/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "base/memory_tool.h" #include #include #include #include #include #include #include #include #if defined(__linux__) && defined(__arm__) #include #include #endif #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "arch/instruction_set_features.h" #include "arch/mips/instruction_set_features_mips.h" #include "art_method-inl.h" #include "base/callee_save_type.h" #include "base/dumpable.h" #include "base/file_utils.h" #include "base/leb128.h" #include "base/macros.h" #include "base/mutex.h" #include "base/os.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "base/zip_archive.h" #include "class_linker.h" #include "class_loader_context.h" #include "cmdline_parser.h" #include "compiler.h" #include "compiler_callbacks.h" #include "debug/elf_debug_writer.h" #include "debug/method_debug_info.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/quick_compiler_callbacks.h" #include "dex/verification_results.h" #include "dex2oat_options.h" #include "dex2oat_return_codes.h" #include "dexlayout.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "driver/compiler_options_map-inl.h" #include "elf_file.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc/verification.h" #include "interpreter/unstarted_runtime.h" #include "jni/java_vm_ext.h" #include "linker/elf_writer.h" #include "linker/elf_writer_quick.h" #include "linker/image_writer.h" #include "linker/multi_oat_relative_patcher.h" #include "linker/oat_writer.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat_file.h" #include "oat_file_assistant.h" #include "profile/profile_compilation_info.h" #include "runtime.h" #include "runtime_options.h" #include "scoped_thread_state_change-inl.h" #include "stream/buffered_output_stream.h" #include "stream/file_output_stream.h" #include "vdex_file.h" #include "verifier/verifier_deps.h" #include "well_known_classes.h" namespace art { using android::base::StringAppendV; using android::base::StringPrintf; using gc::space::ImageSpace; static constexpr size_t kDefaultMinDexFilesForSwap = 2; static constexpr size_t kDefaultMinDexFileCumulativeSizeForSwap = 20 * MB; // Compiler filter override for very large apps. static constexpr CompilerFilter::Filter kLargeAppFilter = CompilerFilter::kVerify; static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector command; command.reserve(original_argc); for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return android::base::Join(command, ' '); } // A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be // even more aggressive. There won't be much reasonable data here for us in that case anyways (the // locations are all staged). static std::string StrippedCommandLine() { std::vector command; // Do a pre-pass to look for zip-fd and the compiler filter. bool saw_zip_fd = false; bool saw_compiler_filter = false; for (int i = 0; i < original_argc; ++i) { if (android::base::StartsWith(original_argv[i], "--zip-fd=")) { saw_zip_fd = true; } if (android::base::StartsWith(original_argv[i], "--compiler-filter=")) { saw_compiler_filter = true; } } // Now filter out things. for (int i = 0; i < original_argc; ++i) { // All runtime-arg parameters are dropped. if (strcmp(original_argv[i], "--runtime-arg") == 0) { i++; // Drop the next part, too. continue; } // Any instruction-setXXX is dropped. if (android::base::StartsWith(original_argv[i], "--instruction-set")) { continue; } // The boot image is dropped. if (android::base::StartsWith(original_argv[i], "--boot-image=")) { continue; } // The image format is dropped. if (android::base::StartsWith(original_argv[i], "--image-format=")) { continue; } // This should leave any dex-file and oat-file options, describing what we compiled. // However, we prefer to drop this when we saw --zip-fd. if (saw_zip_fd) { // Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X if (android::base::StartsWith(original_argv[i], "--zip-") || android::base::StartsWith(original_argv[i], "--dex-") || android::base::StartsWith(original_argv[i], "--oat-") || android::base::StartsWith(original_argv[i], "--swap-") || android::base::StartsWith(original_argv[i], "--app-image-")) { continue; } } command.push_back(original_argv[i]); } if (!saw_compiler_filter) { command.push_back("--compiler-filter=" + CompilerFilter::NameOfFilter(CompilerFilter::kDefaultCompilerFilter)); } // Construct the final output. if (command.size() <= 1U) { // It seems only "/apex/com.android.runtime/bin/dex2oat" is left, or not // even that. Use a pretty line. return "Starting dex2oat."; } return android::base::Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } NO_RETURN static void Usage(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: dex2oat [options]..."); UsageError(""); UsageError(" -j: specifies the number of threads used for compilation."); UsageError(" Default is the number of detected hardware threads available on the"); UsageError(" host system."); UsageError(" Example: -j12"); UsageError(""); UsageError(" --dex-file=: specifies a .dex, .jar, or .apk file to compile."); UsageError(" Example: --dex-file=/system/framework/core.jar"); UsageError(""); UsageError(" --dex-location=: specifies an alternative dex location to"); UsageError(" encode in the oat file for the corresponding --dex-file argument."); UsageError(" Example: --dex-file=/home/build/out/system/framework/core.jar"); UsageError(" --dex-location=/system/framework/core.jar"); UsageError(""); UsageError(" --zip-fd=: specifies a file descriptor of a zip file"); UsageError(" containing a classes.dex file to compile."); UsageError(" Example: --zip-fd=5"); UsageError(""); UsageError(" --zip-location=: specifies a symbolic name for the file"); UsageError(" corresponding to the file descriptor specified by --zip-fd."); UsageError(" Example: --zip-location=/system/app/Calculator.apk"); UsageError(""); UsageError(" --oat-file=: specifies an oat output destination via a filename."); UsageError(" Example: --oat-file=/system/framework/boot.oat"); UsageError(""); UsageError(" --oat-fd=: specifies the oat output destination via a file descriptor."); UsageError(" Example: --oat-fd=6"); UsageError(""); UsageError(" --input-vdex-fd=: specifies the vdex input source via a file descriptor."); UsageError(" Example: --input-vdex-fd=6"); UsageError(""); UsageError(" --output-vdex-fd=: specifies the vdex output destination via a file"); UsageError(" descriptor."); UsageError(" Example: --output-vdex-fd=6"); UsageError(""); UsageError(" --oat-location=: specifies a symbolic name for the file corresponding"); UsageError(" to the file descriptor specified by --oat-fd."); UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat"); UsageError(""); UsageError(" --oat-symbols=: specifies a destination where the oat file is copied."); UsageError(" This is equivalent to file copy as build post-processing step."); UsageError(" It is intended to be used with --strip and it happens before it."); UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat"); UsageError(""); UsageError(" --strip: remove all debugging sections at the end (but keep mini-debug-info)."); UsageError(" This is equivalent to the \"strip\" command as build post-processing step."); UsageError(" It is intended to be used with --oat-symbols and it happens after it."); UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat"); UsageError(""); UsageError(" --image=: specifies an output image filename."); UsageError(" Example: --image=/system/framework/boot.art"); UsageError(""); UsageError(" --image-format=(uncompressed|lz4|lz4hc):"); UsageError(" Which format to store the image."); UsageError(" Example: --image-format=lz4"); UsageError(" Default: uncompressed"); UsageError(""); UsageError(" --image-classes=: specifies classes to include in an image."); UsageError(" Example: --image=frameworks/base/preloaded-classes"); UsageError(""); UsageError(" --base=: specifies the base address when creating a boot image."); UsageError(" Example: --base=0x50000000"); UsageError(""); UsageError(" --boot-image=: provide the image file for the boot class path."); UsageError(" Do not include the arch as part of the name, it is added automatically."); UsageError(" Example: --boot-image=/system/framework/boot.art"); UsageError(" (specifies /system/framework//boot.art as the image file)"); UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art"); UsageError(""); UsageError(" --android-root=: used to locate libraries for portable linking."); UsageError(" Example: --android-root=out/host/linux-x86"); UsageError(" Default: $ANDROID_ROOT"); UsageError(""); UsageError(" --instruction-set=(arm|arm64|mips|mips64|x86|x86_64): compile for a particular"); UsageError(" instruction set."); UsageError(" Example: --instruction-set=x86"); UsageError(" Default: arm"); UsageError(""); UsageError(" --instruction-set-features=...,: Specify instruction set features"); UsageError(" On target the value 'runtime' can be used to detect features at run time."); UsageError(" If target does not support run-time detection the value 'runtime'"); UsageError(" has the same effect as the value 'default'."); UsageError(" Note: the value 'runtime' has no effect if it is used on host."); UsageError(" Example: --instruction-set-features=div"); UsageError(" Default: default"); UsageError(""); UsageError(" --compiler-backend=(Quick|Optimizing): select compiler backend"); UsageError(" set."); UsageError(" Example: --compiler-backend=Optimizing"); UsageError(" Default: Optimizing"); UsageError(""); UsageError(" --compiler-filter=" "(assume-verified" "|extract" "|verify" "|quicken" "|space-profile" "|space" "|speed-profile" "|speed" "|everything-profile" "|everything):"); UsageError(" select compiler filter."); UsageError(" Example: --compiler-filter=everything"); UsageError(" Default: speed"); UsageError(""); UsageError(" --huge-method-max=: threshold size for a huge"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(""); UsageError(" --large-method-max=: threshold size for a large"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(""); UsageError(" --small-method-max=: threshold size for a small"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(""); UsageError(" --tiny-method-max=: threshold size for a tiny"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(""); UsageError(" --num-dex-methods=: threshold size for a small dex file for"); UsageError(" compiler filter tuning. If the input has fewer than this many methods"); UsageError(" and the filter is not interpret-only or verify-none or verify-at-runtime, "); UsageError(" overrides the filter to use speed"); UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(""); UsageError(" --inline-max-code-units=: the maximum code units that a method"); UsageError(" can have to be considered for inlining. A zero value will disable inlining."); UsageError(" Honored only by Optimizing. Has priority over the --compiler-filter option."); UsageError(" Intended for development/experimental use."); UsageError(" Example: --inline-max-code-units=%d", CompilerOptions::kDefaultInlineMaxCodeUnits); UsageError(" Default: %d", CompilerOptions::kDefaultInlineMaxCodeUnits); UsageError(""); UsageError(" --dump-timings: display a breakdown of where time was spent"); UsageError(""); UsageError(" --dump-pass-timings: display a breakdown of time spent in optimization"); UsageError(" passes for each compiled method."); UsageError(""); UsageError(" -g"); UsageError(" --generate-debug-info: Generate debug information for native debugging,"); UsageError(" such as stack unwinding information, ELF symbols and DWARF sections."); UsageError(" If used without --debuggable, it will be best-effort only."); UsageError(" This option does not affect the generated code. (disabled by default)"); UsageError(""); UsageError(" --no-generate-debug-info: Do not generate debug information for native debugging."); UsageError(""); UsageError(" --generate-mini-debug-info: Generate minimal amount of LZMA-compressed"); UsageError(" debug information necessary to print backtraces. (disabled by default)"); UsageError(""); UsageError(" --no-generate-mini-debug-info: Do not generate backtrace info."); UsageError(""); UsageError(" --generate-build-id: Generate GNU-compatible linker build ID ELF section with"); UsageError(" SHA-1 of the file content (and thus stable across identical builds)"); UsageError(""); UsageError(" --no-generate-build-id: Do not generate the build ID ELF section."); UsageError(""); UsageError(" --debuggable: Produce code debuggable with Java debugger."); UsageError(""); UsageError(" --avoid-storing-invocation: Avoid storing the invocation args in the key value"); UsageError(" store. Used to test determinism with different args."); UsageError(""); UsageError(" --write-invocation-to=: Write the invocation commandline to the given file"); UsageError(" for later use. Used to test determinism with different host architectures."); UsageError(""); UsageError(" --runtime-arg : used to specify various arguments for the runtime,"); UsageError(" such as initial heap size, maximum heap size, and verbose output."); UsageError(" Use a separate --runtime-arg switch for each argument."); UsageError(" Example: --runtime-arg -Xms256m"); UsageError(""); UsageError(" --profile-file=: specify profiler output file to use for compilation."); UsageError(""); UsageError(" --profile-file-fd=: same as --profile-file but accepts a file descriptor."); UsageError(" Cannot be used together with --profile-file."); UsageError(""); UsageError(" --swap-file=: specifies a file to use for swap."); UsageError(" Example: --swap-file=/data/tmp/swap.001"); UsageError(""); UsageError(" --swap-fd=: specifies a file to use for swap (by descriptor)."); UsageError(" Example: --swap-fd=10"); UsageError(""); UsageError(" --swap-dex-size-threshold=: specifies the minimum total dex file size in"); UsageError(" bytes to allow the use of swap."); UsageError(" Example: --swap-dex-size-threshold=1000000"); UsageError(" Default: %zu", kDefaultMinDexFileCumulativeSizeForSwap); UsageError(""); UsageError(" --swap-dex-count-threshold=: specifies the minimum number of dex files to"); UsageError(" allow the use of swap."); UsageError(" Example: --swap-dex-count-threshold=10"); UsageError(" Default: %zu", kDefaultMinDexFilesForSwap); UsageError(""); UsageError(" --very-large-app-threshold=: specifies the minimum total dex file size in"); UsageError(" bytes to consider the input \"very large\" and reduce compilation done."); UsageError(" Example: --very-large-app-threshold=100000000"); UsageError(""); UsageError(" --app-image-fd=: specify output file descriptor for app image."); UsageError(" The image is non-empty only if a profile is passed in."); UsageError(" Example: --app-image-fd=10"); UsageError(""); UsageError(" --app-image-file=: specify a file name for app image."); UsageError(" Example: --app-image-file=/data/dalvik-cache/system@app@Calculator.apk.art"); UsageError(""); UsageError(" --multi-image: obsolete, ignored"); UsageError(""); UsageError(" --force-determinism: force the compiler to emit a deterministic output."); UsageError(""); UsageError(" --dump-cfg=: dump control-flow graphs (CFGs) to specified file."); UsageError(" Example: --dump-cfg=output.cfg"); UsageError(""); UsageError(" --dump-cfg-append: when dumping CFGs to an existing file, append new CFG data to"); UsageError(" existing data (instead of overwriting existing data with new data, which is"); UsageError(" the default behavior). This option is only meaningful when used with"); UsageError(" --dump-cfg."); UsageError(""); UsageError(" --classpath-dir=: directory used to resolve relative class paths."); UsageError(""); UsageError(" --class-loader-context=: a string specifying the intended"); UsageError(" runtime loading context for the compiled dex files."); UsageError(""); UsageError(" --stored-class-loader-context=: a string specifying the intended"); UsageError(" runtime loading context that is stored in the oat file. Overrides"); UsageError(" --class-loader-context. Note that this ignores the classpath_dir arg."); UsageError(""); UsageError(" It describes how the class loader chain should be built in order to ensure"); UsageError(" classes are resolved during dex2aot as they would be resolved at runtime."); UsageError(" This spec will be encoded in the oat file. If at runtime the dex file is"); UsageError(" loaded in a different context, the oat file will be rejected."); UsageError(""); UsageError(" The chain is interpreted in the natural 'parent order', meaning that class"); UsageError(" loader 'i+1' will be the parent of class loader 'i'."); UsageError(" The compilation sources will be appended to the classpath of the first class"); UsageError(" loader."); UsageError(""); UsageError(" E.g. if the context is 'PCL[lib1.dex];DLC[lib2.dex]' and "); UsageError(" --dex-file=src.dex then dex2oat will setup a PathClassLoader with classpath "); UsageError(" 'lib1.dex:src.dex' and set its parent to a DelegateLastClassLoader with "); UsageError(" classpath 'lib2.dex'."); UsageError(""); UsageError(" Note that the compiler will be tolerant if the source dex files specified"); UsageError(" with --dex-file are found in the classpath. The source dex files will be"); UsageError(" removed from any class loader's classpath possibly resulting in empty"); UsageError(" class loaders."); UsageError(""); UsageError(" Example: --class-loader-context=PCL[lib1.dex:lib2.dex];DLC[lib3.dex]"); UsageError(""); UsageError(" --class-loader-context-fds=: a colon-separated list of file descriptors"); UsageError(" for dex files in --class-loader-context. Their order must be the same as"); UsageError(" dex files in flattened class loader context."); UsageError(""); UsageError(" --dirty-image-objects=: list of known dirty objects in the image."); UsageError(" The image writer will group them together."); UsageError(""); UsageError(" --compact-dex-level=none|fast: None avoids generating compact dex, fast"); UsageError(" generates compact dex with low compile time. If speed-profile is specified as"); UsageError(" the compiler filter and the profile is not empty, the default compact dex"); UsageError(" level is always used."); UsageError(""); UsageError(" --deduplicate-code=true|false: enable|disable code deduplication. Deduplicated"); UsageError(" code will have an arbitrary symbol tagged with [DEDUPED]."); UsageError(""); UsageError(" --copy-dex-files=true|false: enable|disable copying the dex files into the"); UsageError(" output vdex."); UsageError(""); UsageError(" --compilation-reason=: optional metadata specifying the reason for"); UsageError(" compiling the apk. If specified, the string will be embedded verbatim in"); UsageError(" the key value store of the oat file."); UsageError(" Example: --compilation-reason=install"); UsageError(""); UsageError(" --resolve-startup-const-strings=true|false: If true, the compiler eagerly"); UsageError(" resolves strings referenced from const-string of startup methods."); UsageError(""); UsageError(" --max-image-block-size=: Maximum solid block size for compressed images."); UsageError(""); std::cerr << "See log for usage error information\n"; exit(EXIT_FAILURE); } // The primary goal of the watchdog is to prevent stuck build servers // during development when fatal aborts lead to a cascade of failures // that result in a deadlock. class WatchDog { // WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks #undef CHECK_PTHREAD_CALL #define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \ do { \ int rc = call args; \ if (rc != 0) { \ errno = rc; \ std::string message(# call); \ message += " failed for "; \ message += reason; \ Fatal(message); \ } \ } while (false) public: explicit WatchDog(int64_t timeout_in_milliseconds) : timeout_in_milliseconds_(timeout_in_milliseconds), shutting_down_(false) { const char* reason = "dex2oat watch dog thread startup"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason); #ifndef __APPLE__ pthread_condattr_t condattr; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_init, (&condattr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_setclock, (&condattr, CLOCK_MONOTONIC), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, &condattr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_destroy, (&condattr), reason); #endif CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason); } ~WatchDog() { const char* reason = "dex2oat watch dog thread shutdown"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); shutting_down_ = true; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason); } static void SetRuntime(Runtime* runtime) { const char* reason = "dex2oat watch dog set runtime"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason); runtime_ = runtime; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason); } // TODO: tune the multiplier for GC verification, the following is just to make the timeout // large. static constexpr int64_t kWatchdogVerifyMultiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1; // When setting timeouts, keep in mind that the build server may not be as fast as your // desktop. Debug builds are slower so they have larger timeouts. static constexpr int64_t kWatchdogSlowdownFactor = kIsDebugBuild ? 5U : 1U; // 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager // watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort // itself before that watchdog would take down the system server. static constexpr int64_t kWatchDogTimeoutSeconds = kWatchdogSlowdownFactor * (9 * 60 + 30); static constexpr int64_t kDefaultWatchdogTimeoutInMS = kWatchdogVerifyMultiplier * kWatchDogTimeoutSeconds * 1000; private: static void* CallBack(void* arg) { WatchDog* self = reinterpret_cast(arg); ::art::SetThreadName("dex2oat watch dog"); self->Wait(); return nullptr; } NO_RETURN static void Fatal(const std::string& message) { // TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However, // it's rather easy to hang in unwinding. // LogLine also avoids ART logging lock issues, as it's really only a wrapper around // logcat logging or stderr output. LogHelper::LogLineLowStack(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str()); // If we're on the host, try to dump all threads to get a sense of what's going on. This is // restricted to the host as the dump may itself go bad. // TODO: Use a double watchdog timeout, so we can enable this on-device. Runtime* runtime = GetRuntime(); if (!kIsTargetBuild && runtime != nullptr) { runtime->AttachCurrentThread("Watchdog thread attached for dumping", true, nullptr, false); runtime->DumpForSigQuit(std::cerr); } exit(1); } void Wait() { timespec timeout_ts; #if defined(__APPLE__) InitTimeSpec(true, CLOCK_REALTIME, timeout_in_milliseconds_, 0, &timeout_ts); #else InitTimeSpec(true, CLOCK_MONOTONIC, timeout_in_milliseconds_, 0, &timeout_ts); #endif const char* reason = "dex2oat watch dog thread waiting"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); while (!shutting_down_) { int rc = pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts); if (rc == EINTR) { continue; } else if (rc == ETIMEDOUT) { Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " seconds", timeout_in_milliseconds_/1000)); } else if (rc != 0) { std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(rc))); Fatal(message); } } CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); } static Runtime* GetRuntime() { const char* reason = "dex2oat watch dog get runtime"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason); Runtime* runtime = runtime_; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason); return runtime; } static pthread_mutex_t runtime_mutex_; static Runtime* runtime_; // TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases. pthread_mutex_t mutex_; pthread_cond_t cond_; pthread_attr_t attr_; pthread_t pthread_; const int64_t timeout_in_milliseconds_; bool shutting_down_; }; pthread_mutex_t WatchDog::runtime_mutex_ = PTHREAD_MUTEX_INITIALIZER; Runtime* WatchDog::runtime_ = nullptr; class Dex2Oat final { public: explicit Dex2Oat(TimingLogger* timings) : compiler_kind_(Compiler::kOptimizing), // Take the default set of instruction features from the build. key_value_store_(nullptr), verification_results_(nullptr), runtime_(nullptr), thread_count_(sysconf(_SC_NPROCESSORS_CONF)), start_ns_(NanoTime()), start_cputime_ns_(ProcessCpuNanoTime()), strip_(false), oat_fd_(-1), input_vdex_fd_(-1), output_vdex_fd_(-1), input_vdex_file_(nullptr), dm_fd_(-1), zip_fd_(-1), image_base_(0U), image_classes_zip_filename_(nullptr), image_classes_filename_(nullptr), image_storage_mode_(ImageHeader::kStorageModeUncompressed), passes_to_run_filename_(nullptr), dirty_image_objects_filename_(nullptr), is_host_(false), elf_writers_(), oat_writers_(), rodata_(), image_writer_(nullptr), driver_(nullptr), opened_dex_files_maps_(), opened_dex_files_(), avoid_storing_invocation_(false), swap_fd_(kInvalidFd), app_image_fd_(kInvalidFd), profile_file_fd_(kInvalidFd), timings_(timings), force_determinism_(false) {} ~Dex2Oat() { // Log completion time before deleting the runtime_, because this accesses // the runtime. LogCompletionTime(); if (!kIsDebugBuild && !(kRunningOnMemoryTool && kMemoryToolDetectsLeaks)) { // We want to just exit on non-debug builds, not bringing the runtime down // in an orderly fashion. So release the following fields. driver_.release(); // NOLINT image_writer_.release(); // NOLINT for (std::unique_ptr& dex_file : opened_dex_files_) { dex_file.release(); // NOLINT } new std::vector(std::move(opened_dex_files_maps_)); // Leak MemMaps. for (std::unique_ptr& vdex_file : vdex_files_) { vdex_file.release(); // NOLINT } for (std::unique_ptr& oat_file : oat_files_) { oat_file.release(); // NOLINT } runtime_.release(); // NOLINT verification_results_.release(); // NOLINT key_value_store_.release(); // NOLINT } } struct ParserOptions { std::vector oat_symbols; std::string boot_image_filename; int64_t watch_dog_timeout_in_ms = -1; bool watch_dog_enabled = true; bool requested_specific_compiler = false; std::string error_msg; }; void ParseBase(const std::string& option) { char* end; image_base_ = strtoul(option.c_str(), &end, 16); if (end == option.c_str() || *end != '\0') { Usage("Failed to parse hexadecimal value for option %s", option.data()); } } bool VerifyProfileData() { return profile_compilation_info_->VerifyProfileData(compiler_options_->dex_files_for_oat_file_); } void ParseInstructionSetVariant(const std::string& option, ParserOptions* parser_options) { compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( compiler_options_->instruction_set_, option, &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("%s", parser_options->error_msg.c_str()); } } void ParseInstructionSetFeatures(const std::string& option, ParserOptions* parser_options) { if (compiler_options_->instruction_set_features_ == nullptr) { compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( compiler_options_->instruction_set_, "default", &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("Problem initializing default instruction set features variant: %s", parser_options->error_msg.c_str()); } } compiler_options_->instruction_set_features_ = compiler_options_->instruction_set_features_->AddFeaturesFromString( option, &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("Error parsing '%s': %s", option.c_str(), parser_options->error_msg.c_str()); } } void ProcessOptions(ParserOptions* parser_options) { compiler_options_->compile_pic_ = true; // All AOT compilation is PIC. DCHECK(compiler_options_->image_type_ == CompilerOptions::ImageType::kNone); if (!image_filenames_.empty()) { if (android::base::EndsWith(image_filenames_[0], "apex.art")) { compiler_options_->image_type_ = CompilerOptions::ImageType::kApexBootImage; } else { compiler_options_->image_type_ = CompilerOptions::ImageType::kBootImage; } } if (app_image_fd_ != -1 || !app_image_file_name_.empty()) { if (compiler_options_->IsBootImage()) { Usage("Can't have both --image and (--app-image-fd or --app-image-file)"); } compiler_options_->image_type_ = CompilerOptions::ImageType::kAppImage; } if (oat_filenames_.empty() && oat_fd_ == -1) { Usage("Output must be supplied with either --oat-file or --oat-fd"); } if (input_vdex_fd_ != -1 && !input_vdex_.empty()) { Usage("Can't have both --input-vdex-fd and --input-vdex"); } if (output_vdex_fd_ != -1 && !output_vdex_.empty()) { Usage("Can't have both --output-vdex-fd and --output-vdex"); } if (!oat_filenames_.empty() && oat_fd_ != -1) { Usage("--oat-file should not be used with --oat-fd"); } if ((output_vdex_fd_ == -1) != (oat_fd_ == -1)) { Usage("VDEX and OAT output must be specified either with one --oat-file " "or with --oat-fd and --output-vdex-fd file descriptors"); } if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) { Usage("--oat-symbols should not be used with --oat-fd"); } if (!parser_options->oat_symbols.empty() && is_host_) { Usage("--oat-symbols should not be used with --host"); } if (output_vdex_fd_ != -1 && !image_filenames_.empty()) { Usage("--output-vdex-fd should not be used with --image"); } if (oat_fd_ != -1 && !image_filenames_.empty()) { Usage("--oat-fd should not be used with --image"); } if ((input_vdex_fd_ != -1 || !input_vdex_.empty()) && (dm_fd_ != -1 || !dm_file_location_.empty())) { Usage("An input vdex should not be passed with a .dm file"); } if (!parser_options->oat_symbols.empty() && parser_options->oat_symbols.size() != oat_filenames_.size()) { Usage("--oat-file arguments do not match --oat-symbols arguments"); } if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) { Usage("--oat-file arguments do not match --image arguments"); } if (android_root_.empty()) { const char* android_root_env_var = getenv("ANDROID_ROOT"); if (android_root_env_var == nullptr) { Usage("--android-root unspecified and ANDROID_ROOT not set"); } android_root_ += android_root_env_var; } if (!IsBootImage() && parser_options->boot_image_filename.empty()) { parser_options->boot_image_filename = GetDefaultBootImageLocation(android_root_); } if (!parser_options->boot_image_filename.empty()) { boot_image_filename_ = parser_options->boot_image_filename; } if (image_classes_filename_ != nullptr && !IsBootImage()) { Usage("--image-classes should only be used with --image"); } if (image_classes_filename_ != nullptr && !boot_image_filename_.empty()) { Usage("--image-classes should not be used with --boot-image"); } if (image_classes_zip_filename_ != nullptr && image_classes_filename_ == nullptr) { Usage("--image-classes-zip should be used with --image-classes"); } if (dex_filenames_.empty() && zip_fd_ == -1) { Usage("Input must be supplied with either --dex-file or --zip-fd"); } if (!dex_filenames_.empty() && zip_fd_ != -1) { Usage("--dex-file should not be used with --zip-fd"); } if (!dex_filenames_.empty() && !zip_location_.empty()) { Usage("--dex-file should not be used with --zip-location"); } if (dex_locations_.empty()) { dex_locations_ = dex_filenames_; } else if (dex_locations_.size() != dex_filenames_.size()) { Usage("--dex-location arguments do not match --dex-file arguments"); } if (!dex_filenames_.empty() && !oat_filenames_.empty()) { if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) { Usage("--oat-file arguments must be singular or match --dex-file arguments"); } } if (zip_fd_ != -1 && zip_location_.empty()) { Usage("--zip-location should be supplied with --zip-fd"); } if (boot_image_filename_.empty()) { if (image_base_ == 0) { Usage("Non-zero --base not specified"); } } const bool have_profile_file = !profile_file_.empty(); const bool have_profile_fd = profile_file_fd_ != kInvalidFd; if (have_profile_file && have_profile_fd) { Usage("Profile file should not be specified with both --profile-file-fd and --profile-file"); } if (have_profile_file || have_profile_fd) { if (image_classes_filename_ != nullptr || image_classes_zip_filename_ != nullptr) { Usage("Profile based image creation is not supported with image or compiled classes"); } } if (!parser_options->oat_symbols.empty()) { oat_unstripped_ = std::move(parser_options->oat_symbols); } if (compiler_options_->instruction_set_features_ == nullptr) { // '--instruction-set-features/--instruction-set-variant' were not used. // Use features for the 'default' variant. compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( compiler_options_->instruction_set_, "default", &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("Problem initializing default instruction set features variant: %s", parser_options->error_msg.c_str()); } } if (compiler_options_->instruction_set_ == kRuntimeISA) { std::unique_ptr runtime_features( InstructionSetFeatures::FromCppDefines()); if (!compiler_options_->GetInstructionSetFeatures()->Equals(runtime_features.get())) { LOG(WARNING) << "Mismatch between dex2oat instruction set features to use (" << *compiler_options_->GetInstructionSetFeatures() << ") and those from CPP defines (" << *runtime_features << ") for the command line:\n" << CommandLine(); } } if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) { compiler_options_->inline_max_code_units_ = CompilerOptions::kDefaultInlineMaxCodeUnits; } // Checks are all explicit until we know the architecture. // Set the compilation target's implicit checks options. switch (compiler_options_->GetInstructionSet()) { case InstructionSet::kArm: case InstructionSet::kThumb2: case InstructionSet::kArm64: case InstructionSet::kX86: case InstructionSet::kX86_64: case InstructionSet::kMips: case InstructionSet::kMips64: compiler_options_->implicit_null_checks_ = true; compiler_options_->implicit_so_checks_ = true; break; default: // Defaults are correct. break; } // Done with usage checks, enable watchdog if requested if (parser_options->watch_dog_enabled) { int64_t timeout = parser_options->watch_dog_timeout_in_ms > 0 ? parser_options->watch_dog_timeout_in_ms : WatchDog::kDefaultWatchdogTimeoutInMS; watchdog_.reset(new WatchDog(timeout)); } // Fill some values into the key-value store for the oat header. key_value_store_.reset(new SafeMap()); // Automatically force determinism for the boot image in a host build if read barriers // are enabled, or if the default GC is CMS or MS. When the default GC is CMS // (Concurrent Mark-Sweep), the GC is switched to a non-concurrent one by passing the // option `-Xgc:nonconcurrent` (see below). if (!kIsTargetBuild && IsBootImage()) { if (SupportsDeterministicCompilation()) { force_determinism_ = true; } else { LOG(WARNING) << "Deterministic compilation is disabled."; } } compiler_options_->force_determinism_ = force_determinism_; if (passes_to_run_filename_ != nullptr) { passes_to_run_ = ReadCommentedInputFromFile>( passes_to_run_filename_, nullptr); // No post-processing. if (passes_to_run_.get() == nullptr) { Usage("Failed to read list of passes to run."); } } compiler_options_->passes_to_run_ = passes_to_run_.get(); compiler_options_->compiling_with_core_image_ = !boot_image_filename_.empty() && CompilerOptions::IsCoreImageFilename(boot_image_filename_); } static bool SupportsDeterministicCompilation() { return (kUseReadBarrier || gc::kCollectorTypeDefault == gc::kCollectorTypeCMS || gc::kCollectorTypeDefault == gc::kCollectorTypeMS); } void ExpandOatAndImageFilenames() { if (image_filenames_[0].rfind('/') == std::string::npos) { Usage("Unusable boot image filename %s", image_filenames_[0].c_str()); } image_filenames_ = ImageSpace::ExpandMultiImageLocations(dex_locations_, image_filenames_[0]); if (oat_filenames_[0].rfind('/') == std::string::npos) { Usage("Unusable boot image oat filename %s", oat_filenames_[0].c_str()); } oat_filenames_ = ImageSpace::ExpandMultiImageLocations(dex_locations_, oat_filenames_[0]); if (!oat_unstripped_.empty()) { if (oat_unstripped_[0].rfind('/') == std::string::npos) { Usage("Unusable boot image symbol filename %s", oat_unstripped_[0].c_str()); } oat_unstripped_ = ImageSpace::ExpandMultiImageLocations(dex_locations_, oat_unstripped_[0]); } } void InsertCompileOptions(int argc, char** argv) { if (!avoid_storing_invocation_) { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << ' '; } oss << argv[i]; } key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str()); } key_value_store_->Put( OatHeader::kDebuggableKey, compiler_options_->debuggable_ ? OatHeader::kTrueValue : OatHeader::kFalseValue); key_value_store_->Put( OatHeader::kNativeDebuggableKey, compiler_options_->GetNativeDebuggable() ? OatHeader::kTrueValue : OatHeader::kFalseValue); key_value_store_->Put(OatHeader::kCompilerFilter, CompilerFilter::NameOfFilter(compiler_options_->GetCompilerFilter())); key_value_store_->Put(OatHeader::kConcurrentCopying, kUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue); if (invocation_file_.get() != -1) { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << std::endl; } oss << argv[i]; } std::string invocation(oss.str()); if (TEMP_FAILURE_RETRY(write(invocation_file_.get(), invocation.c_str(), invocation.size())) == -1) { Usage("Unable to write invocation file"); } } } // This simple forward is here so the string specializations below don't look out of place. template void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, U* out) { map.AssignIfExists(key, out); } // Specializations to handle const char* vs std::string. void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, const char** out) { if (map.Exists(key)) { char_backing_storage_.push_front(std::move(*map.Get(key))); *out = char_backing_storage_.front().c_str(); } } void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key>& key, std::vector* out) { if (map.Exists(key)) { for (auto& val : *map.Get(key)) { char_backing_storage_.push_front(std::move(val)); out->push_back(char_backing_storage_.front().c_str()); } } } template void AssignTrueIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, bool* out) { if (map.Exists(key)) { *out = true; } } // Parse the arguments from the command line. In case of an unrecognized option or impossible // values/combinations, a usage error will be displayed and exit() is called. Thus, if the method // returns, arguments have been successfully parsed. void ParseArgs(int argc, char** argv) { original_argc = argc; original_argv = argv; Locks::Init(); InitLogging(argv, Runtime::Abort); compiler_options_.reset(new CompilerOptions()); using M = Dex2oatArgumentMap; std::string error_msg; std::unique_ptr args_uptr = M::Parse(argc, const_cast(argv), &error_msg); if (args_uptr == nullptr) { Usage("Failed to parse command line: %s", error_msg.c_str()); UNREACHABLE(); } M& args = *args_uptr; std::unique_ptr parser_options(new ParserOptions()); AssignIfExists(args, M::CompactDexLevel, &compact_dex_level_); AssignIfExists(args, M::DexFiles, &dex_filenames_); AssignIfExists(args, M::DexLocations, &dex_locations_); AssignIfExists(args, M::OatFiles, &oat_filenames_); AssignIfExists(args, M::OatSymbols, &parser_options->oat_symbols); AssignTrueIfExists(args, M::Strip, &strip_); AssignIfExists(args, M::ImageFilenames, &image_filenames_); AssignIfExists(args, M::ZipFd, &zip_fd_); AssignIfExists(args, M::ZipLocation, &zip_location_); AssignIfExists(args, M::InputVdexFd, &input_vdex_fd_); AssignIfExists(args, M::OutputVdexFd, &output_vdex_fd_); AssignIfExists(args, M::InputVdex, &input_vdex_); AssignIfExists(args, M::OutputVdex, &output_vdex_); AssignIfExists(args, M::DmFd, &dm_fd_); AssignIfExists(args, M::DmFile, &dm_file_location_); AssignIfExists(args, M::OatFd, &oat_fd_); AssignIfExists(args, M::OatLocation, &oat_location_); AssignIfExists(args, M::Watchdog, &parser_options->watch_dog_enabled); AssignIfExists(args, M::WatchdogTimeout, &parser_options->watch_dog_timeout_in_ms); AssignIfExists(args, M::Threads, &thread_count_); AssignIfExists(args, M::ImageClasses, &image_classes_filename_); AssignIfExists(args, M::ImageClassesZip, &image_classes_zip_filename_); AssignIfExists(args, M::Passes, &passes_to_run_filename_); AssignIfExists(args, M::BootImage, &parser_options->boot_image_filename); AssignIfExists(args, M::AndroidRoot, &android_root_); AssignIfExists(args, M::Profile, &profile_file_); AssignIfExists(args, M::ProfileFd, &profile_file_fd_); AssignIfExists(args, M::RuntimeOptions, &runtime_args_); AssignIfExists(args, M::SwapFile, &swap_file_name_); AssignIfExists(args, M::SwapFileFd, &swap_fd_); AssignIfExists(args, M::SwapDexSizeThreshold, &min_dex_file_cumulative_size_for_swap_); AssignIfExists(args, M::SwapDexCountThreshold, &min_dex_files_for_swap_); AssignIfExists(args, M::VeryLargeAppThreshold, &very_large_threshold_); AssignIfExists(args, M::AppImageFile, &app_image_file_name_); AssignIfExists(args, M::AppImageFileFd, &app_image_fd_); AssignIfExists(args, M::NoInlineFrom, &no_inline_from_string_); AssignIfExists(args, M::ClasspathDir, &classpath_dir_); AssignIfExists(args, M::DirtyImageObjects, &dirty_image_objects_filename_); AssignIfExists(args, M::ImageFormat, &image_storage_mode_); AssignIfExists(args, M::CompilationReason, &compilation_reason_); AssignIfExists(args, M::Backend, &compiler_kind_); parser_options->requested_specific_compiler = args.Exists(M::Backend); AssignIfExists(args, M::TargetInstructionSet, &compiler_options_->instruction_set_); // arm actually means thumb2. if (compiler_options_->instruction_set_ == InstructionSet::kArm) { compiler_options_->instruction_set_ = InstructionSet::kThumb2; } AssignTrueIfExists(args, M::Host, &is_host_); AssignTrueIfExists(args, M::AvoidStoringInvocation, &avoid_storing_invocation_); if (args.Exists(M::InvocationFile)) { invocation_file_.reset(open(args.Get(M::InvocationFile)->c_str(), O_CREAT|O_WRONLY|O_TRUNC|O_CLOEXEC, S_IRUSR|S_IWUSR)); if (invocation_file_.get() == -1) { int err = errno; Usage("Unable to open invocation file '%s' for writing due to %s.", args.Get(M::InvocationFile)->c_str(), strerror(err)); } } AssignIfExists(args, M::CopyDexFiles, ©_dex_files_); if (args.Exists(M::ForceDeterminism)) { if (!SupportsDeterministicCompilation()) { Usage("Option --force-determinism requires read barriers or a CMS/MS garbage collector"); } force_determinism_ = true; } if (args.Exists(M::Base)) { ParseBase(*args.Get(M::Base)); } if (args.Exists(M::TargetInstructionSetVariant)) { ParseInstructionSetVariant(*args.Get(M::TargetInstructionSetVariant), parser_options.get()); } if (args.Exists(M::TargetInstructionSetFeatures)) { ParseInstructionSetFeatures(*args.Get(M::TargetInstructionSetFeatures), parser_options.get()); } if (args.Exists(M::ClassLoaderContext)) { std::string class_loader_context_arg = *args.Get(M::ClassLoaderContext); class_loader_context_ = ClassLoaderContext::Create(class_loader_context_arg); if (class_loader_context_ == nullptr) { Usage("Option --class-loader-context has an incorrect format: %s", class_loader_context_arg.c_str()); } if (args.Exists(M::ClassLoaderContextFds)) { std::string str_fds_arg = *args.Get(M::ClassLoaderContextFds); std::vector str_fds = android::base::Split(str_fds_arg, ":"); for (const std::string& str_fd : str_fds) { class_loader_context_fds_.push_back(std::stoi(str_fd, nullptr, 0)); if (class_loader_context_fds_.back() < 0) { Usage("Option --class-loader-context-fds has incorrect format: %s", str_fds_arg.c_str()); } } } if (args.Exists(M::StoredClassLoaderContext)) { const std::string stored_context_arg = *args.Get(M::StoredClassLoaderContext); stored_class_loader_context_ = ClassLoaderContext::Create(stored_context_arg); if (stored_class_loader_context_ == nullptr) { Usage("Option --stored-class-loader-context has an incorrect format: %s", stored_context_arg.c_str()); } else if (class_loader_context_->VerifyClassLoaderContextMatch( stored_context_arg, /*verify_names*/ false, /*verify_checksums*/ false) != ClassLoaderContext::VerificationResult::kVerifies) { Usage( "Option --stored-class-loader-context '%s' mismatches --class-loader-context '%s'", stored_context_arg.c_str(), class_loader_context_arg.c_str()); } } } else if (args.Exists(M::StoredClassLoaderContext)) { Usage("Option --stored-class-loader-context should only be used if " "--class-loader-context is also specified"); } if (!ReadCompilerOptions(args, compiler_options_.get(), &error_msg)) { Usage(error_msg.c_str()); } ProcessOptions(parser_options.get()); // Insert some compiler things. InsertCompileOptions(argc, argv); } // Check whether the oat output files are writable, and open them for later. Also open a swap // file, if a name is given. bool OpenFile() { // Prune non-existent dex files now so that we don't create empty oat files for multi-image. PruneNonExistentDexFiles(); // Expand oat and image filenames for multi image. if (IsBootImage() && image_filenames_.size() == 1) { ExpandOatAndImageFilenames(); } // OAT and VDEX file handling if (oat_fd_ == -1) { DCHECK(!oat_filenames_.empty()); for (const std::string& oat_filename : oat_filenames_) { std::unique_ptr oat_file(OS::CreateEmptyFile(oat_filename.c_str())); if (oat_file == nullptr) { PLOG(ERROR) << "Failed to create oat file: " << oat_filename; return false; } if (fchmod(oat_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename; oat_file->Erase(); return false; } oat_files_.push_back(std::move(oat_file)); DCHECK_EQ(input_vdex_fd_, -1); if (!input_vdex_.empty()) { std::string error_msg; input_vdex_file_ = VdexFile::Open(input_vdex_, /* writable */ false, /* low_4gb */ false, DoEagerUnquickeningOfVdex(), &error_msg); } DCHECK_EQ(output_vdex_fd_, -1); std::string vdex_filename = output_vdex_.empty() ? ReplaceFileExtension(oat_filename, "vdex") : output_vdex_; if (vdex_filename == input_vdex_ && output_vdex_.empty()) { update_input_vdex_ = true; std::unique_ptr vdex_file(OS::OpenFileReadWrite(vdex_filename.c_str())); vdex_files_.push_back(std::move(vdex_file)); } else { std::unique_ptr vdex_file(OS::CreateEmptyFile(vdex_filename.c_str())); if (vdex_file == nullptr) { PLOG(ERROR) << "Failed to open vdex file: " << vdex_filename; return false; } if (fchmod(vdex_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make vdex file world readable: " << vdex_filename; vdex_file->Erase(); return false; } vdex_files_.push_back(std::move(vdex_file)); } } } else { std::unique_ptr oat_file( new File(DupCloexec(oat_fd_), oat_location_, /* check_usage */ true)); if (!oat_file->IsOpened()) { PLOG(ERROR) << "Failed to create oat file: " << oat_location_; return false; } if (oat_file->SetLength(0) != 0) { PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed."; oat_file->Erase(); return false; } oat_files_.push_back(std::move(oat_file)); if (input_vdex_fd_ != -1) { struct stat s; int rc = TEMP_FAILURE_RETRY(fstat(input_vdex_fd_, &s)); if (rc == -1) { PLOG(WARNING) << "Failed getting length of vdex file"; } else { std::string error_msg; input_vdex_file_ = VdexFile::Open(input_vdex_fd_, s.st_size, "vdex", /* writable */ false, /* low_4gb */ false, DoEagerUnquickeningOfVdex(), &error_msg); // If there's any problem with the passed vdex, just warn and proceed // without it. if (input_vdex_file_ == nullptr) { PLOG(WARNING) << "Failed opening vdex file: " << error_msg; } } } DCHECK_NE(output_vdex_fd_, -1); std::string vdex_location = ReplaceFileExtension(oat_location_, "vdex"); std::unique_ptr vdex_file(new File( DupCloexec(output_vdex_fd_), vdex_location, /* check_usage */ true)); if (!vdex_file->IsOpened()) { PLOG(ERROR) << "Failed to create vdex file: " << vdex_location; return false; } if (input_vdex_file_ != nullptr && output_vdex_fd_ == input_vdex_fd_) { update_input_vdex_ = true; } else { if (vdex_file->SetLength(0) != 0) { PLOG(ERROR) << "Truncating vdex file " << vdex_location << " failed."; vdex_file->Erase(); return false; } } vdex_files_.push_back(std::move(vdex_file)); oat_filenames_.push_back(oat_location_); } // If we're updating in place a vdex file, be defensive and put an invalid vdex magic in case // dex2oat gets killed. // Note: we're only invalidating the magic data in the file, as dex2oat needs the rest of // the information to remain valid. if (update_input_vdex_) { std::unique_ptr vdex_out = std::make_unique( std::make_unique(vdex_files_.back().get())); if (!vdex_out->WriteFully(&VdexFile::VerifierDepsHeader::kVdexInvalidMagic, arraysize(VdexFile::VerifierDepsHeader::kVdexInvalidMagic))) { PLOG(ERROR) << "Failed to invalidate vdex header. File: " << vdex_out->GetLocation(); return false; } if (!vdex_out->Flush()) { PLOG(ERROR) << "Failed to flush stream after invalidating header of vdex file." << " File: " << vdex_out->GetLocation(); return false; } } if (dm_fd_ != -1 || !dm_file_location_.empty()) { std::string error_msg; if (dm_fd_ != -1) { dm_file_.reset(ZipArchive::OpenFromFd(dm_fd_, "DexMetadata", &error_msg)); } else { dm_file_.reset(ZipArchive::Open(dm_file_location_.c_str(), &error_msg)); } if (dm_file_ == nullptr) { LOG(WARNING) << "Could not open DexMetadata archive " << error_msg; } } if (dm_file_ != nullptr) { DCHECK(input_vdex_file_ == nullptr); std::string error_msg; static const char* kDexMetadata = "DexMetadata"; std::unique_ptr zip_entry(dm_file_->Find(VdexFile::kVdexNameInDmFile, &error_msg)); if (zip_entry == nullptr) { LOG(INFO) << "No " << VdexFile::kVdexNameInDmFile << " file in DexMetadata archive. " << "Not doing fast verification."; } else { MemMap input_file = zip_entry->MapDirectlyOrExtract( VdexFile::kVdexNameInDmFile, kDexMetadata, &error_msg, alignof(VdexFile)); if (!input_file.IsValid()) { LOG(WARNING) << "Could not open vdex file in DexMetadata archive: " << error_msg; } else { input_vdex_file_ = std::make_unique(std::move(input_file)); VLOG(verifier) << "Doing fast verification with vdex from DexMetadata archive"; } } } // Swap file handling // // If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file // that we can use for swap. // // If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We // will immediately unlink to satisfy the swap fd assumption. if (swap_fd_ == -1 && !swap_file_name_.empty()) { std::unique_ptr swap_file(OS::CreateEmptyFile(swap_file_name_.c_str())); if (swap_file.get() == nullptr) { PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_; return false; } swap_fd_ = swap_file->Release(); unlink(swap_file_name_.c_str()); } return true; } void EraseOutputFiles() { for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { if ((*files)[i].get() != nullptr) { (*files)[i]->Erase(); (*files)[i].reset(); } } } } void LoadClassProfileDescriptors() { if (!IsImage()) { return; } if (profile_compilation_info_ != nullptr) { // TODO: The following comment looks outdated or misplaced. // Filter out class path classes since we don't want to include these in the image. HashSet image_classes = profile_compilation_info_->GetClassDescriptors( compiler_options_->dex_files_for_oat_file_); VLOG(compiler) << "Loaded " << image_classes.size() << " image class descriptors from profile"; if (VLOG_IS_ON(compiler)) { for (const std::string& s : image_classes) { LOG(INFO) << "Image class " << s; } } // Note: If we have a profile, classes previously loaded for the --image-classes // option are overwritten here. compiler_options_->image_classes_.swap(image_classes); } } // Set up the environment for compilation. Includes starting the runtime and loading/opening the // boot class path. dex2oat::ReturnCode Setup() { TimingLogger::ScopedTiming t("dex2oat Setup", timings_); if (!PrepareImageClasses() || !PrepareDirtyObjects()) { return dex2oat::ReturnCode::kOther; } // Verification results are null since we don't know if we will need them yet as the compler // filter may change. callbacks_.reset(new QuickCompilerCallbacks( IsBootImage() ? CompilerCallbacks::CallbackMode::kCompileBootImage : CompilerCallbacks::CallbackMode::kCompileApp)); RuntimeArgumentMap runtime_options; if (!PrepareRuntimeOptions(&runtime_options, callbacks_.get())) { return dex2oat::ReturnCode::kOther; } CreateOatWriters(); if (!AddDexFileSources()) { return dex2oat::ReturnCode::kOther; } if (!compilation_reason_.empty()) { key_value_store_->Put(OatHeader::kCompilationReasonKey, compilation_reason_); } if (IsBootImage()) { // If we're compiling the boot image, store the boot classpath into the Key-Value store. // We use this when loading the boot image. key_value_store_->Put(OatHeader::kBootClassPathKey, android::base::Join(dex_locations_, ':')); } if (!IsBootImage()) { // When compiling an app, create the runtime early to retrieve // the boot image checksums needed for the oat header. if (!CreateRuntime(std::move(runtime_options))) { return dex2oat::ReturnCode::kCreateRuntime; } if (CompilerFilter::DependsOnImageChecksum(compiler_options_->GetCompilerFilter())) { TimingLogger::ScopedTiming t3("Loading image checksum", timings_); Runtime* runtime = Runtime::Current(); key_value_store_->Put(OatHeader::kBootClassPathKey, android::base::Join(runtime->GetBootClassPathLocations(), ':')); std::vector image_spaces = runtime->GetHeap()->GetBootImageSpaces(); const std::vector& bcp_dex_files = runtime->GetClassLinker()->GetBootClassPath(); key_value_store_->Put( OatHeader::kBootClassPathChecksumsKey, gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files)); } // Open dex files for class path. if (class_loader_context_ == nullptr) { // If no context was specified use the default one (which is an empty PathClassLoader). class_loader_context_ = ClassLoaderContext::Default(); } DCHECK_EQ(oat_writers_.size(), 1u); // Note: Ideally we would reject context where the source dex files are also // specified in the classpath (as it doesn't make sense). However this is currently // needed for non-prebuild tests and benchmarks which expects on the fly compilation. // Also, for secondary dex files we do not have control on the actual classpath. // Instead of aborting, remove all the source location from the context classpaths. if (class_loader_context_->RemoveLocationsFromClassPaths( oat_writers_[0]->GetSourceLocations())) { LOG(WARNING) << "The source files to be compiled are also in the classpath."; } // We need to open the dex files before encoding the context in the oat file. // (because the encoding adds the dex checksum...) // TODO(calin): consider redesigning this so we don't have to open the dex files before // creating the actual class loader. if (!class_loader_context_->OpenDexFiles(runtime_->GetInstructionSet(), classpath_dir_, class_loader_context_fds_)) { // Do not abort if we couldn't open files from the classpath. They might be // apks without dex files and right now are opening flow will fail them. LOG(WARNING) << "Failed to open classpath dex files"; } // Store the class loader context in the oat header. // TODO: deprecate this since store_class_loader_context should be enough to cover the users // of classpath_dir as well. std::string class_path_key = class_loader_context_->EncodeContextForOatFile(classpath_dir_, stored_class_loader_context_.get()); key_value_store_->Put(OatHeader::kClassPathKey, class_path_key); } // Now that we have finalized key_value_store_, start writing the oat file. { TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_); rodata_.reserve(oat_writers_.size()); for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { rodata_.push_back(elf_writers_[i]->StartRoData()); // Unzip or copy dex files straight to the oat file. std::vector opened_dex_files_map; std::vector> opened_dex_files; // No need to verify the dex file when we have a vdex file, which means it was already // verified. const bool verify = (input_vdex_file_ == nullptr); if (!oat_writers_[i]->WriteAndOpenDexFiles( vdex_files_[i].get(), rodata_.back(), (i == 0u) ? key_value_store_.get() : nullptr, verify, update_input_vdex_, copy_dex_files_, &opened_dex_files_map, &opened_dex_files)) { return dex2oat::ReturnCode::kOther; } dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files)); if (opened_dex_files_map.empty()) { DCHECK(opened_dex_files.empty()); } else { for (MemMap& map : opened_dex_files_map) { opened_dex_files_maps_.push_back(std::move(map)); } for (std::unique_ptr& dex_file : opened_dex_files) { dex_file_oat_index_map_.emplace(dex_file.get(), i); opened_dex_files_.push_back(std::move(dex_file)); } } } } compiler_options_->dex_files_for_oat_file_ = MakeNonOwningPointerVector(opened_dex_files_); const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; // If we need to downgrade the compiler-filter for size reasons. if (!IsBootImage() && IsVeryLarge(dex_files)) { // Disable app image to make sure dex2oat unloading is enabled. compiler_options_->image_type_ = CompilerOptions::ImageType::kNone; // If we need to downgrade the compiler-filter for size reasons, do that early before we read // it below for creating verification callbacks. if (!CompilerFilter::IsAsGoodAs(kLargeAppFilter, compiler_options_->GetCompilerFilter())) { LOG(INFO) << "Very large app, downgrading to verify."; // Note: this change won't be reflected in the key-value store, as that had to be // finalized before loading the dex files. This setup is currently required // to get the size from the DexFile objects. // TODO: refactor. b/29790079 compiler_options_->SetCompilerFilter(kLargeAppFilter); } } if (CompilerFilter::IsAnyCompilationEnabled(compiler_options_->GetCompilerFilter())) { // Only modes with compilation require verification results, do this here instead of when we // create the compilation callbacks since the compilation mode may have been changed by the // very large app logic. // Avoiding setting the verification results saves RAM by not adding the dex files later in // the function. verification_results_.reset(new VerificationResults(compiler_options_.get())); callbacks_->SetVerificationResults(verification_results_.get()); } // We had to postpone the swap decision till now, as this is the point when we actually // know about the dex files we're going to use. // Make sure that we didn't create the driver, yet. CHECK(driver_ == nullptr); // If we use a swap file, ensure we are above the threshold to make it necessary. if (swap_fd_ != -1) { if (!UseSwap(IsBootImage(), dex_files)) { close(swap_fd_); swap_fd_ = -1; VLOG(compiler) << "Decided to run without swap."; } else { LOG(INFO) << "Large app, accepted running with swap."; } } // Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that. if (IsBootImage()) { // For boot image, pass opened dex files to the Runtime::Create(). // Note: Runtime acquires ownership of these dex files. runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_); if (!CreateRuntime(std::move(runtime_options))) { return dex2oat::ReturnCode::kOther; } } // If we're doing the image, override the compiler filter to force full compilation. Must be // done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force // compilation of class initializers. // Whilst we're in native take the opportunity to initialize well known classes. Thread* self = Thread::Current(); WellKnownClasses::Init(self->GetJniEnv()); if (!IsBootImage()) { constexpr bool kSaveDexInput = false; if (kSaveDexInput) { SaveDexInput(); } } // Ensure opened dex files are writable for dex-to-dex transformations. for (MemMap& map : opened_dex_files_maps_) { if (!map.Protect(PROT_READ | PROT_WRITE)) { PLOG(ERROR) << "Failed to make .dex files writeable."; return dex2oat::ReturnCode::kOther; } } // Verification results are only required for modes that have any compilation. Avoid // adding the dex files if possible to prevent allocating large arrays. if (verification_results_ != nullptr) { for (const auto& dex_file : dex_files) { // Pre-register dex files so that we can access verification results without locks during // compilation and verification. verification_results_->AddDexFile(dex_file); } } return dex2oat::ReturnCode::kNoFailure; } // If we need to keep the oat file open for the image writer. bool ShouldKeepOatFileOpen() const { return IsImage() && oat_fd_ != kInvalidFd; } // Doesn't return the class loader since it's not meant to be used for image compilation. void CompileDexFilesIndividually() { CHECK(!IsImage()) << "Not supported with image"; for (const DexFile* dex_file : compiler_options_->dex_files_for_oat_file_) { std::vector dex_files(1u, dex_file); VLOG(compiler) << "Compiling " << dex_file->GetLocation(); jobject class_loader = CompileDexFiles(dex_files); CHECK(class_loader != nullptr); ScopedObjectAccess soa(Thread::Current()); // Unload class loader to free RAM. jweak weak_class_loader = soa.Env()->GetVm()->AddWeakGlobalRef( soa.Self(), soa.Decode(class_loader)); soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), class_loader); runtime_->GetHeap()->CollectGarbage(/* clear_soft_references */ true); ObjPtr decoded_weak = soa.Decode(weak_class_loader); if (decoded_weak != nullptr) { LOG(FATAL) << "Failed to unload class loader, path from root set: " << runtime_->GetHeap()->GetVerification()->FirstPathFromRootSet(decoded_weak); } VLOG(compiler) << "Unloaded classloader"; } } bool ShouldCompileDexFilesIndividually() const { // Compile individually if we are: // 1. not building an image, // 2. not verifying a vdex file, // 3. using multidex, // 4. not doing any AOT compilation. // This means extract, no-vdex verify, and quicken, will use the individual compilation // mode (to reduce RAM used by the compiler). return !IsImage() && !update_input_vdex_ && compiler_options_->dex_files_for_oat_file_.size() > 1 && !CompilerFilter::IsAotCompilationEnabled(compiler_options_->GetCompilerFilter()); } // Set up and create the compiler driver and then invoke it to compile all the dex files. jobject Compile() { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); TimingLogger::ScopedTiming t("dex2oat Compile", timings_); // Find the dex files we should not inline from. std::vector no_inline_filters; Split(no_inline_from_string_, ',', &no_inline_filters); // For now, on the host always have core-oj removed. const std::string core_oj = "core-oj"; if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) { no_inline_filters.push_back(core_oj); } if (!no_inline_filters.empty()) { std::vector class_path_files; if (!IsBootImage()) { // The class loader context is used only for apps. class_path_files = class_loader_context_->FlattenOpenedDexFiles(); } const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; std::vector no_inline_from_dex_files; const std::vector* dex_file_vectors[] = { &class_linker->GetBootClassPath(), &class_path_files, &dex_files }; for (const std::vector* dex_file_vector : dex_file_vectors) { for (const DexFile* dex_file : *dex_file_vector) { for (const std::string& filter : no_inline_filters) { // Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This // allows tests to specify !classes2.dex if needed but if the // base location passes the StartsWith() test, so do all extra locations. std::string dex_location = dex_file->GetLocation(); if (filter.find('/') == std::string::npos) { // The filter does not contain the path. Remove the path from dex_location as well. size_t last_slash = dex_file->GetLocation().rfind('/'); if (last_slash != std::string::npos) { dex_location = dex_location.substr(last_slash + 1); } } if (android::base::StartsWith(dex_location, filter.c_str())) { VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation(); no_inline_from_dex_files.push_back(dex_file); break; } } } } if (!no_inline_from_dex_files.empty()) { compiler_options_->no_inline_from_.swap(no_inline_from_dex_files); } } compiler_options_->profile_compilation_info_ = profile_compilation_info_.get(); driver_.reset(new CompilerDriver(compiler_options_.get(), compiler_kind_, thread_count_, swap_fd_)); if (!IsBootImage()) { driver_->SetClasspathDexFiles(class_loader_context_->FlattenOpenedDexFiles()); } const bool compile_individually = ShouldCompileDexFilesIndividually(); if (compile_individually) { // Set the compiler driver in the callbacks so that we can avoid re-verification. This not // only helps performance but also prevents reverifying quickened bytecodes. Attempting // verify quickened bytecode causes verification failures. // Only set the compiler filter if we are doing separate compilation since there is a bit // of overhead when checking if a class was previously verified. callbacks_->SetDoesClassUnloading(true, driver_.get()); } // Setup vdex for compilation. const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; if (!DoEagerUnquickeningOfVdex() && input_vdex_file_ != nullptr) { callbacks_->SetVerifierDeps( new verifier::VerifierDeps(dex_files, input_vdex_file_->GetVerifierDepsData())); // TODO: we unquicken unconditionally, as we don't know // if the boot image has changed. How exactly we'll know is under // experimentation. TimingLogger::ScopedTiming time_unquicken("Unquicken", timings_); // We do not decompile a RETURN_VOID_NO_BARRIER into a RETURN_VOID, as the quickening // optimization does not depend on the boot image (the optimization relies on not // having final fields in a class, which does not change for an app). input_vdex_file_->Unquicken(dex_files, /* decompile_return_instruction */ false); } else { // Create the main VerifierDeps, here instead of in the compiler since we want to aggregate // the results for all the dex files, not just the results for the current dex file. callbacks_->SetVerifierDeps(new verifier::VerifierDeps(dex_files)); } // Invoke the compilation. if (compile_individually) { CompileDexFilesIndividually(); // Return a null classloader since we already freed released it. return nullptr; } return CompileDexFiles(dex_files); } // Create the class loader, use it to compile, and return. jobject CompileDexFiles(const std::vector& dex_files) { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); jobject class_loader = nullptr; if (!IsBootImage()) { class_loader = class_loader_context_->CreateClassLoader(compiler_options_->dex_files_for_oat_file_); callbacks_->SetDexFiles(&dex_files); } // Register dex caches and key them to the class loader so that they only unload when the // class loader unloads. for (const auto& dex_file : dex_files) { ScopedObjectAccess soa(Thread::Current()); // Registering the dex cache adds a strong root in the class loader that prevents the dex // cache from being unloaded early. ObjPtr dex_cache = class_linker->RegisterDexFile( *dex_file, soa.Decode(class_loader)); if (dex_cache == nullptr) { soa.Self()->AssertPendingException(); LOG(FATAL) << "Failed to register dex file " << dex_file->GetLocation() << " " << soa.Self()->GetException()->Dump(); } } driver_->InitializeThreadPools(); driver_->PreCompile(class_loader, dex_files, timings_, &compiler_options_->image_classes_, verification_results_.get()); callbacks_->SetVerificationResults(nullptr); // Should not be needed anymore. compiler_options_->verification_results_ = verification_results_.get(); driver_->CompileAll(class_loader, dex_files, timings_); driver_->FreeThreadPools(); return class_loader; } // Notes on the interleaving of creating the images and oat files to // ensure the references between the two are correct. // // Currently we have a memory layout that looks something like this: // // +--------------+ // | images | // +--------------+ // | oat files | // +--------------+ // | alloc spaces | // +--------------+ // // There are several constraints on the loading of the images and oat files. // // 1. The images are expected to be loaded at an absolute address and // contain Objects with absolute pointers within the images. // // 2. There are absolute pointers from Methods in the images to their // code in the oat files. // // 3. There are absolute pointers from the code in the oat files to Methods // in the images. // // 4. There are absolute pointers from code in the oat files to other code // in the oat files. // // To get this all correct, we go through several steps. // // 1. We prepare offsets for all data in the oat files and calculate // the oat data size and code size. During this stage, we also set // oat code offsets in methods for use by the image writer. // // 2. We prepare offsets for the objects in the images and calculate // the image sizes. // // 3. We create the oat files. Originally this was just our own proprietary // file but now it is contained within an ELF dynamic object (aka an .so // file). Since we know the image sizes and oat data sizes and code sizes we // can prepare the ELF headers and we then know the ELF memory segment // layout and we can now resolve all references. The compiler provides // LinkerPatch information in each CompiledMethod and we resolve these, // using the layout information and image object locations provided by // image writer, as we're writing the method code. // // 4. We create the image files. They need to know where the oat files // will be loaded after itself. Originally oat files were simply // memory mapped so we could predict where their contents were based // on the file size. Now that they are ELF files, we need to inspect // the ELF files to understand the in memory segment layout including // where the oat header is located within. // TODO: We could just remember this information from step 3. // // 5. We fixup the ELF program headers so that dlopen will try to // load the .so at the desired location at runtime by offsetting the // Elf32_Phdr.p_vaddr values by the desired base address. // TODO: Do this in step 3. We already know the layout there. // // Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5. // are done by the CreateImageFile() below. // Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the // ImageWriter, if necessary. // Note: Flushing (and closing) the file is the caller's responsibility, except for the failure // case (when the file will be explicitly erased). bool WriteOutputFiles(jobject class_loader) { TimingLogger::ScopedTiming t("dex2oat Oat", timings_); // Sync the data to the file, in case we did dex2dex transformations. for (MemMap& map : opened_dex_files_maps_) { if (!map.Sync()) { PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map.GetName(); return false; } } if (IsImage()) { if (IsAppImage() && image_base_ == 0) { gc::Heap* const heap = Runtime::Current()->GetHeap(); for (ImageSpace* image_space : heap->GetBootImageSpaces()) { image_base_ = std::max(image_base_, RoundUp( reinterpret_cast(image_space->GetImageHeader().GetOatFileEnd()), kPageSize)); } // The non moving space is right after the oat file. Put the preferred app image location // right after the non moving space so that we ideally get a continuous immune region for // the GC. // Use the default non moving space capacity since dex2oat does not have a separate non- // moving space. This means the runtime's non moving space space size will be as large // as the growth limit for dex2oat, but smaller in the zygote. const size_t non_moving_space_capacity = gc::Heap::kDefaultNonMovingSpaceCapacity; image_base_ += non_moving_space_capacity; VLOG(compiler) << "App image base=" << reinterpret_cast(image_base_); } image_writer_.reset(new linker::ImageWriter(*compiler_options_, image_base_, image_storage_mode_, oat_filenames_, dex_file_oat_index_map_, class_loader, dirty_image_objects_.get())); // We need to prepare method offsets in the image address space for direct method patching. TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_); if (!image_writer_->PrepareImageAddressSpace(timings_)) { LOG(ERROR) << "Failed to prepare image address space."; return false; } } // Initialize the writers with the compiler driver, image writer, and their // dex files. The writers were created without those being there yet. for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr& oat_writer = oat_writers_[i]; std::vector& dex_files = dex_files_per_oat_file_[i]; oat_writer->Initialize(driver_.get(), image_writer_.get(), dex_files); } { TimingLogger::ScopedTiming t2("dex2oat Write VDEX", timings_); DCHECK(IsBootImage() || oat_files_.size() == 1u); verifier::VerifierDeps* verifier_deps = callbacks_->GetVerifierDeps(); for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { File* vdex_file = vdex_files_[i].get(); std::unique_ptr vdex_out = std::make_unique( std::make_unique(vdex_file)); if (!oat_writers_[i]->WriteVerifierDeps(vdex_out.get(), verifier_deps)) { LOG(ERROR) << "Failed to write verifier dependencies into VDEX " << vdex_file->GetPath(); return false; } if (!oat_writers_[i]->WriteQuickeningInfo(vdex_out.get())) { LOG(ERROR) << "Failed to write quickening info into VDEX " << vdex_file->GetPath(); return false; } // VDEX finalized, seek back to the beginning and write checksums and the header. if (!oat_writers_[i]->WriteChecksumsAndVdexHeader(vdex_out.get())) { LOG(ERROR) << "Failed to write vdex header into VDEX " << vdex_file->GetPath(); return false; } } } { TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_); linker::MultiOatRelativePatcher patcher(compiler_options_->GetInstructionSet(), compiler_options_->GetInstructionSetFeatures(), driver_->GetCompiledMethodStorage()); for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr& elf_writer = elf_writers_[i]; std::unique_ptr& oat_writer = oat_writers_[i]; oat_writer->PrepareLayout(&patcher); elf_writer->PrepareDynamicSection(oat_writer->GetOatHeader().GetExecutableOffset(), oat_writer->GetCodeSize(), oat_writer->GetDataBimgRelRoSize(), oat_writer->GetBssSize(), oat_writer->GetBssMethodsOffset(), oat_writer->GetBssRootsOffset(), oat_writer->GetVdexSize()); if (IsImage()) { // Update oat layout. DCHECK(image_writer_ != nullptr); DCHECK_LT(i, oat_filenames_.size()); image_writer_->UpdateOatFileLayout(i, elf_writer->GetLoadedSize(), oat_writer->GetOatDataOffset(), oat_writer->GetOatSize()); } } for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr& oat_file = oat_files_[i]; std::unique_ptr& elf_writer = elf_writers_[i]; std::unique_ptr& oat_writer = oat_writers_[i]; // We need to mirror the layout of the ELF file in the compressed debug-info. // Therefore PrepareDebugInfo() relies on the SetLoadedSectionSizes() call further above. debug::DebugInfo debug_info = oat_writer->GetDebugInfo(); // Keep the variable alive. elf_writer->PrepareDebugInfo(debug_info); // Processes the data on background thread. OutputStream*& rodata = rodata_[i]; DCHECK(rodata != nullptr); if (!oat_writer->WriteRodata(rodata)) { LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndRoData(rodata); rodata = nullptr; OutputStream* text = elf_writer->StartText(); if (!oat_writer->WriteCode(text)) { LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndText(text); if (oat_writer->GetDataBimgRelRoSize() != 0u) { OutputStream* data_bimg_rel_ro = elf_writer->StartDataBimgRelRo(); if (!oat_writer->WriteDataBimgRelRo(data_bimg_rel_ro)) { LOG(ERROR) << "Failed to write .data.bimg.rel.ro section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndDataBimgRelRo(data_bimg_rel_ro); } if (!oat_writer->WriteHeader(elf_writer->GetStream())) { LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath(); return false; } if (IsImage()) { // Update oat header information. DCHECK(image_writer_ != nullptr); DCHECK_LT(i, oat_filenames_.size()); image_writer_->UpdateOatFileHeader(i, oat_writer->GetOatHeader()); } elf_writer->WriteDynamicSection(); elf_writer->WriteDebugInfo(oat_writer->GetDebugInfo()); if (!elf_writer->End()) { LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath(); return false; } if (!FlushOutputFile(&vdex_files_[i]) || !FlushOutputFile(&oat_files_[i])) { return false; } VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i]; oat_writer.reset(); // We may still need the ELF writer later for stripping. } } return true; } // If we are compiling an image, invoke the image creation routine. Else just skip. bool HandleImage() { if (IsImage()) { TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_); if (!CreateImageFile()) { return false; } VLOG(compiler) << "Images written successfully"; } return true; } // Copy the full oat files to symbols directory and then strip the originals. bool CopyOatFilesToSymbolsDirectoryAndStrip() { for (size_t i = 0; i < oat_unstripped_.size(); ++i) { // If we don't want to strip in place, copy from stripped location to unstripped location. // We need to strip after image creation because FixupElf needs to use .strtab. if (oat_unstripped_[i] != oat_filenames_[i]) { DCHECK(oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened()); TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_); std::unique_ptr& in = oat_files_[i]; std::unique_ptr out(OS::CreateEmptyFile(oat_unstripped_[i].c_str())); int64_t in_length = in->GetLength(); if (in_length < 0) { PLOG(ERROR) << "Failed to get the length of oat file: " << in->GetPath(); return false; } if (!out->Copy(in.get(), 0, in_length)) { PLOG(ERROR) << "Failed to copy oat file to file: " << out->GetPath(); return false; } if (out->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i]; return false; } VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i]; if (strip_) { TimingLogger::ScopedTiming t2("dex2oat OatFile strip", timings_); if (!elf_writers_[i]->StripDebugInfo()) { PLOG(ERROR) << "Failed strip oat file: " << in->GetPath(); return false; } } } } return true; } bool FlushOutputFile(std::unique_ptr* file) { if (file->get() != nullptr) { if (file->get()->Flush() != 0) { PLOG(ERROR) << "Failed to flush output file: " << file->get()->GetPath(); return false; } } return true; } bool FlushCloseOutputFile(File* file) { if (file != nullptr) { if (file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close output file: " << file->GetPath(); return false; } } return true; } bool FlushOutputFiles() { TimingLogger::ScopedTiming t2("dex2oat Flush Output Files", timings_); for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { if (!FlushOutputFile(&(*files)[i])) { return false; } } } return true; } bool FlushCloseOutputFiles() { bool result = true; for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { result &= FlushCloseOutputFile((*files)[i].get()); } } return result; } void DumpTiming() { if (compiler_options_->GetDumpTimings() || (kIsDebugBuild && timings_->GetTotalNs() > MsToNs(1000))) { LOG(INFO) << Dumpable(*timings_); } } bool IsImage() const { return IsAppImage() || IsBootImage(); } bool IsAppImage() const { return compiler_options_->IsAppImage(); } bool IsBootImage() const { return compiler_options_->IsBootImage(); } bool IsHost() const { return is_host_; } bool UseProfile() const { return profile_file_fd_ != -1 || !profile_file_.empty(); } bool DoProfileGuidedOptimizations() const { return UseProfile(); } bool DoGenerateCompactDex() const { return compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone; } bool DoDexLayoutOptimizations() const { return DoProfileGuidedOptimizations() || DoGenerateCompactDex(); } bool DoOatLayoutOptimizations() const { return DoProfileGuidedOptimizations(); } bool MayInvalidateVdexMetadata() const { // DexLayout can invalidate the vdex metadata if changing the class def order is enabled, so // we need to unquicken the vdex file eagerly, before passing it to dexlayout. return DoDexLayoutOptimizations(); } bool DoEagerUnquickeningOfVdex() const { return MayInvalidateVdexMetadata() && dm_file_ == nullptr; } bool LoadProfile() { DCHECK(UseProfile()); // TODO(calin): We should be using the runtime arena pool (instead of the // default profile arena). However the setup logic is messy and needs // cleaning up before that (e.g. the oat writers are created before the // runtime). profile_compilation_info_.reset(new ProfileCompilationInfo()); ScopedFlock profile_file; std::string error; if (profile_file_fd_ != -1) { profile_file = LockedFile::DupOf(profile_file_fd_, "profile", true /* read_only_mode */, &error); } else if (profile_file_ != "") { profile_file = LockedFile::Open(profile_file_.c_str(), O_RDONLY, true, &error); } // Return early if we're unable to obtain a lock on the profile. if (profile_file.get() == nullptr) { LOG(ERROR) << "Cannot lock profiles: " << error; return false; } if (!profile_compilation_info_->Load(profile_file->Fd())) { profile_compilation_info_.reset(nullptr); return false; } return true; } private: bool UseSwap(bool is_image, const std::vector& dex_files) { if (is_image) { // Don't use swap, we know generation should succeed, and we don't want to slow it down. return false; } if (dex_files.size() < min_dex_files_for_swap_) { // If there are less dex files than the threshold, assume it's gonna be fine. return false; } size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= min_dex_file_cumulative_size_for_swap_; } bool IsVeryLarge(const std::vector& dex_files) { size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= very_large_threshold_; } bool PrepareImageClasses() { // If --image-classes was specified, calculate the full list of classes to include in the image. DCHECK(compiler_options_->image_classes_.empty()); if (image_classes_filename_ != nullptr) { std::unique_ptr> image_classes = ReadClasses(image_classes_zip_filename_, image_classes_filename_, "image"); if (image_classes == nullptr) { return false; } compiler_options_->image_classes_.swap(*image_classes); } return true; } static std::unique_ptr> ReadClasses(const char* zip_filename, const char* classes_filename, const char* tag) { std::unique_ptr> classes; std::string error_msg; if (zip_filename != nullptr) { classes = ReadImageClassesFromZip(zip_filename, classes_filename, &error_msg); } else { classes = ReadImageClassesFromFile(classes_filename); } if (classes == nullptr) { LOG(ERROR) << "Failed to create list of " << tag << " classes from '" << classes_filename << "': " << error_msg; } return classes; } bool PrepareDirtyObjects() { if (dirty_image_objects_filename_ != nullptr) { dirty_image_objects_ = ReadCommentedInputFromFile>( dirty_image_objects_filename_, nullptr); if (dirty_image_objects_ == nullptr) { LOG(ERROR) << "Failed to create list of dirty objects from '" << dirty_image_objects_filename_ << "'"; return false; } } else { dirty_image_objects_.reset(nullptr); } return true; } void PruneNonExistentDexFiles() { DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); size_t kept = 0u; for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) { if (!OS::FileExists(dex_filenames_[i].c_str())) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'"; } else { if (kept != i) { dex_filenames_[kept] = dex_filenames_[i]; dex_locations_[kept] = dex_locations_[i]; } ++kept; } } dex_filenames_.resize(kept); dex_locations_.resize(kept); } bool AddDexFileSources() { TimingLogger::ScopedTiming t2("AddDexFileSources", timings_); if (input_vdex_file_ != nullptr && input_vdex_file_->HasDexSection()) { DCHECK_EQ(oat_writers_.size(), 1u); const std::string& name = zip_location_.empty() ? dex_locations_[0] : zip_location_; DCHECK(!name.empty()); if (!oat_writers_[0]->AddVdexDexFilesSource(*input_vdex_file_.get(), name.c_str())) { return false; } } else if (zip_fd_ != -1) { DCHECK_EQ(oat_writers_.size(), 1u); if (!oat_writers_[0]->AddZippedDexFilesSource(File(zip_fd_, /* check_usage */ false), zip_location_.c_str())) { return false; } } else if (oat_writers_.size() > 1u) { // Multi-image. DCHECK_EQ(oat_writers_.size(), dex_filenames_.size()); DCHECK_EQ(oat_writers_.size(), dex_locations_.size()); for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { if (!oat_writers_[i]->AddDexFileSource(dex_filenames_[i].c_str(), dex_locations_[i].c_str())) { return false; } } } else { DCHECK_EQ(oat_writers_.size(), 1u); DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); DCHECK_NE(dex_filenames_.size(), 0u); for (size_t i = 0; i != dex_filenames_.size(); ++i) { if (!oat_writers_[0]->AddDexFileSource(dex_filenames_[i].c_str(), dex_locations_[i].c_str())) { return false; } } } return true; } void CreateOatWriters() { TimingLogger::ScopedTiming t2("CreateOatWriters", timings_); elf_writers_.reserve(oat_files_.size()); oat_writers_.reserve(oat_files_.size()); for (const std::unique_ptr& oat_file : oat_files_) { elf_writers_.emplace_back(linker::CreateElfWriterQuick(*compiler_options_, oat_file.get())); elf_writers_.back()->Start(); bool do_oat_writer_layout = DoDexLayoutOptimizations() || DoOatLayoutOptimizations(); if (profile_compilation_info_ != nullptr && profile_compilation_info_->IsEmpty()) { do_oat_writer_layout = false; } oat_writers_.emplace_back(new linker::OatWriter( *compiler_options_, timings_, do_oat_writer_layout ? profile_compilation_info_.get() : nullptr, compact_dex_level_)); } } void SaveDexInput() { const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; for (size_t i = 0, size = dex_files.size(); i != size; ++i) { const DexFile* dex_file = dex_files[i]; std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", getpid(), i)); std::unique_ptr tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str())); if (tmp_file.get() == nullptr) { PLOG(ERROR) << "Failed to open file " << tmp_file_name << ". Try: adb shell chmod 777 /data/local/tmp"; continue; } // This is just dumping files for debugging. Ignore errors, and leave remnants. UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size())); UNUSED(tmp_file->Flush()); UNUSED(tmp_file->Close()); LOG(INFO) << "Wrote input to " << tmp_file_name; } } bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options, QuickCompilerCallbacks* callbacks) { RuntimeOptions raw_options; if (boot_image_filename_.empty()) { std::string boot_class_path = "-Xbootclasspath:"; boot_class_path += android::base::Join(dex_filenames_, ':'); raw_options.push_back(std::make_pair(boot_class_path, nullptr)); std::string boot_class_path_locations = "-Xbootclasspath-locations:"; boot_class_path_locations += android::base::Join(dex_locations_, ':'); raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr)); } else { std::string boot_image_option = "-Ximage:"; boot_image_option += boot_image_filename_; raw_options.push_back(std::make_pair(boot_image_option, nullptr)); } for (size_t i = 0; i < runtime_args_.size(); i++) { raw_options.push_back(std::make_pair(runtime_args_[i], nullptr)); } raw_options.push_back(std::make_pair("compilercallbacks", callbacks)); raw_options.push_back( std::make_pair("imageinstructionset", GetInstructionSetString(compiler_options_->GetInstructionSet()))); // Only allow no boot image for the runtime if we're compiling one. When we compile an app, // we don't want fallback mode, it will abort as we do not push a boot classpath (it might // have been stripped in preopting, anyways). if (!IsBootImage()) { raw_options.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr)); } // Never allow implicit image compilation. raw_options.push_back(std::make_pair("-Xnoimage-dex2oat", nullptr)); // Disable libsigchain. We don't don't need it during compilation and it prevents us // from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT). raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr)); // Disable Hspace compaction to save heap size virtual space. // Only need disable Hspace for OOM becasue background collector is equal to // foreground collector by default for dex2oat. raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr)); if (compiler_options_->IsForceDeterminism()) { // If we're asked to be deterministic, ensure non-concurrent GC for determinism. // // Note that with read barriers, this option is ignored, because Runtime::Init // overrides the foreground GC to be gc::kCollectorTypeCC when instantiating // gc::Heap. This is fine, as concurrent GC requests are not honored in dex2oat, // which uses an unstarted runtime. raw_options.push_back(std::make_pair("-Xgc:nonconcurrent", nullptr)); // The default LOS implementation (map) is not deterministic. So disable it. raw_options.push_back(std::make_pair("-XX:LargeObjectSpace=disabled", nullptr)); // We also need to turn off the nonmoving space. For that, we need to disable HSpace // compaction (done above) and ensure that neither foreground nor background collectors // are concurrent. // // Likewise, this option is ignored with read barriers because Runtime::Init // overrides the background GC to be gc::kCollectorTypeCCBackground, but that's // fine too, for the same reason (see above). raw_options.push_back(std::make_pair("-XX:BackgroundGC=nonconcurrent", nullptr)); // To make identity hashcode deterministic, set a known seed. mirror::Object::SetHashCodeSeed(987654321U); } if (!Runtime::ParseOptions(raw_options, false, runtime_options)) { LOG(ERROR) << "Failed to parse runtime options"; return false; } return true; } // Create a runtime necessary for compilation. bool CreateRuntime(RuntimeArgumentMap&& runtime_options) { TimingLogger::ScopedTiming t_runtime("Create runtime", timings_); if (!Runtime::Create(std::move(runtime_options))) { LOG(ERROR) << "Failed to create runtime"; return false; } // Runtime::Init will rename this thread to be "main". Prefer "dex2oat" so that "top" and // "ps -a" don't change to non-descript "main." SetThreadName(kIsDebugBuild ? "dex2oatd" : "dex2oat"); runtime_.reset(Runtime::Current()); runtime_->SetInstructionSet(compiler_options_->GetInstructionSet()); for (uint32_t i = 0; i < static_cast(CalleeSaveType::kLastCalleeSaveType); ++i) { CalleeSaveType type = CalleeSaveType(i); if (!runtime_->HasCalleeSaveMethod(type)) { runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type); } } // Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this // set up. interpreter::UnstartedRuntime::Initialize(); Thread* self = Thread::Current(); runtime_->RunRootClinits(self); // Runtime::Create acquired the mutator_lock_ that is normally given away when we // Runtime::Start, give it away now so that we don't starve GC. self->TransitionFromRunnableToSuspended(kNative); WatchDog::SetRuntime(runtime_.get()); return true; } // Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files. bool CreateImageFile() REQUIRES(!Locks::mutator_lock_) { CHECK(image_writer_ != nullptr); if (!IsBootImage()) { CHECK(image_filenames_.empty()); image_filenames_.push_back(app_image_file_name_); } if (!image_writer_->Write(app_image_fd_, image_filenames_, oat_filenames_)) { LOG(ERROR) << "Failure during image file creation"; return false; } // We need the OatDataBegin entries. dchecked_vector oat_data_begins; for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { oat_data_begins.push_back(image_writer_->GetOatDataBegin(i)); } // Destroy ImageWriter. image_writer_.reset(); return true; } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) static std::unique_ptr> ReadImageClassesFromFile( const char* image_classes_filename) { std::function process = DotToDescriptor; return ReadCommentedInputFromFile>(image_classes_filename, &process); } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) static std::unique_ptr> ReadImageClassesFromZip( const char* zip_filename, const char* image_classes_filename, std::string* error_msg) { std::function process = DotToDescriptor; return ReadCommentedInputFromZip>(zip_filename, image_classes_filename, &process, error_msg); } // Read lines from the given file, dropping comments and empty lines. Post-process each line with // the given function. template static std::unique_ptr ReadCommentedInputFromFile( const char* input_filename, std::function* process) { std::unique_ptr input_file(new std::ifstream(input_filename, std::ifstream::in)); if (input_file.get() == nullptr) { LOG(ERROR) << "Failed to open input file " << input_filename; return nullptr; } std::unique_ptr result = ReadCommentedInputStream(*input_file, process); input_file->close(); return result; } // Read lines from the given file from the given zip file, dropping comments and empty lines. // Post-process each line with the given function. template static std::unique_ptr ReadCommentedInputFromZip( const char* zip_filename, const char* input_filename, std::function* process, std::string* error_msg) { std::unique_ptr zip_archive(ZipArchive::Open(zip_filename, error_msg)); if (zip_archive.get() == nullptr) { return nullptr; } std::unique_ptr zip_entry(zip_archive->Find(input_filename, error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Failed to find '%s' within '%s': %s", input_filename, zip_filename, error_msg->c_str()); return nullptr; } MemMap input_file = zip_entry->ExtractToMemMap(zip_filename, input_filename, error_msg); if (!input_file.IsValid()) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", input_filename, zip_filename, error_msg->c_str()); return nullptr; } const std::string input_string(reinterpret_cast(input_file.Begin()), input_file.Size()); std::istringstream input_stream(input_string); return ReadCommentedInputStream(input_stream, process); } // Read lines from the given stream, dropping comments and empty lines. Post-process each line // with the given function. template static std::unique_ptr ReadCommentedInputStream( std::istream& in_stream, std::function* process) { std::unique_ptr output(new T()); while (in_stream.good()) { std::string dot; std::getline(in_stream, dot); if (android::base::StartsWith(dot, "#") || dot.empty()) { continue; } if (process != nullptr) { std::string descriptor((*process)(dot.c_str())); output->insert(output->end(), descriptor); } else { output->insert(output->end(), dot); } } return output; } void LogCompletionTime() { // Note: when creation of a runtime fails, e.g., when trying to compile an app but when there // is no image, there won't be a Runtime::Current(). // Note: driver creation can fail when loading an invalid dex file. LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_) << " (" << PrettyDuration(ProcessCpuNanoTime() - start_cputime_ns_) << " cpu)" << " (threads: " << thread_count_ << ") " << ((Runtime::Current() != nullptr && driver_ != nullptr) ? driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) : ""); } std::string StripIsaFrom(const char* image_filename, InstructionSet isa) { std::string res(image_filename); size_t last_slash = res.rfind('/'); if (last_slash == std::string::npos || last_slash == 0) { return res; } size_t penultimate_slash = res.rfind('/', last_slash - 1); if (penultimate_slash == std::string::npos) { return res; } // Check that the string in-between is the expected one. if (res.substr(penultimate_slash + 1, last_slash - penultimate_slash - 1) != GetInstructionSetString(isa)) { LOG(WARNING) << "Unexpected string when trying to strip isa: " << res; return res; } return res.substr(0, penultimate_slash) + res.substr(last_slash); } std::unique_ptr compiler_options_; Compiler::Kind compiler_kind_; std::unique_ptr > key_value_store_; std::unique_ptr verification_results_; std::unique_ptr callbacks_; std::unique_ptr runtime_; // The spec describing how the class loader should be setup for compilation. std::unique_ptr class_loader_context_; // Optional list of file descriptors corresponding to dex file locations in // flattened `class_loader_context_`. std::vector class_loader_context_fds_; // The class loader context stored in the oat file. May be equal to class_loader_context_. std::unique_ptr stored_class_loader_context_; size_t thread_count_; uint64_t start_ns_; uint64_t start_cputime_ns_; std::unique_ptr watchdog_; std::vector> oat_files_; std::vector> vdex_files_; std::string oat_location_; std::vector oat_filenames_; std::vector oat_unstripped_; bool strip_; int oat_fd_; int input_vdex_fd_; int output_vdex_fd_; std::string input_vdex_; std::string output_vdex_; std::unique_ptr input_vdex_file_; int dm_fd_; std::string dm_file_location_; std::unique_ptr dm_file_; std::vector dex_filenames_; std::vector dex_locations_; int zip_fd_; std::string zip_location_; std::string boot_image_filename_; std::vector runtime_args_; std::vector image_filenames_; uintptr_t image_base_; const char* image_classes_zip_filename_; const char* image_classes_filename_; ImageHeader::StorageMode image_storage_mode_; const char* passes_to_run_filename_; const char* dirty_image_objects_filename_; std::unique_ptr> dirty_image_objects_; std::unique_ptr> passes_to_run_; bool is_host_; std::string android_root_; std::string no_inline_from_string_; CompactDexLevel compact_dex_level_ = kDefaultCompactDexLevel; std::vector> elf_writers_; std::vector> oat_writers_; std::vector rodata_; std::vector> vdex_out_; std::unique_ptr image_writer_; std::unique_ptr driver_; std::vector opened_dex_files_maps_; std::vector> opened_dex_files_; bool avoid_storing_invocation_; android::base::unique_fd invocation_file_; std::string swap_file_name_; int swap_fd_; size_t min_dex_files_for_swap_ = kDefaultMinDexFilesForSwap; size_t min_dex_file_cumulative_size_for_swap_ = kDefaultMinDexFileCumulativeSizeForSwap; size_t very_large_threshold_ = std::numeric_limits::max(); std::string app_image_file_name_; int app_image_fd_; std::string profile_file_; int profile_file_fd_; std::unique_ptr profile_compilation_info_; TimingLogger* timings_; std::vector> dex_files_per_oat_file_; std::unordered_map dex_file_oat_index_map_; // Backing storage. std::forward_list char_backing_storage_; // See CompilerOptions.force_determinism_. bool force_determinism_; // Directory of relative classpaths. std::string classpath_dir_; // Whether the given input vdex is also the output. bool update_input_vdex_ = false; // By default, copy the dex to the vdex file only if dex files are // compressed in APK. linker::CopyOption copy_dex_files_ = linker::CopyOption::kOnlyIfCompressed; // The reason for invoking the compiler. std::string compilation_reason_; DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat); }; static void b13564922() { #if defined(__linux__) && defined(__arm__) int major, minor; struct utsname uts; if (uname(&uts) != -1 && sscanf(uts.release, "%d.%d", &major, &minor) == 2 && ((major < 3) || ((major == 3) && (minor < 4)))) { // Kernels before 3.4 don't handle the ASLR well and we can run out of address // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization. int old_personality = personality(0xffffffff); if ((old_personality & ADDR_NO_RANDOMIZE) == 0) { int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE); if (new_personality == -1) { LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed."; } } } #endif } class ScopedGlobalRef { public: explicit ScopedGlobalRef(jobject obj) : obj_(obj) {} ~ScopedGlobalRef() { if (obj_ != nullptr) { ScopedObjectAccess soa(Thread::Current()); soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), obj_); } } private: jobject obj_; }; static dex2oat::ReturnCode CompileImage(Dex2Oat& dex2oat) { dex2oat.LoadClassProfileDescriptors(); jobject class_loader = dex2oat.Compile(); // Keep the class loader that was used for compilation live for the rest of the compilation // process. ScopedGlobalRef global_ref(class_loader); if (!dex2oat.WriteOutputFiles(class_loader)) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Flush boot.oat. Keep it open as we might still modify it later (strip it). if (!dex2oat.FlushOutputFiles()) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Creates the boot.art and patches the oat files. if (!dex2oat.HandleImage()) { return dex2oat::ReturnCode::kOther; } // When given --host, finish early without stripping. if (dex2oat.IsHost()) { if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } // Copy stripped to unstripped location, if necessary. if (!dex2oat.CopyOatFilesToSymbolsDirectoryAndStrip()) { return dex2oat::ReturnCode::kOther; } // FlushClose again, as stripping might have re-opened the oat files. if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } static dex2oat::ReturnCode CompileApp(Dex2Oat& dex2oat) { jobject class_loader = dex2oat.Compile(); // Keep the class loader that was used for compilation live for the rest of the compilation // process. ScopedGlobalRef global_ref(class_loader); if (!dex2oat.WriteOutputFiles(class_loader)) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Do not close the oat files here. We might have gotten the output file by file descriptor, // which we would lose. // When given --host, finish early without stripping. if (dex2oat.IsHost()) { if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } // Copy stripped to unstripped location, if necessary. This will implicitly flush & close the // stripped versions. If this is given, we expect to be able to open writable files by name. if (!dex2oat.CopyOatFilesToSymbolsDirectoryAndStrip()) { return dex2oat::ReturnCode::kOther; } // Flush and close the files. if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } static dex2oat::ReturnCode Dex2oat(int argc, char** argv) { b13564922(); TimingLogger timings("compiler", false, false); // Allocate `dex2oat` on the heap instead of on the stack, as Clang // might produce a stack frame too large for this function or for // functions inlining it (such as main), that would not fit the // requirements of the `-Wframe-larger-than` option. std::unique_ptr dex2oat = std::make_unique(&timings); // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. dex2oat->ParseArgs(argc, argv); // If needed, process profile information for profile guided compilation. // This operation involves I/O. if (dex2oat->UseProfile()) { if (!dex2oat->LoadProfile()) { LOG(ERROR) << "Failed to process profile file"; return dex2oat::ReturnCode::kOther; } } art::MemMap::Init(); // For ZipEntry::ExtractToMemMap, and vdex. // Check early that the result of compilation can be written if (!dex2oat->OpenFile()) { return dex2oat::ReturnCode::kOther; } // Print the complete line when any of the following is true: // 1) Debug build // 2) Compiling an image // 3) Compiling with --host // 4) Compiling on the host (not a target build) // Otherwise, print a stripped command line. if (kIsDebugBuild || dex2oat->IsBootImage() || dex2oat->IsHost() || !kIsTargetBuild) { LOG(INFO) << CommandLine(); } else { LOG(INFO) << StrippedCommandLine(); } dex2oat::ReturnCode setup_code = dex2oat->Setup(); if (setup_code != dex2oat::ReturnCode::kNoFailure) { dex2oat->EraseOutputFiles(); return setup_code; } // TODO: Due to the cyclic dependencies, profile loading and verifying are // being done separately. Refactor and place the two next to each other. // If verification fails, we don't abort the compilation and instead log an // error. // TODO(b/62602192, b/65260586): We should consider aborting compilation when // the profile verification fails. // Note: If dex2oat fails, installd will remove the oat files causing the app // to fallback to apk with possible in-memory extraction. We want to avoid // that, and thus we're lenient towards profile corruptions. if (dex2oat->UseProfile()) { dex2oat->VerifyProfileData(); } // Helps debugging on device. Can be used to determine which dalvikvm instance invoked a dex2oat // instance. Used by tools/bisection_search/bisection_search.py. VLOG(compiler) << "Running dex2oat (parent PID = " << getppid() << ")"; dex2oat::ReturnCode result; if (dex2oat->IsImage()) { result = CompileImage(*dex2oat); } else { result = CompileApp(*dex2oat); } return result; } } // namespace art int main(int argc, char** argv) { int result = static_cast(art::Dex2oat(argc, argv)); // Everything was done, do an explicit exit here to avoid running Runtime destructors that take // time (bug 10645725) unless we're a debug or instrumented build or running on a memory tool. // Note: The Dex2Oat class should not destruct the runtime in this case. if (!art::kIsDebugBuild && !art::kIsPGOInstrumentation && !art::kRunningOnMemoryTool) { _exit(result); } return result; }