• Home
  • Raw
  • Download

Lines Matching refs:fY

23     if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {  in align()
24 dstPt->fY = fPts[endIndex].fY; in align()
41 && approximately_equal_half(lessPt.fY, cubicAtT.fY)) { in binarySearch()
60 && approximately_equal_half(morePt.fY, cubicAtT.fY)) { in binarySearch()
107 dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; in chopAt()
109 dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; in chopAt()
111 dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8; in chopAt()
113 dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; in chopAt()
115 dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; in chopAt()
120 interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); in chopAt()
137 || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) in endsAreExtremaInXOrY()
138 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); in endsAreExtremaInXOrY()
161 double origY = endPt[0]->fY; in hullIntersects()
163 double opp = endPt[1]->fY - origY; in hullIntersects()
166 double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; in hullIntersects()
168 double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp; in hullIntersects()
181 double test = (pts[n].fY - origY) * adj - (pts[n].fX - origX) * opp; in hullIntersects()
218 double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), in isLinear()
219 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); in isLinear()
220 double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), in isLinear()
221 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); in isLinear()
304 derivative_at_t(&cubic.fPts[0].fY, testT) }; in ComplexBreak()
329 return precisely_between(fPts[0].fY, fPts[1].fY, fPts[3].fY) in monotonicInY()
330 && precisely_between(fPts[0].fY, fPts[2].fY, fPts[3].fY); in monotonicInY()
497 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; in dxdyAtT()
498 if (result.fX == 0 && result.fY == 0) { in dxdyAtT()
507 if (result.fX == 0 && result.fY == 0 && zero_or_one(t)) { in dxdyAtT()
517 double Ay = fPts[1].fY - fPts[0].fY; in findInflections()
519 double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; in findInflections()
521 double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; in findInflections()
570 formulate_F1DotF2(&fPts[0].fY, coeffY); in findMaxCurvature()
592 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; in ptAtT()
663 double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); in subDivide()
665 double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); in subDivide()
667 double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); in subDivide()
669 double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); in subDivide()
675 /* by = */ dst[1].fY = (my * 2 - ny) / 18; in subDivide()
677 /* cy = */ dst[2].fY = (ny * 2 - my) / 18; in subDivide()
698 if (AlmostBequalUlps(dst[0].fY, a.fY)) { in subDivide()
699 dst[0].fY = a.fY; in subDivide()
704 if (AlmostBequalUlps(dst[1].fY, d.fY)) { in subDivide()
705 dst[1].fY = d.fY; in subDivide()
724 int roots = SkDCubic::FindExtrema(&fPts[0].fY, extremeTs); in top()
728 if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) { in top()