/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mem_map.h" #include #include #include "common_art_test.h" #include "common_runtime_test.h" // For TEST_DISABLED_FOR_MIPS #include "logging.h" #include "memory_tool.h" #include "mman.h" #include "unix_file/fd_file.h" namespace art { class MemMapTest : public CommonArtTest { public: static bool IsAddressMapped(void* addr) { bool res = msync(addr, 1, MS_SYNC) == 0; if (!res && errno != ENOMEM) { PLOG(FATAL) << "Unexpected error occurred on msync"; } return res; } static std::vector RandomData(size_t size) { std::random_device rd; std::uniform_int_distribution dist; std::vector res; res.resize(size); for (size_t i = 0; i < size; i++) { res[i] = dist(rd); } return res; } static uint8_t* GetValidMapAddress(size_t size, bool low_4gb) { // Find a valid map address and unmap it before returning. std::string error_msg; MemMap map = MemMap::MapAnonymous("temp", size, PROT_READ, low_4gb, &error_msg); CHECK(map.IsValid()); return map.Begin(); } static void RemapAtEndTest(bool low_4gb) { std::string error_msg; // Cast the page size to size_t. const size_t page_size = static_cast(kPageSize); // Map a two-page memory region. MemMap m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0", 2 * page_size, PROT_READ | PROT_WRITE, low_4gb, &error_msg); // Check its state and write to it. ASSERT_TRUE(m0.IsValid()); uint8_t* base0 = m0.Begin(); ASSERT_TRUE(base0 != nullptr) << error_msg; size_t size0 = m0.Size(); EXPECT_EQ(m0.Size(), 2 * page_size); EXPECT_EQ(m0.BaseBegin(), base0); EXPECT_EQ(m0.BaseSize(), size0); memset(base0, 42, 2 * page_size); // Remap the latter half into a second MemMap. MemMap m1 = m0.RemapAtEnd(base0 + page_size, "MemMapTest_RemapAtEndTest_map1", PROT_READ | PROT_WRITE, &error_msg); // Check the states of the two maps. EXPECT_EQ(m0.Begin(), base0) << error_msg; EXPECT_EQ(m0.Size(), page_size); EXPECT_EQ(m0.BaseBegin(), base0); EXPECT_EQ(m0.BaseSize(), page_size); uint8_t* base1 = m1.Begin(); size_t size1 = m1.Size(); EXPECT_EQ(base1, base0 + page_size); EXPECT_EQ(size1, page_size); EXPECT_EQ(m1.BaseBegin(), base1); EXPECT_EQ(m1.BaseSize(), size1); // Write to the second region. memset(base1, 43, page_size); // Check the contents of the two regions. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base0[i], 42); } for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } // Unmap the first region. m0.Reset(); // Make sure the second region is still accessible after the first // region is unmapped. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } MemMap m2 = m1.RemapAtEnd(m1.Begin(), "MemMapTest_RemapAtEndTest_map1", PROT_READ | PROT_WRITE, &error_msg); ASSERT_TRUE(m2.IsValid()) << error_msg; ASSERT_FALSE(m1.IsValid()); } void CommonInit() { MemMap::Init(); } #if defined(__LP64__) && !defined(__x86_64__) static uintptr_t GetLinearScanPos() { return MemMap::next_mem_pos_; } #endif }; #if defined(__LP64__) && !defined(__x86_64__) #ifdef __BIONIC__ extern uintptr_t CreateStartPos(uint64_t input); #endif TEST_F(MemMapTest, Start) { CommonInit(); uintptr_t start = GetLinearScanPos(); EXPECT_LE(64 * KB, start); EXPECT_LT(start, static_cast(ART_BASE_ADDRESS)); #ifdef __BIONIC__ // Test a couple of values. Make sure they are different. uintptr_t last = 0; for (size_t i = 0; i < 100; ++i) { uintptr_t random_start = CreateStartPos(i * kPageSize); EXPECT_NE(last, random_start); last = random_start; } // Even on max, should be below ART_BASE_ADDRESS. EXPECT_LT(CreateStartPos(~0), static_cast(ART_BASE_ADDRESS)); #endif // End of test. } #endif // We need mremap to be able to test ReplaceMapping at all #if HAVE_MREMAP_SYSCALL TEST_F(MemMapTest, ReplaceMapping_SameSize) { std::string error_msg; MemMap dest = MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest", kPageSize, PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(dest.IsValid()); MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", kPageSize, PROT_WRITE | PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(source.IsValid()); void* source_addr = source.Begin(); void* dest_addr = dest.Begin(); ASSERT_TRUE(IsAddressMapped(source_addr)); ASSERT_TRUE(IsAddressMapped(dest_addr)); std::vector data = RandomData(kPageSize); memcpy(source.Begin(), data.data(), data.size()); ASSERT_TRUE(dest.ReplaceWith(&source, &error_msg)) << error_msg; ASSERT_FALSE(IsAddressMapped(source_addr)); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_FALSE(source.IsValid()); ASSERT_EQ(dest.Size(), static_cast(kPageSize)); ASSERT_EQ(memcmp(dest.Begin(), data.data(), dest.Size()), 0); } TEST_F(MemMapTest, ReplaceMapping_MakeLarger) { std::string error_msg; MemMap dest = MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest", 5 * kPageSize, // Need to make it larger // initially so we know // there won't be mappings // in the way when we move // source. PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(dest.IsValid()); MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", 3 * kPageSize, PROT_WRITE | PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(source.IsValid()); uint8_t* source_addr = source.Begin(); uint8_t* dest_addr = dest.Begin(); ASSERT_TRUE(IsAddressMapped(source_addr)); // Fill the source with random data. std::vector data = RandomData(3 * kPageSize); memcpy(source.Begin(), data.data(), data.size()); // Make the dest smaller so that we know we'll have space. dest.SetSize(kPageSize); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_FALSE(IsAddressMapped(dest_addr + 2 * kPageSize)); ASSERT_EQ(dest.Size(), static_cast(kPageSize)); ASSERT_TRUE(dest.ReplaceWith(&source, &error_msg)) << error_msg; ASSERT_FALSE(IsAddressMapped(source_addr)); ASSERT_EQ(dest.Size(), static_cast(3 * kPageSize)); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_TRUE(IsAddressMapped(dest_addr + 2 * kPageSize)); ASSERT_FALSE(source.IsValid()); ASSERT_EQ(memcmp(dest.Begin(), data.data(), dest.Size()), 0); } TEST_F(MemMapTest, ReplaceMapping_MakeSmaller) { std::string error_msg; MemMap dest = MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest", 3 * kPageSize, PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(dest.IsValid()); MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", kPageSize, PROT_WRITE | PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(source.IsValid()); uint8_t* source_addr = source.Begin(); uint8_t* dest_addr = dest.Begin(); ASSERT_TRUE(IsAddressMapped(source_addr)); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_TRUE(IsAddressMapped(dest_addr + 2 * kPageSize)); ASSERT_EQ(dest.Size(), static_cast(3 * kPageSize)); std::vector data = RandomData(kPageSize); memcpy(source.Begin(), data.data(), kPageSize); ASSERT_TRUE(dest.ReplaceWith(&source, &error_msg)) << error_msg; ASSERT_FALSE(IsAddressMapped(source_addr)); ASSERT_EQ(dest.Size(), static_cast(kPageSize)); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_FALSE(IsAddressMapped(dest_addr + 2 * kPageSize)); ASSERT_FALSE(source.IsValid()); ASSERT_EQ(memcmp(dest.Begin(), data.data(), dest.Size()), 0); } TEST_F(MemMapTest, ReplaceMapping_FailureOverlap) { std::string error_msg; MemMap dest = MemMap::MapAnonymous( "MapAnonymousEmpty-atomic-replace-dest", 3 * kPageSize, // Need to make it larger initially so we know there won't be mappings in // the way when we move source. PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(dest.IsValid()); // Resize down to 1 page so we can remap the rest. dest.SetSize(kPageSize); // Create source from the last 2 pages MemMap source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", dest.Begin() + kPageSize, 2 * kPageSize, PROT_WRITE | PROT_READ, /*low_4gb=*/ false, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); ASSERT_TRUE(source.IsValid()); ASSERT_EQ(dest.Begin() + kPageSize, source.Begin()); uint8_t* source_addr = source.Begin(); uint8_t* dest_addr = dest.Begin(); ASSERT_TRUE(IsAddressMapped(source_addr)); // Fill the source and dest with random data. std::vector data = RandomData(2 * kPageSize); memcpy(source.Begin(), data.data(), data.size()); std::vector dest_data = RandomData(kPageSize); memcpy(dest.Begin(), dest_data.data(), dest_data.size()); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_EQ(dest.Size(), static_cast(kPageSize)); ASSERT_FALSE(dest.ReplaceWith(&source, &error_msg)) << error_msg; ASSERT_TRUE(IsAddressMapped(source_addr)); ASSERT_TRUE(IsAddressMapped(dest_addr)); ASSERT_EQ(source.Size(), data.size()); ASSERT_EQ(dest.Size(), dest_data.size()); ASSERT_EQ(memcmp(source.Begin(), data.data(), data.size()), 0); ASSERT_EQ(memcmp(dest.Begin(), dest_data.data(), dest_data.size()), 0); } #endif // HAVE_MREMAP_SYSCALL TEST_F(MemMapTest, MapAnonymousEmpty) { CommonInit(); std::string error_msg; MemMap map = MemMap::MapAnonymous("MapAnonymousEmpty", /*byte_count=*/ 0, PROT_READ, /*low_4gb=*/ false, &error_msg); ASSERT_FALSE(map.IsValid()) << error_msg; ASSERT_FALSE(error_msg.empty()); error_msg.clear(); map = MemMap::MapAnonymous("MapAnonymousNonEmpty", kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(map.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); } TEST_F(MemMapTest, MapAnonymousFailNullError) { CommonInit(); // Test that we don't crash with a null error_str when mapping at an invalid location. MemMap map = MemMap::MapAnonymous("MapAnonymousInvalid", reinterpret_cast(kPageSize), 0x20000, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, /*reuse=*/ false, /*reservation=*/ nullptr, nullptr); ASSERT_FALSE(map.IsValid()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousEmpty32bit) { CommonInit(); std::string error_msg; MemMap map = MemMap::MapAnonymous("MapAnonymousEmpty", /*byte_count=*/ 0, PROT_READ, /*low_4gb=*/ true, &error_msg); ASSERT_FALSE(map.IsValid()) << error_msg; ASSERT_FALSE(error_msg.empty()); error_msg.clear(); map = MemMap::MapAnonymous("MapAnonymousNonEmpty", kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ true, &error_msg); ASSERT_TRUE(map.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_LT(reinterpret_cast(map.BaseBegin()), 1ULL << 32); } TEST_F(MemMapTest, MapFile32Bit) { CommonInit(); std::string error_msg; ScratchFile scratch_file; constexpr size_t kMapSize = kPageSize; std::unique_ptr data(new uint8_t[kMapSize]()); ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize)); MemMap map = MemMap::MapFile(/*byte_count=*/kMapSize, PROT_READ, MAP_PRIVATE, scratch_file.GetFd(), /*start=*/0, /*low_4gb=*/true, scratch_file.GetFilename().c_str(), &error_msg); ASSERT_TRUE(map.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map.Size(), kMapSize); ASSERT_LT(reinterpret_cast(map.BaseBegin()), 1ULL << 32); } #endif TEST_F(MemMapTest, MapAnonymousExactAddr) { // TODO: The semantics of the MemMap::MapAnonymous() with a given address but without // `reuse == true` or `reservation != nullptr` is weird. We should either drop support // for it, or take it only as a hint and allow the result to be mapped elsewhere. // Currently we're seeing failures with ASAN. b/118408378 TEST_DISABLED_FOR_MEMORY_TOOL(); CommonInit(); std::string error_msg; // Find a valid address. uint8_t* valid_address = GetValidMapAddress(kPageSize, /*low_4gb=*/false); // Map at an address that should work, which should succeed. MemMap map0 = MemMap::MapAnonymous("MapAnonymous0", valid_address, kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); ASSERT_TRUE(map0.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_TRUE(map0.BaseBegin() == valid_address); // Map at an unspecified address, which should succeed. MemMap map1 = MemMap::MapAnonymous("MapAnonymous1", kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(map1.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_TRUE(map1.BaseBegin() != nullptr); // Attempt to map at the same address, which should fail. MemMap map2 = MemMap::MapAnonymous("MapAnonymous2", reinterpret_cast(map1.BaseBegin()), kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); ASSERT_FALSE(map2.IsValid()) << error_msg; ASSERT_TRUE(!error_msg.empty()); } TEST_F(MemMapTest, RemapAtEnd) { RemapAtEndTest(false); } #ifdef __LP64__ TEST_F(MemMapTest, RemapAtEnd32bit) { RemapAtEndTest(true); } #endif TEST_F(MemMapTest, RemapFileViewAtEnd) { CommonInit(); std::string error_msg; ScratchFile scratch_file; // Create a scratch file 3 pages large. constexpr size_t kMapSize = 3 * kPageSize; std::unique_ptr data(new uint8_t[kMapSize]()); memset(data.get(), 1, kPageSize); memset(&data[0], 0x55, kPageSize); memset(&data[kPageSize], 0x5a, kPageSize); memset(&data[2 * kPageSize], 0xaa, kPageSize); ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize)); MemMap map = MemMap::MapFile(/*byte_count=*/kMapSize, PROT_READ, MAP_PRIVATE, scratch_file.GetFd(), /*start=*/0, /*low_4gb=*/true, scratch_file.GetFilename().c_str(), &error_msg); ASSERT_TRUE(map.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map.Size(), kMapSize); ASSERT_LT(reinterpret_cast(map.BaseBegin()), 1ULL << 32); ASSERT_EQ(data[0], *map.Begin()); ASSERT_EQ(data[kPageSize], *(map.Begin() + kPageSize)); ASSERT_EQ(data[2 * kPageSize], *(map.Begin() + 2 * kPageSize)); for (size_t offset = 2 * kPageSize; offset > 0; offset -= kPageSize) { MemMap tail = map.RemapAtEnd(map.Begin() + offset, "bad_offset_map", PROT_READ, MAP_PRIVATE | MAP_FIXED, scratch_file.GetFd(), offset, &error_msg); ASSERT_TRUE(tail.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(offset, map.Size()); ASSERT_EQ(static_cast(kPageSize), tail.Size()); ASSERT_EQ(tail.Begin(), map.Begin() + map.Size()); ASSERT_EQ(data[offset], *tail.Begin()); } } TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) { // Some MIPS32 hardware (namely the Creator Ci20 development board) // cannot allocate in the 2GB-4GB region. TEST_DISABLED_FOR_MIPS(); // This test does not work under AddressSanitizer. // Historical note: This test did not work under Valgrind either. TEST_DISABLED_FOR_MEMORY_TOOL(); CommonInit(); constexpr size_t size = 0x100000; // Try all addresses starting from 2GB to 4GB. size_t start_addr = 2 * GB; std::string error_msg; MemMap map; for (; start_addr <= std::numeric_limits::max() - size; start_addr += size) { map = MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr", reinterpret_cast(start_addr), size, PROT_READ | PROT_WRITE, /*low_4gb=*/ true, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); if (map.IsValid()) { break; } } ASSERT_TRUE(map.IsValid()) << error_msg; ASSERT_GE(reinterpret_cast(map.End()), 2u * GB); ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map.BaseBegin(), reinterpret_cast(start_addr)); } TEST_F(MemMapTest, MapAnonymousOverflow) { CommonInit(); std::string error_msg; uintptr_t ptr = 0; ptr -= kPageSize; // Now it's close to the top. MemMap map = MemMap::MapAnonymous("MapAnonymousOverflow", reinterpret_cast(ptr), 2 * kPageSize, // brings it over the top. PROT_READ | PROT_WRITE, /*low_4gb=*/ false, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); ASSERT_FALSE(map.IsValid()); ASSERT_FALSE(error_msg.empty()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) { CommonInit(); std::string error_msg; MemMap map = MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh", reinterpret_cast(UINT64_C(0x100000000)), kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ true, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); ASSERT_FALSE(map.IsValid()); ASSERT_FALSE(error_msg.empty()); } TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) { CommonInit(); std::string error_msg; MemMap map = MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh", /*addr=*/ reinterpret_cast(0xF0000000), /*byte_count=*/ 0x20000000, PROT_READ | PROT_WRITE, /*low_4gb=*/ true, /*reuse=*/ false, /*reservation=*/ nullptr, &error_msg); ASSERT_FALSE(map.IsValid()); ASSERT_FALSE(error_msg.empty()); } #endif TEST_F(MemMapTest, MapAnonymousReuse) { CommonInit(); std::string error_msg; MemMap map = MemMap::MapAnonymous("MapAnonymousReserve", /*byte_count=*/ 0x20000, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(map.IsValid()); ASSERT_TRUE(error_msg.empty()); MemMap map2 = MemMap::MapAnonymous("MapAnonymousReused", /*addr=*/ reinterpret_cast(map.BaseBegin()), /*byte_count=*/ 0x10000, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, /*reuse=*/ true, /*reservation=*/ nullptr, &error_msg); ASSERT_TRUE(map2.IsValid()); ASSERT_TRUE(error_msg.empty()); } TEST_F(MemMapTest, CheckNoGaps) { CommonInit(); std::string error_msg; constexpr size_t kNumPages = 3; // Map a 3-page mem map. MemMap reservation = MemMap::MapAnonymous("MapAnonymous0", kPageSize * kNumPages, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(reservation.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); // Record the base address. uint8_t* map_base = reinterpret_cast(reservation.BaseBegin()); // Map at the same address, taking from the `map` reservation. MemMap map0 = MemMap::MapAnonymous("MapAnonymous0", kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &reservation, &error_msg); ASSERT_TRUE(map0.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map_base, map0.Begin()); MemMap map1 = MemMap::MapAnonymous("MapAnonymous1", kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &reservation, &error_msg); ASSERT_TRUE(map1.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map_base + kPageSize, map1.Begin()); MemMap map2 = MemMap::MapAnonymous("MapAnonymous2", kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &reservation, &error_msg); ASSERT_TRUE(map2.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map_base + 2 * kPageSize, map2.Begin()); ASSERT_FALSE(reservation.IsValid()); // The entire reservation was used. // One-map cases. ASSERT_TRUE(MemMap::CheckNoGaps(map0, map0)); ASSERT_TRUE(MemMap::CheckNoGaps(map1, map1)); ASSERT_TRUE(MemMap::CheckNoGaps(map2, map2)); // Two or three-map cases. ASSERT_TRUE(MemMap::CheckNoGaps(map0, map1)); ASSERT_TRUE(MemMap::CheckNoGaps(map1, map2)); ASSERT_TRUE(MemMap::CheckNoGaps(map0, map2)); // Unmap the middle one. map1.Reset(); // Should return false now that there's a gap in the middle. ASSERT_FALSE(MemMap::CheckNoGaps(map0, map2)); } TEST_F(MemMapTest, AlignBy) { CommonInit(); std::string error_msg; // Cast the page size to size_t. const size_t page_size = static_cast(kPageSize); // Map a region. MemMap m0 = MemMap::MapAnonymous("MemMapTest_AlignByTest_map0", 14 * page_size, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(m0.IsValid()); uint8_t* base0 = m0.Begin(); ASSERT_TRUE(base0 != nullptr) << error_msg; ASSERT_EQ(m0.Size(), 14 * page_size); ASSERT_EQ(m0.BaseBegin(), base0); ASSERT_EQ(m0.BaseSize(), m0.Size()); // Break it into several regions by using RemapAtEnd. MemMap m1 = m0.RemapAtEnd(base0 + 3 * page_size, "MemMapTest_AlignByTest_map1", PROT_READ | PROT_WRITE, &error_msg); uint8_t* base1 = m1.Begin(); ASSERT_TRUE(base1 != nullptr) << error_msg; ASSERT_EQ(base1, base0 + 3 * page_size); ASSERT_EQ(m0.Size(), 3 * page_size); MemMap m2 = m1.RemapAtEnd(base1 + 4 * page_size, "MemMapTest_AlignByTest_map2", PROT_READ | PROT_WRITE, &error_msg); uint8_t* base2 = m2.Begin(); ASSERT_TRUE(base2 != nullptr) << error_msg; ASSERT_EQ(base2, base1 + 4 * page_size); ASSERT_EQ(m1.Size(), 4 * page_size); MemMap m3 = m2.RemapAtEnd(base2 + 3 * page_size, "MemMapTest_AlignByTest_map1", PROT_READ | PROT_WRITE, &error_msg); uint8_t* base3 = m3.Begin(); ASSERT_TRUE(base3 != nullptr) << error_msg; ASSERT_EQ(base3, base2 + 3 * page_size); ASSERT_EQ(m2.Size(), 3 * page_size); ASSERT_EQ(m3.Size(), 4 * page_size); uint8_t* end0 = base0 + m0.Size(); uint8_t* end1 = base1 + m1.Size(); uint8_t* end2 = base2 + m2.Size(); uint8_t* end3 = base3 + m3.Size(); ASSERT_EQ(static_cast(end3 - base0), 14 * page_size); if (IsAlignedParam(base0, 2 * page_size)) { ASSERT_FALSE(IsAlignedParam(base1, 2 * page_size)); ASSERT_FALSE(IsAlignedParam(base2, 2 * page_size)); ASSERT_TRUE(IsAlignedParam(base3, 2 * page_size)); ASSERT_TRUE(IsAlignedParam(end3, 2 * page_size)); } else { ASSERT_TRUE(IsAlignedParam(base1, 2 * page_size)); ASSERT_TRUE(IsAlignedParam(base2, 2 * page_size)); ASSERT_FALSE(IsAlignedParam(base3, 2 * page_size)); ASSERT_FALSE(IsAlignedParam(end3, 2 * page_size)); } // Align by 2 * page_size; m0.AlignBy(2 * page_size); m1.AlignBy(2 * page_size); m2.AlignBy(2 * page_size); m3.AlignBy(2 * page_size); EXPECT_TRUE(IsAlignedParam(m0.Begin(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m1.Begin(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m2.Begin(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m3.Begin(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m0.Begin() + m0.Size(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m1.Begin() + m1.Size(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m2.Begin() + m2.Size(), 2 * page_size)); EXPECT_TRUE(IsAlignedParam(m3.Begin() + m3.Size(), 2 * page_size)); if (IsAlignedParam(base0, 2 * page_size)) { EXPECT_EQ(m0.Begin(), base0); EXPECT_EQ(m0.Begin() + m0.Size(), end0 - page_size); EXPECT_EQ(m1.Begin(), base1 + page_size); EXPECT_EQ(m1.Begin() + m1.Size(), end1 - page_size); EXPECT_EQ(m2.Begin(), base2 + page_size); EXPECT_EQ(m2.Begin() + m2.Size(), end2); EXPECT_EQ(m3.Begin(), base3); EXPECT_EQ(m3.Begin() + m3.Size(), end3); } else { EXPECT_EQ(m0.Begin(), base0 + page_size); EXPECT_EQ(m0.Begin() + m0.Size(), end0); EXPECT_EQ(m1.Begin(), base1); EXPECT_EQ(m1.Begin() + m1.Size(), end1); EXPECT_EQ(m2.Begin(), base2); EXPECT_EQ(m2.Begin() + m2.Size(), end2 - page_size); EXPECT_EQ(m3.Begin(), base3 + page_size); EXPECT_EQ(m3.Begin() + m3.Size(), end3 - page_size); } } TEST_F(MemMapTest, Reservation) { CommonInit(); std::string error_msg; ScratchFile scratch_file; constexpr size_t kMapSize = 5 * kPageSize; std::unique_ptr data(new uint8_t[kMapSize]()); ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize)); MemMap reservation = MemMap::MapAnonymous("Test reservation", kMapSize, PROT_NONE, /*low_4gb=*/ false, &error_msg); ASSERT_TRUE(reservation.IsValid()); ASSERT_TRUE(error_msg.empty()); // Map first part of the reservation. constexpr size_t kChunk1Size = kPageSize - 1u; static_assert(kChunk1Size < kMapSize, "We want to split the reservation."); uint8_t* addr1 = reservation.Begin(); MemMap map1 = MemMap::MapFileAtAddress(addr1, /*byte_count=*/ kChunk1Size, PROT_READ, MAP_PRIVATE, scratch_file.GetFd(), /*start=*/ 0, /*low_4gb=*/ false, scratch_file.GetFilename().c_str(), /*reuse=*/ false, &reservation, &error_msg); ASSERT_TRUE(map1.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map1.Size(), kChunk1Size); ASSERT_EQ(addr1, map1.Begin()); ASSERT_TRUE(reservation.IsValid()); // Entire pages are taken from the `reservation`. ASSERT_LT(map1.End(), map1.BaseEnd()); ASSERT_EQ(map1.BaseEnd(), reservation.Begin()); // Map second part as an anonymous mapping. constexpr size_t kChunk2Size = 2 * kPageSize; DCHECK_LT(kChunk2Size, reservation.Size()); // We want to split the reservation. uint8_t* addr2 = reservation.Begin(); MemMap map2 = MemMap::MapAnonymous("MiddleReservation", addr2, /*byte_count=*/ kChunk2Size, PROT_READ, /*low_4gb=*/ false, /*reuse=*/ false, &reservation, &error_msg); ASSERT_TRUE(map2.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map2.Size(), kChunk2Size); ASSERT_EQ(addr2, map2.Begin()); ASSERT_EQ(map2.End(), map2.BaseEnd()); // kChunk2Size is page aligned. ASSERT_EQ(map2.BaseEnd(), reservation.Begin()); // Map the rest of the reservation except the last byte. const size_t kChunk3Size = reservation.Size() - 1u; uint8_t* addr3 = reservation.Begin(); MemMap map3 = MemMap::MapFileAtAddress(addr3, /*byte_count=*/ kChunk3Size, PROT_READ, MAP_PRIVATE, scratch_file.GetFd(), /*start=*/ dchecked_integral_cast(addr3 - addr1), /*low_4gb=*/ false, scratch_file.GetFilename().c_str(), /*reuse=*/ false, &reservation, &error_msg); ASSERT_TRUE(map3.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map3.Size(), kChunk3Size); ASSERT_EQ(addr3, map3.Begin()); // Entire pages are taken from the `reservation`, so it's now exhausted. ASSERT_FALSE(reservation.IsValid()); // Now split the MiddleReservation. constexpr size_t kChunk2ASize = kPageSize - 1u; DCHECK_LT(kChunk2ASize, map2.Size()); // We want to split the reservation. MemMap map2a = map2.TakeReservedMemory(kChunk2ASize); ASSERT_TRUE(map2a.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map2a.Size(), kChunk2ASize); ASSERT_EQ(addr2, map2a.Begin()); ASSERT_TRUE(map2.IsValid()); ASSERT_LT(map2a.End(), map2a.BaseEnd()); ASSERT_EQ(map2a.BaseEnd(), map2.Begin()); // And take the rest of the middle reservation. const size_t kChunk2BSize = map2.Size() - 1u; uint8_t* addr2b = map2.Begin(); MemMap map2b = map2.TakeReservedMemory(kChunk2BSize); ASSERT_TRUE(map2b.IsValid()) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(map2b.Size(), kChunk2ASize); ASSERT_EQ(addr2b, map2b.Begin()); ASSERT_FALSE(map2.IsValid()); } } // namespace art namespace { class DumpMapsOnFailListener : public testing::EmptyTestEventListener { void OnTestPartResult(const testing::TestPartResult& result) override { switch (result.type()) { case testing::TestPartResult::kFatalFailure: art::PrintFileToLog("/proc/self/maps", android::base::LogSeverity::ERROR); break; // TODO: Could consider logging on EXPECT failures. case testing::TestPartResult::kNonFatalFailure: case testing::TestPartResult::kSkip: case testing::TestPartResult::kSuccess: break; } } }; } // namespace // Inject our listener into the test runner. extern "C" __attribute__((visibility("default"))) __attribute__((used)) void ArtTestGlobalInit() { LOG(ERROR) << "Installing listener"; testing::UnitTest::GetInstance()->listeners().Append(new DumpMapsOnFailListener()); }