• Home
  • Raw
  • Download

Lines Matching refs:td

32 <tr><td colspan="4"></td></tr>
35 <td class="code">
40 </td>
41 <td>absolute value (\f$ |a_i| \f$) </td>
42 <td class="code">
45 </td>
46 <td>SSE2, AVX (i32,f,d)</td>
49 <td class="code">
54 </td>
55 <td>inverse value (\f$ 1/a_i \f$) </td>
56 <td class="code">
58 </td>
59 <td>All engines (f,d,fc,fd)</td>
62 <td class="code">
67 </td>
68 …<td><a href="https://en.wikipedia.org/wiki/Complex_conjugate">complex conjugate</a> (\f$ \bar{a_i}…
69 no-op for real </td>
70 <td class="code">
73 </td>
74 <td>All engines (fc,fd)</td>
80 <td class="code">
84 </td>
85 <td>\f$ e \f$ raised to the given power (\f$ e^{a_i} \f$) </td>
86 <td class="code">
89 </td>
90 <td>SSE2, AVX (f,d)</td>
93 <td class="code">
97 </td>
98 <td>natural (base \f$ e \f$) logarithm (\f$ \ln({a_i}) \f$)</td>
99 <td class="code">
102 </td>
103 <td>SSE2, AVX (f)</td>
106 <td class="code">
110 </td>
111 <td>natural (base \f$ e \f$) logarithm of 1 plus \n the given number (\f$ \ln({1+a_i}) \f$)</td>
112 <td>built-in generic implementation based on \c log,\n
113 …using <a href="http://en.cppreference.com/w/cpp/numeric/math/log1p">\c std::log1p </a>; \cpp11</td>
114 <td></td>
117 <td class="code">
121 </td>
122 <td>base 10 logarithm (\f$ \log_{10}({a_i}) \f$)</td>
123 <td class="code">
126 </td>
127 <td></td>
133 <td class="code">
137 </td>
138 …<td>raises a number to the given power (\f$ a_i ^ {b_i} \f$) \n \c a and \c b can be either an arr…
139 <td class="code">
142 (plus builtin for integer types)</td>
143 <td></td>
146 <td class="code">
151 </td>
152 <td>computes square root (\f$ \sqrt a_i \f$)</td>
153 <td class="code">
155 sqrt(a[i]);</td>
156 <td>SSE2, AVX (f,d)</td>
159 <td class="code">
163 </td>
164 …<td><a href="https://en.wikipedia.org/wiki/Fast_inverse_square_root">reciprocal square root</a> (\…
165 <td class="code">
168 </td>
169 <td>SSE2, AVX, AltiVec, ZVector (f,d)\n
170 (approx + 1 Newton iteration)</td>
173 <td class="code">
177 </td>
178 <td>computes square power (\f$ a_i^2 \f$)</td>
179 <td class="code">
180 a[i]*a[i]</td>
181 <td>All (i32,f,d,cf,cd)</td>
184 <td class="code">
188 </td>
189 <td>computes cubic power (\f$ a_i^3 \f$)</td>
190 <td class="code">
191 a[i]*a[i]*a[i]</td>
192 <td>All (i32,f,d,cf,cd)</td>
195 <td class="code">
200 </td>
201 <td>computes the squared absolute value (\f$ |a_i|^2 \f$)</td>
202 <td class="code">
205 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; + imag(a[i])*imag(a[i])</td>
206 <td>All (i32,f,d)</td>
212 <td class="code">
216 </td>
217 <td>computes sine</td>
218 <td class="code">
220 sin(a[i]);</td>
221 <td>SSE2, AVX (f)</td>
224 <td class="code">
228 </td>
229 <td>computes cosine</td>
230 <td class="code">
232 cos(a[i]);</td>
233 <td>SSE2, AVX (f)</td>
236 <td class="code">
240 </td>
241 <td>computes tangent</td>
242 <td class="code">
244 tan(a[i]);</td>
245 <td></td>
248 <td class="code">
252 </td>
253 <td>computes arc sine (\f$ \sin^{-1} a_i \f$)</td>
254 <td class="code">
256 asin(a[i]);</td>
257 <td></td>
260 <td class="code">
264 </td>
265 <td>computes arc cosine (\f$ \cos^{-1} a_i \f$)</td>
266 <td class="code">
268 acos(a[i]);</td>
269 <td></td>
272 <td class="code">
276 </td>
277 <td>computes arc tangent (\f$ \tan^{-1} a_i \f$)</td>
278 <td class="code">
280 atan(a[i]);</td>
281 <td></td>
287 <td class="code">
291 </td>
292 <td>computes hyperbolic sine</td>
293 <td class="code">
295 sinh(a[i]);</td>
296 <td></td>
299 <td class="code">
303 </td>
304 <td>computes hyperbolic cosine</td>
305 <td class="code">
307 cosh(a[i]);</td>
308 <td></td>
311 <td class="code">
315 </td>
316 <td>computes hyperbolic tangent</td>
317 <td class="code">
319 tanh(a[i]);</td>
320 <td></td>
326 <td class="code">
330 </td>
331 <td>nearest integer not less than the given value</td>
332 <td class="code">
334 ceil(a[i]);</td>
335 <td>SSE4,AVX,ZVector (f,d)</td>
338 <td class="code">
342 </td>
343 <td>nearest integer not greater than the given value</td>
344 <td class="code">
346 floor(a[i]);</td>
347 <td>SSE4,AVX,ZVector (f,d)</td>
350 <td class="code">
354 </td>
355 <td>nearest integer, \n rounding away from zero in halfway cases</td>
356 <td>built-in generic implementation \n based on \c floor and \c ceil,\n
357 …using <a href="http://en.cppreference.com/w/cpp/numeric/math/round">\c std::round </a>; \cpp11</td>
358 <td>SSE4,AVX,ZVector (f,d)</td>
367 <td class="code">
371 </td>
372 <td>checks if the given number has finite value</td>
373 <td>built-in generic implementation,\n
374 …<a href="http://en.cppreference.com/w/cpp/numeric/math/isfinite">\c std::isfinite </a>; \cpp11</td>
375 <td></td>
378 <td class="code">
382 </td>
383 <td>checks if the given number is infinite</td>
384 <td>built-in generic implementation,\n
385 …using <a href="http://en.cppreference.com/w/cpp/numeric/math/isinf">\c std::isinf </a>; \cpp11</td>
386 <td></td>
389 <td class="code">
393 </td>
394 <td>checks if the given number is not a number</td>
395 <td>built-in generic implementation,\n
396 …using <a href="http://en.cppreference.com/w/cpp/numeric/math/isnan">\c std::isnan </a>; \cpp11</td>
397 <td></td>
402 <tr> <td colspan="4"> Require \c \#include \c <unsupported/Eigen/SpecialFunctions> </td></tr>
404 <td class="code">
408 </td>
409 <td>error function</td>
410 <td class="code">
413 </td>
414 <td></td>
417 <td class="code">
421 </td>
422 <td>complementary error function</td>
423 <td class="code">
426 </td>
427 <td></td>
430 <td class="code">
434 </td>
435 <td>natural logarithm of the gamma function</td>
436 <td class="code">
439 </td>
440 <td></td>
443 <td class="code">
447 </td>
448 …<td><a href="https://en.wikipedia.org/wiki/Digamma_function">logarithmic derivative of the gamma f…
449 <td>
451 </td>
452 <td></td>
455 <td class="code">
458 </td>
459 …<td><a href="https://en.wikipedia.org/wiki/Incomplete_gamma_function">lower incomplete gamma integ…
460 …\n \f$ \gamma(a_i,x_i)= \frac{1}{|a_i|} \int_{0}^{x_i}e^{\text{-}t} t^{a_i-1} \mathrm{d} t \f$</td>
461 <td>
463 </td>
464 <td></td>
467 <td class="code">
470 </td>
471 …<td><a href="https://en.wikipedia.org/wiki/Incomplete_gamma_function">upper incomplete gamma integ…
472 … \Gamma(a_i,x_i) = \frac{1}{|a_i|} \int_{x_i}^{\infty}e^{\text{-}t} t^{a_i-1} \mathrm{d} t \f$</td>
473 <td>
475 </td>
476 <td></td>
481 <tr> <td colspan="4"> Require \c \#include \c <unsupported/Eigen/SpecialFunctions> </td></tr>
483 <td class="code">
486 </td>
487 …<td><a href="https://en.wikipedia.org/wiki/Polygamma_function">n-th derivative of digamma at x</a>…
488 <td>
492 </td>
493 <td></td>
496 <td class="code">
499 </td>
500 …<td><a href="https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function">Incomplete beta…
501 <td>
503 </td>
504 <td></td>
507 <td class="code">
510 </td>
511 <td><a href="https://en.wikipedia.org/wiki/Hurwitz_zeta_function">Hurwitz zeta function</a>
512 \n \f$ \zeta(a_i,b_i)=\sum_{k=0}^{\infty}(b_i+k)^{\text{-}a_i} \f$</td>
513 <td>
515 </td>
516 <td></td>
518 <tr><td colspan="4"></td></tr>