.device], options.pull, options.verbose) else: device_scores = [] worst_offenders = [] for name, serial in DEVICES.iteritems(): print "======== %s =========" % name result = score_device(name, serial, options.pull, options.verbose) device_scores.append((name, result["overall"])) worst_offenders.append(result["worst_offender_test"]) device_scores.sort(cmp=(lambda x, y: cmp(x[1], y[1]))) print "Ranking by max overall score:" for name, score in device_scores: plt.plot([0, 1, 2, 3, 4, 5], score, label=name) print "\t%s: %s" % (name, score) plt.ylabel("Jank %") plt.xlabel("Iteration") plt.title("Jank Percentage") plt.legend() pylab.savefig("holy.png", bbox_inches="tight") print "Worst offender tests:" for device, test, variation in worst_offenders: print "\t%s: %s %.2f%%" % (device, test, variation) if __name__ == "__main__": main()