• Home
  • Raw
  • Download

Lines Matching +full:- +full:n

2  * Copyright (c) 2001-2012 Python Software Foundation. All Rights Reserved.
23 "getcontext($module, /)\n--\n\n\
24 Get the current default context.\n\
25 \n");
28 "setcontext($module, context, /)\n--\n\n\
29 Set a new default context.\n\
30 \n");
33 "localcontext($module, /, ctx=None)\n--\n\n\
34 Return a context manager that will set the default context to a copy of ctx\n\
35 on entry to the with-statement and restore the previous default context when\n\
36 exiting the with-statement. If no context is specified, a copy of the current\n\
37 default context is used.\n\
38 \n");
42 "IEEEContext($module, bits, /)\n--\n\n\
43 Return a context object initialized to the proper values for one of the\n\
44 IEEE interchange formats. The argument must be a multiple of 32 and less\n\
45 than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\
46 DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\
47 \n");
56 "Decimal(value=\"0\", context=None)\n--\n\n\
57 Construct a new Decimal object. 'value' can be an integer, string, tuple,\n\
58 or another Decimal object. If no value is given, return Decimal('0'). The\n\
59 context does not affect the conversion and is only passed to determine if\n\
60 the InvalidOperation trap is active.\n\
61 \n");
64 "adjusted($self, /)\n--\n\n\
65 Return the adjusted exponent of the number. Defined as exp + digits - 1.\n\
66 \n");
69 "as_tuple($self, /)\n--\n\n\
70 Return a tuple representation of the number.\n\
71 \n");
74 "as_integer_ratio($self, /)\n--\n\n\
75 Decimal.as_integer_ratio() -> (int, int)\n\
76 \n\
77 Return a pair of integers, whose ratio is exactly equal to the original\n\
78 Decimal and with a positive denominator. The ratio is in lowest terms.\n\
79 Raise OverflowError on infinities and a ValueError on NaNs.\n\
80 \n");
83 "canonical($self, /)\n--\n\n\
84 Return the canonical encoding of the argument. Currently, the encoding\n\
85 of a Decimal instance is always canonical, so this operation returns its\n\
86 argument unchanged.\n\
87 \n");
90 "compare($self, /, other, context=None)\n--\n\n\
91 Compare self to other. Return a decimal value:\n\
92 \n\
93 a or b is a NaN ==> Decimal('NaN')\n\
94 a < b ==> Decimal('-1')\n\
95 a == b ==> Decimal('0')\n\
96 a > b ==> Decimal('1')\n\
97 \n");
100 "compare_signal($self, /, other, context=None)\n--\n\n\
101 Identical to compare, except that all NaNs signal.\n\
102 \n");
105 "compare_total($self, /, other, context=None)\n--\n\n\
106 Compare two operands using their abstract representation rather than\n\
107 their numerical value. Similar to the compare() method, but the result\n\
108 gives a total ordering on Decimal instances. Two Decimal instances with\n\
109 the same numeric value but different representations compare unequal\n\
110 in this ordering:\n\
111 \n\
112 >>> Decimal('12.0').compare_total(Decimal('12'))\n\
113 Decimal('-1')\n\
114 \n\
115 Quiet and signaling NaNs are also included in the total ordering. The result\n\
116 of this function is Decimal('0') if both operands have the same representation,\n\
117 Decimal('-1') if the first operand is lower in the total order than the second,\n\
118 and Decimal('1') if the first operand is higher in the total order than the\n\
119 second operand. See the specification for details of the total order.\n\
120 \n\
121 This operation is unaffected by context and is quiet: no flags are changed\n\
122 and no rounding is performed. As an exception, the C version may raise\n\
123 InvalidOperation if the second operand cannot be converted exactly.\n\
124 \n");
127 "compare_total_mag($self, /, other, context=None)\n--\n\n\
128 Compare two operands using their abstract representation rather than their\n\
129 value as in compare_total(), but ignoring the sign of each operand.\n\
130 \n\
131 x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()).\n\
132 \n\
133 This operation is unaffected by context and is quiet: no flags are changed\n\
134 and no rounding is performed. As an exception, the C version may raise\n\
135 InvalidOperation if the second operand cannot be converted exactly.\n\
136 \n");
139 "conjugate($self, /)\n--\n\n\
140 Return self.\n\
141 \n");
144 "copy_abs($self, /)\n--\n\n\
145 Return the absolute value of the argument. This operation is unaffected by\n\
146 context and is quiet: no flags are changed and no rounding is performed.\n\
147 \n");
150 "copy_negate($self, /)\n--\n\n\
151 Return the negation of the argument. This operation is unaffected by context\n\
152 and is quiet: no flags are changed and no rounding is performed.\n\
153 \n");
156 "copy_sign($self, /, other, context=None)\n--\n\n\
157 Return a copy of the first operand with the sign set to be the same as the\n\
158 sign of the second operand. For example:\n\
159 \n\
160 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\
161 Decimal('-2.3')\n\
162 \n\
163 This operation is unaffected by context and is quiet: no flags are changed\n\
164 and no rounding is performed. As an exception, the C version may raise\n\
165 InvalidOperation if the second operand cannot be converted exactly.\n\
166 \n");
169 "exp($self, /, context=None)\n--\n\n\
170 Return the value of the (natural) exponential function e**x at the given\n\
171 number. The function always uses the ROUND_HALF_EVEN mode and the result\n\
172 is correctly rounded.\n\
173 \n");
176 "from_float($type, f, /)\n--\n\n\
177 Class method that converts a float to a decimal number, exactly.\n\
178 Since 0.1 is not exactly representable in binary floating point,\n\
179 Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\
180 \n\
181 >>> Decimal.from_float(0.1)\n\
182 Decimal('0.1000000000000000055511151231257827021181583404541015625')\n\
183 >>> Decimal.from_float(float('nan'))\n\
184 Decimal('NaN')\n\
185 >>> Decimal.from_float(float('inf'))\n\
186 Decimal('Infinity')\n\
187 >>> Decimal.from_float(float('-inf'))\n\
188 Decimal('-Infinity')\n\
189 \n\
190 \n");
193 "fma($self, /, other, third, context=None)\n--\n\n\
194 Fused multiply-add. Return self*other+third with no rounding of the\n\
195 intermediate product self*other.\n\
196 \n\
197 >>> Decimal(2).fma(3, 5)\n\
198 Decimal('11')\n\
199 \n\
200 \n");
203 "is_canonical($self, /)\n--\n\n\
204 Return True if the argument is canonical and False otherwise. Currently,\n\
205 a Decimal instance is always canonical, so this operation always returns\n\
206 True.\n\
207 \n");
210 "is_finite($self, /)\n--\n\n\
211 Return True if the argument is a finite number, and False if the argument\n\
212 is infinite or a NaN.\n\
213 \n");
216 "is_infinite($self, /)\n--\n\n\
217 Return True if the argument is either positive or negative infinity and\n\
218 False otherwise.\n\
219 \n");
222 "is_nan($self, /)\n--\n\n\
223 Return True if the argument is a (quiet or signaling) NaN and False\n\
224 otherwise.\n\
225 \n");
228 "is_normal($self, /, context=None)\n--\n\n\
229 Return True if the argument is a normal finite non-zero number with an\n\
230 adjusted exponent greater than or equal to Emin. Return False if the\n\
231 argument is zero, subnormal, infinite or a NaN.\n\
232 \n");
235 "is_qnan($self, /)\n--\n\n\
236 Return True if the argument is a quiet NaN, and False otherwise.\n\
237 \n");
240 "is_signed($self, /)\n--\n\n\
241 Return True if the argument has a negative sign and False otherwise.\n\
242 Note that both zeros and NaNs can carry signs.\n\
243 \n");
246 "is_snan($self, /)\n--\n\n\
247 Return True if the argument is a signaling NaN and False otherwise.\n\
248 \n");
251 "is_subnormal($self, /, context=None)\n--\n\n\
252 Return True if the argument is subnormal, and False otherwise. A number is\n\
253 subnormal if it is non-zero, finite, and has an adjusted exponent less\n\
254 than Emin.\n\
255 \n");
258 "is_zero($self, /)\n--\n\n\
259 Return True if the argument is a (positive or negative) zero and False\n\
260 otherwise.\n\
261 \n");
264 "ln($self, /, context=None)\n--\n\n\
265 Return the natural (base e) logarithm of the operand. The function always\n\
266 uses the ROUND_HALF_EVEN mode and the result is correctly rounded.\n\
267 \n");
270 "log10($self, /, context=None)\n--\n\n\
271 Return the base ten logarithm of the operand. The function always uses the\n\
272 ROUND_HALF_EVEN mode and the result is correctly rounded.\n\
273 \n");
276 "logb($self, /, context=None)\n--\n\n\
277 For a non-zero number, return the adjusted exponent of the operand as a\n\
278 Decimal instance. If the operand is a zero, then Decimal('-Infinity') is\n\
279 returned and the DivisionByZero condition is raised. If the operand is\n\
280 an infinity then Decimal('Infinity') is returned.\n\
281 \n");
284 "logical_and($self, /, other, context=None)\n--\n\n\
285 Return the digit-wise 'and' of the two (logical) operands.\n\
286 \n");
289 "logical_invert($self, /, context=None)\n--\n\n\
290 Return the digit-wise inversion of the (logical) operand.\n\
291 \n");
294 "logical_or($self, /, other, context=None)\n--\n\n\
295 Return the digit-wise 'or' of the two (logical) operands.\n\
296 \n");
299 "logical_xor($self, /, other, context=None)\n--\n\n\
300 Return the digit-wise 'exclusive or' of the two (logical) operands.\n\
301 \n");
304 "max($self, /, other, context=None)\n--\n\n\
305 Maximum of self and other. If one operand is a quiet NaN and the other is\n\
306 numeric, the numeric operand is returned.\n\
307 \n");
310 "max_mag($self, /, other, context=None)\n--\n\n\
311 Similar to the max() method, but the comparison is done using the absolute\n\
312 values of the operands.\n\
313 \n");
316 "min($self, /, other, context=None)\n--\n\n\
317 Minimum of self and other. If one operand is a quiet NaN and the other is\n\
318 numeric, the numeric operand is returned.\n\
319 \n");
322 "min_mag($self, /, other, context=None)\n--\n\n\
323 Similar to the min() method, but the comparison is done using the absolute\n\
324 values of the operands.\n\
325 \n");
328 "next_minus($self, /, context=None)\n--\n\n\
329 Return the largest number representable in the given context (or in the\n\
330 current default context if no context is given) that is smaller than the\n\
331 given operand.\n\
332 \n");
335 "next_plus($self, /, context=None)\n--\n\n\
336 Return the smallest number representable in the given context (or in the\n\
337 current default context if no context is given) that is larger than the\n\
338 given operand.\n\
339 \n");
342 "next_toward($self, /, other, context=None)\n--\n\n\
343 If the two operands are unequal, return the number closest to the first\n\
344 operand in the direction of the second operand. If both operands are\n\
345 numerically equal, return a copy of the first operand with the sign set\n\
346 to be the same as the sign of the second operand.\n\
347 \n");
350 "normalize($self, /, context=None)\n--\n\n\
351 Normalize the number by stripping the rightmost trailing zeros and\n\
352 converting any result equal to Decimal('0') to Decimal('0e0'). Used\n\
353 for producing canonical values for members of an equivalence class.\n\
354 For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize\n\
355 to the equivalent value Decimal('32.1').\n\
356 \n");
359 "number_class($self, /, context=None)\n--\n\n\
360 Return a string describing the class of the operand. The returned value\n\
361 is one of the following ten strings:\n\
362 \n\
363 * '-Infinity', indicating that the operand is negative infinity.\n\
364 * '-Normal', indicating that the operand is a negative normal number.\n\
365 * '-Subnormal', indicating that the operand is negative and subnormal.\n\
366 * '-Zero', indicating that the operand is a negative zero.\n\
367 * '+Zero', indicating that the operand is a positive zero.\n\
368 * '+Subnormal', indicating that the operand is positive and subnormal.\n\
369 * '+Normal', indicating that the operand is a positive normal number.\n\
370 * '+Infinity', indicating that the operand is positive infinity.\n\
371 * 'NaN', indicating that the operand is a quiet NaN (Not a Number).\n\
372 * 'sNaN', indicating that the operand is a signaling NaN.\n\
373 \n\
374 \n");
377 "quantize($self, /, exp, rounding=None, context=None)\n--\n\n\
378 Return a value equal to the first operand after rounding and having the\n\
379 exponent of the second operand.\n\
380 \n\
381 >>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\
382 Decimal('1.414')\n\
383 \n\
384 Unlike other operations, if the length of the coefficient after the quantize\n\
385 operation would be greater than precision, then an InvalidOperation is signaled.\n\
386 This guarantees that, unless there is an error condition, the quantized exponent\n\
387 is always equal to that of the right-hand operand.\n\
388 \n\
389 Also unlike other operations, quantize never signals Underflow, even if the\n\
390 result is subnormal and inexact.\n\
391 \n\
392 If the exponent of the second operand is larger than that of the first, then\n\
393 rounding may be necessary. In this case, the rounding mode is determined by the\n\
394 rounding argument if given, else by the given context argument; if neither\n\
395 argument is given, the rounding mode of the current thread's context is used.\n\
396 \n");
399 "radix($self, /)\n--\n\n\
400 Return Decimal(10), the radix (base) in which the Decimal class does\n\
401 all its arithmetic. Included for compatibility with the specification.\n\
402 \n");
405 "remainder_near($self, /, other, context=None)\n--\n\n\
406 Return the remainder from dividing self by other. This differs from\n\
407 self % other in that the sign of the remainder is chosen so as to minimize\n\
408 its absolute value. More precisely, the return value is self - n * other\n\
409 where n is the integer nearest to the exact value of self / other, and\n\
410 if two integers are equally near then the even one is chosen.\n\
411 \n\
412 If the result is zero then its sign will be the sign of self.\n\
413 \n");
416 "rotate($self, /, other, context=None)\n--\n\n\
417 Return the result of rotating the digits of the first operand by an amount\n\
418 specified by the second operand. The second operand must be an integer in\n\
419 the range -precision through precision. The absolute value of the second\n\
420 operand gives the number of places to rotate. If the second operand is\n\
421 positive then rotation is to the left; otherwise rotation is to the right.\n\
422 The coefficient of the first operand is padded on the left with zeros to\n\
423 length precision if necessary. The sign and exponent of the first operand are\n\
424 unchanged.\n\
425 \n");
428 "same_quantum($self, /, other, context=None)\n--\n\n\
429 Test whether self and other have the same exponent or whether both are NaN.\n\
430 \n\
431 This operation is unaffected by context and is quiet: no flags are changed\n\
432 and no rounding is performed. As an exception, the C version may raise\n\
433 InvalidOperation if the second operand cannot be converted exactly.\n\
434 \n");
437 "scaleb($self, /, other, context=None)\n--\n\n\
438 Return the first operand with the exponent adjusted the second. Equivalently,\n\
439 return the first operand multiplied by 10**other. The second operand must be\n\
440 an integer.\n\
441 \n");
444 "shift($self, /, other, context=None)\n--\n\n\
445 Return the result of shifting the digits of the first operand by an amount\n\
446 specified by the second operand. The second operand must be an integer in\n\
447 the range -precision through precision. The absolute value of the second\n\
448 operand gives the number of places to shift. If the second operand is\n\
449 positive, then the shift is to the left; otherwise the shift is to the\n\
450 right. Digits shifted into the coefficient are zeros. The sign and exponent\n\
451 of the first operand are unchanged.\n\
452 \n");
455 "sqrt($self, /, context=None)\n--\n\n\
456 Return the square root of the argument to full precision. The result is\n\
457 correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\
458 \n");
461 "to_eng_string($self, /, context=None)\n--\n\n\
462 Convert to an engineering-type string. Engineering notation has an exponent\n\
463 which is a multiple of 3, so there are up to 3 digits left of the decimal\n\
464 place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3').\n\
465 \n\
466 The value of context.capitals determines whether the exponent sign is lower\n\
467 or upper case. Otherwise, the context does not affect the operation.\n\
468 \n");
471 "to_integral($self, /, rounding=None, context=None)\n--\n\n\
472 Identical to the to_integral_value() method. The to_integral() name has been\n\
473 kept for compatibility with older versions.\n\
474 \n");
477 "to_integral_exact($self, /, rounding=None, context=None)\n--\n\n\
478 Round to the nearest integer, signaling Inexact or Rounded as appropriate if\n\
479 rounding occurs. The rounding mode is determined by the rounding parameter\n\
480 if given, else by the given context. If neither parameter is given, then the\n\
481 rounding mode of the current default context is used.\n\
482 \n");
485 "to_integral_value($self, /, rounding=None, context=None)\n--\n\n\
486 Round to the nearest integer without signaling Inexact or Rounded. The\n\
487 rounding mode is determined by the rounding parameter if given, else by\n\
488 the given context. If neither parameter is given, then the rounding mode\n\
489 of the current default context is used.\n\
490 \n");
498 …e, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)\n--\n\n\
499 The context affects almost all operations and controls rounding,\n\
500 Over/Underflow, raising of exceptions and much more. A new context\n\
501 can be constructed as follows:\n\
502 \n\
503 >>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\
504 ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1,\n\
505 ... traps=[InvalidOperation, DivisionByZero, Overflow],\n\
506 ... flags=[])\n\
507 >>>\n\
508 \n\
509 \n");
513 "apply($self, x, /)\n--\n\n\
514 Apply self to Decimal x.\n\
515 \n");
519 "clear_flags($self, /)\n--\n\n\
520 Reset all flags to False.\n\
521 \n");
524 "clear_traps($self, /)\n--\n\n\
525 Set all traps to False.\n\
526 \n");
529 "copy($self, /)\n--\n\n\
530 Return a duplicate of the context with all flags cleared.\n\
531 \n");
534 "copy_decimal($self, x, /)\n--\n\n\
535 Return a copy of Decimal x.\n\
536 \n");
539 "create_decimal($self, num=\"0\", /)\n--\n\n\
540 Create a new Decimal instance from num, using self as the context. Unlike the\n\
541 Decimal constructor, this function observes the context limits.\n\
542 \n");
545 "create_decimal_from_float($self, f, /)\n--\n\n\
546 Create a new Decimal instance from float f. Unlike the Decimal.from_float()\n\
547 class method, this function observes the context limits.\n\
548 \n");
551 "Etiny($self, /)\n--\n\n\
552 Return a value equal to Emin - prec + 1, which is the minimum exponent value\n\
553 for subnormal results. When underflow occurs, the exponent is set to Etiny.\n\
554 \n");
557 "Etop($self, /)\n--\n\n\
558 Return a value equal to Emax - prec + 1. This is the maximum exponent\n\
559 if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop()\n\
560 must not be negative.\n\
561 \n");
564 "abs($self, x, /)\n--\n\n\
565 Return the absolute value of x.\n\
566 \n");
569 "add($self, x, y, /)\n--\n\n\
570 Return the sum of x and y.\n\
571 \n");
574 "canonical($self, x, /)\n--\n\n\
575 Return a new instance of x.\n\
576 \n");
579 "compare($self, x, y, /)\n--\n\n\
580 Compare x and y numerically.\n\
581 \n");
584 "compare_signal($self, x, y, /)\n--\n\n\
585 Compare x and y numerically. All NaNs signal.\n\
586 \n");
589 "compare_total($self, x, y, /)\n--\n\n\
590 Compare x and y using their abstract representation.\n\
591 \n");
594 "compare_total_mag($self, x, y, /)\n--\n\n\
595 Compare x and y using their abstract representation, ignoring sign.\n\
596 \n");
599 "copy_abs($self, x, /)\n--\n\n\
600 Return a copy of x with the sign set to 0.\n\
601 \n");
604 "copy_negate($self, x, /)\n--\n\n\
605 Return a copy of x with the sign inverted.\n\
606 \n");
609 "copy_sign($self, x, y, /)\n--\n\n\
610 Copy the sign from y to x.\n\
611 \n");
614 "divide($self, x, y, /)\n--\n\n\
615 Return x divided by y.\n\
616 \n");
619 "divide_int($self, x, y, /)\n--\n\n\
620 Return x divided by y, truncated to an integer.\n\
621 \n");
624 "divmod($self, x, y, /)\n--\n\n\
625 Return quotient and remainder of the division x / y.\n\
626 \n");
629 "exp($self, x, /)\n--\n\n\
630 Return e ** x.\n\
631 \n");
634 "fma($self, x, y, z, /)\n--\n\n\
635 Return x multiplied by y, plus z.\n\
636 \n");
639 "is_canonical($self, x, /)\n--\n\n\
640 Return True if x is canonical, False otherwise.\n\
641 \n");
644 "is_finite($self, x, /)\n--\n\n\
645 Return True if x is finite, False otherwise.\n\
646 \n");
649 "is_infinite($self, x, /)\n--\n\n\
650 Return True if x is infinite, False otherwise.\n\
651 \n");
654 "is_nan($self, x, /)\n--\n\n\
655 Return True if x is a qNaN or sNaN, False otherwise.\n\
656 \n");
659 "is_normal($self, x, /)\n--\n\n\
660 Return True if x is a normal number, False otherwise.\n\
661 \n");
664 "is_qnan($self, x, /)\n--\n\n\
665 Return True if x is a quiet NaN, False otherwise.\n\
666 \n");
669 "is_signed($self, x, /)\n--\n\n\
670 Return True if x is negative, False otherwise.\n\
671 \n");
674 "is_snan($self, x, /)\n--\n\n\
675 Return True if x is a signaling NaN, False otherwise.\n\
676 \n");
679 "is_subnormal($self, x, /)\n--\n\n\
680 Return True if x is subnormal, False otherwise.\n\
681 \n");
684 "is_zero($self, x, /)\n--\n\n\
685 Return True if x is a zero, False otherwise.\n\
686 \n");
689 "ln($self, x, /)\n--\n\n\
690 Return the natural (base e) logarithm of x.\n\
691 \n");
694 "log10($self, x, /)\n--\n\n\
695 Return the base 10 logarithm of x.\n\
696 \n");
699 "logb($self, x, /)\n--\n\n\
700 Return the exponent of the magnitude of the operand's MSD.\n\
701 \n");
704 "logical_and($self, x, y, /)\n--\n\n\
705 Digit-wise and of x and y.\n\
706 \n");
709 "logical_invert($self, x, /)\n--\n\n\
710 Invert all digits of x.\n\
711 \n");
714 "logical_or($self, x, y, /)\n--\n\n\
715 Digit-wise or of x and y.\n\
716 \n");
719 "logical_xor($self, x, y, /)\n--\n\n\
720 Digit-wise xor of x and y.\n\
721 \n");
724 "max($self, x, y, /)\n--\n\n\
725 Compare the values numerically and return the maximum.\n\
726 \n");
729 "max_mag($self, x, y, /)\n--\n\n\
730 Compare the values numerically with their sign ignored.\n\
731 \n");
734 "min($self, x, y, /)\n--\n\n\
735 Compare the values numerically and return the minimum.\n\
736 \n");
739 "min_mag($self, x, y, /)\n--\n\n\
740 Compare the values numerically with their sign ignored.\n\
741 \n");
744 "minus($self, x, /)\n--\n\n\
745 Minus corresponds to the unary prefix minus operator in Python, but applies\n\
746 the context to the result.\n\
747 \n");
750 "multiply($self, x, y, /)\n--\n\n\
751 Return the product of x and y.\n\
752 \n");
755 "next_minus($self, x, /)\n--\n\n\
756 Return the largest representable number smaller than x.\n\
757 \n");
760 "next_plus($self, x, /)\n--\n\n\
761 Return the smallest representable number larger than x.\n\
762 \n");
765 "next_toward($self, x, y, /)\n--\n\n\
766 Return the number closest to x, in the direction towards y.\n\
767 \n");
770 "normalize($self, x, /)\n--\n\n\
771 Reduce x to its simplest form. Alias for reduce(x).\n\
772 \n");
775 "number_class($self, x, /)\n--\n\n\
776 Return an indication of the class of x.\n\
777 \n");
780 "plus($self, x, /)\n--\n\n\
781 Plus corresponds to the unary prefix plus operator in Python, but applies\n\
782 the context to the result.\n\
783 \n");
786 "power($self, /, a, b, modulo=None)\n--\n\n\
787 Compute a**b. If 'a' is negative, then 'b' must be integral. The result\n\
788 will be inexact unless 'a' is integral and the result is finite and can\n\
789 be expressed exactly in 'precision' digits. In the Python version the\n\
790 result is always correctly rounded, in the C version the result is almost\n\
791 always correctly rounded.\n\
792 \n\
793 If modulo is given, compute (a**b) % modulo. The following restrictions\n\
794 hold:\n\
795 \n\
796 * all three arguments must be integral\n\
797 * 'b' must be nonnegative\n\
798 * at least one of 'a' or 'b' must be nonzero\n\
799 * modulo must be nonzero and less than 10**prec in absolute value\n\
800 \n\
801 \n");
804 "quantize($self, x, y, /)\n--\n\n\
805 Return a value equal to x (rounded), having the exponent of y.\n\
806 \n");
809 "radix($self, /)\n--\n\n\
810 Return 10.\n\
811 \n");
814 "remainder($self, x, y, /)\n--\n\n\
815 Return the remainder from integer division. The sign of the result,\n\
816 if non-zero, is the same as that of the original dividend.\n\
817 \n");
820 "remainder_near($self, x, y, /)\n--\n\n\
821 Return x - y * n, where n is the integer nearest the exact value of x / y\n\
822 (if the result is 0 then its sign will be the sign of x).\n\
823 \n");
826 "rotate($self, x, y, /)\n--\n\n\
827 Return a copy of x, rotated by y places.\n\
828 \n");
831 "same_quantum($self, x, y, /)\n--\n\n\
832 Return True if the two operands have the same exponent.\n\
833 \n");
836 "scaleb($self, x, y, /)\n--\n\n\
837 Return the first operand after adding the second value to its exp.\n\
838 \n");
841 "shift($self, x, y, /)\n--\n\n\
842 Return a copy of x, shifted by y places.\n\
843 \n");
846 "sqrt($self, x, /)\n--\n\n\
847 Square root of a non-negative number to context precision.\n\
848 \n");
851 "subtract($self, x, y, /)\n--\n\n\
852 Return the difference between x and y.\n\
853 \n");
856 "to_eng_string($self, x, /)\n--\n\n\
857 Convert a number to a string, using engineering notation.\n\
858 \n");
861 "to_integral($self, x, /)\n--\n\n\
862 Identical to to_integral_value(x).\n\
863 \n");
866 "to_integral_exact($self, x, /)\n--\n\n\
867 Round to an integer. Signal if the result is rounded or inexact.\n\
868 \n");
871 "to_integral_value($self, x, /)\n--\n\n\
872 Round to an integer.\n\
873 \n");
876 "to_sci_string($self, x, /)\n--\n\n\
877 Convert a number to a string using scientific notation.\n\
878 \n");