# # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): model = Model().Operation("GREATER_EQUAL", input0, input1).To(output0) example = Example({ input0: input0_data, input1: input1_data, output0: output_data, }, model=model, name=name) if do_variations: example.AddVariations("int32", "float16", "relaxed") test( name="simple", input0=Input("input0", "TENSOR_FLOAT32", "{3}"), input1=Input("input1", "TENSOR_FLOAT32", "{3}"), output0=Output("output0", "TENSOR_BOOL8", "{3}"), input0_data=[5, 7, 10], input1_data=[10, 7, 5], output_data=[False, True, True], ) test( name="broadcast", input0=Input("input0", "TENSOR_FLOAT32", "{2, 1}"), input1=Input("input1", "TENSOR_FLOAT32", "{2}"), output0=Output("output0", "TENSOR_BOOL8", "{2, 2}"), input0_data=[5, 10], input1_data=[10, 5], output_data=[False, True, True, True], ) test( name="quantized_different_scale", input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [3], 1.0, 128)), input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)), output0=Output("output0", "TENSOR_BOOL8", "{3}"), input0_data=[129, 130, 131], # effectively 1, 2, 3 input1_data=[129], # effectively 2 output_data=[False, True, True], do_variations=False, ) test( name="quantized_different_zero_point", input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [3], 1.0, 128)), input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)), output0=Output("output0", "TENSOR_BOOL8", "{3}"), input0_data=[129, 130, 131], # effectively 1, 2, 3 input1_data=[131], # effectively 2 output_data=[False, True, True], do_variations=False, ) test( name="quantized_overflow_second_input_if_requantized", input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), output0=Output("output0", "TENSOR_BOOL8", "{1}"), input0_data=[0], input1_data=[200], output_data=[True], do_variations=False, ) test( name="quantized_overflow_first_input_if_requantized", input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)), input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)), output0=Output("output0", "TENSOR_BOOL8", "{1}"), input0_data=[200], input1_data=[0], output_data=[False], do_variations=False, ) test( name="boolean", input0=Input("input0", "TENSOR_BOOL8", "{4}"), input1=Input("input1", "TENSOR_BOOL8", "{4}"), output0=Output("output0", "TENSOR_BOOL8", "{4}"), input0_data=[False, True, False, True], input1_data=[False, False, True, True], output_data=[True, True, False, True], do_variations=False, )