/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ #define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ #include "interpreter.h" #include "interpreter_intrinsics.h" #include #include #include #include #include #include #include "art_field-inl.h" #include "art_method-inl.h" #include "base/enums.h" #include "base/locks.h" #include "base/macros.h" #include "class_linker-inl.h" #include "class_root.h" #include "common_dex_operations.h" #include "common_throws.h" #include "dex/dex_file-inl.h" #include "dex/dex_instruction-inl.h" #include "entrypoints/entrypoint_utils-inl.h" #include "handle_scope-inl.h" #include "interpreter_mterp_impl.h" #include "interpreter_switch_impl.h" #include "jit/jit-inl.h" #include "mirror/call_site.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/method.h" #include "mirror/method_handles_lookup.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "mterp/mterp.h" #include "obj_ptr.h" #include "stack.h" #include "thread.h" #include "unstarted_runtime.h" #include "well_known_classes.h" namespace art { namespace interpreter { void ThrowNullPointerExceptionFromInterpreter() REQUIRES_SHARED(Locks::mutator_lock_); template static inline void DoMonitorEnter(Thread* self, ShadowFrame* frame, ObjPtr ref) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { DCHECK(!ref.IsNull()); StackHandleScope<1> hs(self); Handle h_ref(hs.NewHandle(ref)); h_ref->MonitorEnter(self); DCHECK(self->HoldsLock(h_ref.Get())); if (UNLIKELY(self->IsExceptionPending())) { bool unlocked = h_ref->MonitorExit(self); DCHECK(unlocked); return; } if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) { frame->GetLockCountData().AddMonitor(self, h_ref.Get()); } } template static inline void DoMonitorExit(Thread* self, ShadowFrame* frame, ObjPtr ref) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { StackHandleScope<1> hs(self); Handle h_ref(hs.NewHandle(ref)); h_ref->MonitorExit(self); if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) { frame->GetLockCountData().RemoveMonitorOrThrow(self, h_ref.Get()); } } template static inline bool DoMonitorCheckOnExit(Thread* self, ShadowFrame* frame) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) { return frame->GetLockCountData().CheckAllMonitorsReleasedOrThrow(self); } return true; } void AbortTransactionF(Thread* self, const char* fmt, ...) __attribute__((__format__(__printf__, 2, 3))) REQUIRES_SHARED(Locks::mutator_lock_); void AbortTransactionV(Thread* self, const char* fmt, va_list args) REQUIRES_SHARED(Locks::mutator_lock_); void RecordArrayElementsInTransaction(ObjPtr array, int32_t count) REQUIRES_SHARED(Locks::mutator_lock_); // Invokes the given method. This is part of the invocation support and is used by DoInvoke, // DoFastInvoke and DoInvokeVirtualQuick functions. // Returns true on success, otherwise throws an exception and returns false. template bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result); bool UseFastInterpreterToInterpreterInvoke(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_); // Throws exception if we are getting close to the end of the stack. NO_INLINE bool CheckStackOverflow(Thread* self, size_t frame_size) REQUIRES_SHARED(Locks::mutator_lock_); // Handles all invoke-XXX/range instructions except for invoke-polymorphic[/range]. // Returns true on success, otherwise throws an exception and returns false. template static ALWAYS_INLINE bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // Make sure to check for async exceptions before anything else. if (is_mterp && self->UseMterp()) { DCHECK(!self->ObserveAsyncException()); } else if (UNLIKELY(self->ObserveAsyncException())) { return false; } const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); ArtMethod* sf_method = shadow_frame.GetMethod(); // Try to find the method in small thread-local cache first. InterpreterCache* tls_cache = self->GetInterpreterCache(); size_t tls_value; ArtMethod* resolved_method; if (is_quick) { resolved_method = nullptr; // We don't know/care what the original method was. } else if (LIKELY(tls_cache->Get(inst, &tls_value))) { resolved_method = reinterpret_cast(tls_value); } else { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); constexpr ClassLinker::ResolveMode resolve_mode = do_access_check ? ClassLinker::ResolveMode::kCheckICCEAndIAE : ClassLinker::ResolveMode::kNoChecks; resolved_method = class_linker->ResolveMethod(self, method_idx, sf_method, type); if (UNLIKELY(resolved_method == nullptr)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } tls_cache->Set(inst, reinterpret_cast(resolved_method)); } // Null pointer check and virtual method resolution. ObjPtr receiver = (type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC); ArtMethod* called_method; if (is_quick) { if (UNLIKELY(receiver == nullptr)) { // We lost the reference to the method index so we cannot get a more precise exception. ThrowNullPointerExceptionFromDexPC(); return false; } DCHECK(receiver->GetClass()->ShouldHaveEmbeddedVTable()); called_method = receiver->GetClass()->GetEmbeddedVTableEntry( /*vtable_idx=*/ method_idx, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); } else { called_method = FindMethodToCall( method_idx, resolved_method, &receiver, sf_method, self); } if (UNLIKELY(called_method == nullptr)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } if (UNLIKELY(!called_method->IsInvokable())) { called_method->ThrowInvocationTimeError(); result->SetJ(0); return false; } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && (type == kVirtual || type == kInterface)) { jit->InvokeVirtualOrInterface(receiver, sf_method, shadow_frame.GetDexPC(), called_method); } if (is_mterp && !is_range && called_method->IsIntrinsic()) { if (MterpHandleIntrinsic(&shadow_frame, called_method, inst, inst_data, shadow_frame.GetResultRegister())) { if (jit != nullptr && sf_method != nullptr) { jit->NotifyInterpreterToCompiledCodeTransition(self, sf_method); } return !self->IsExceptionPending(); } } // Check whether we can use the fast path. The result is cached in the ArtMethod. // If the bit is not set, we explicitly recheck all the conditions. // If any of the conditions get falsified, it is important to clear the bit. bool use_fast_path = false; if (is_mterp && self->UseMterp()) { use_fast_path = called_method->UseFastInterpreterToInterpreterInvoke(); if (!use_fast_path) { use_fast_path = UseFastInterpreterToInterpreterInvoke(called_method); if (use_fast_path) { called_method->SetFastInterpreterToInterpreterInvokeFlag(); } } } if (use_fast_path) { DCHECK(Runtime::Current()->IsStarted()); DCHECK(!Runtime::Current()->IsActiveTransaction()); DCHECK(called_method->SkipAccessChecks()); DCHECK(!called_method->IsNative()); DCHECK(!called_method->IsProxyMethod()); DCHECK(!called_method->IsIntrinsic()); DCHECK(!(called_method->GetDeclaringClass()->IsStringClass() && called_method->IsConstructor())); DCHECK(type != kStatic || called_method->GetDeclaringClass()->IsInitialized()); const uint16_t number_of_inputs = (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data); CodeItemDataAccessor accessor(called_method->DexInstructionData()); uint32_t num_regs = accessor.RegistersSize(); DCHECK_EQ(number_of_inputs, accessor.InsSize()); DCHECK_GE(num_regs, number_of_inputs); size_t first_dest_reg = num_regs - number_of_inputs; if (UNLIKELY(!CheckStackOverflow(self, ShadowFrame::ComputeSize(num_regs)))) { return false; } if (jit != nullptr) { jit->AddSamples(self, called_method, 1, /* with_backedges */false); } // Create shadow frame on the stack. const char* old_cause = self->StartAssertNoThreadSuspension("DoFastInvoke"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); if (is_range) { size_t src = vregC; for (size_t i = 0, dst = first_dest_reg; i < number_of_inputs; ++i, ++dst, ++src) { *new_shadow_frame->GetVRegAddr(dst) = *shadow_frame.GetVRegAddr(src); *new_shadow_frame->GetShadowRefAddr(dst) = *shadow_frame.GetShadowRefAddr(src); } } else { uint32_t arg[Instruction::kMaxVarArgRegs]; inst->GetVarArgs(arg, inst_data); for (size_t i = 0, dst = first_dest_reg; i < number_of_inputs; ++i, ++dst) { *new_shadow_frame->GetVRegAddr(dst) = *shadow_frame.GetVRegAddr(arg[i]); *new_shadow_frame->GetShadowRefAddr(dst) = *shadow_frame.GetShadowRefAddr(arg[i]); } } self->PushShadowFrame(new_shadow_frame); self->EndAssertNoThreadSuspension(old_cause); DCheckStaticState(self, called_method); while (true) { // Mterp does not support all instrumentation/debugging. if (!self->UseMterp()) { *result = ExecuteSwitchImpl(self, accessor, *new_shadow_frame, *result, false); break; } if (ExecuteMterpImpl(self, accessor.Insns(), new_shadow_frame, result)) { break; } else { // Mterp didn't like that instruction. Single-step it with the reference interpreter. *result = ExecuteSwitchImpl(self, accessor, *new_shadow_frame, *result, true); if (new_shadow_frame->GetDexPC() == dex::kDexNoIndex) { break; // Single-stepped a return or an exception not handled locally. } } } self->PopShadowFrame(); return !self->IsExceptionPending(); } return DoCall(called_method, self, shadow_frame, inst, inst_data, result); } static inline ObjPtr ResolveMethodHandle(Thread* self, uint32_t method_handle_index, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->ResolveMethodHandle(self, method_handle_index, referrer); } static inline ObjPtr ResolveMethodType(Thread* self, dex::ProtoIndex method_type_index, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->ResolveMethodType(self, method_type_index, referrer); } #define DECLARE_SIGNATURE_POLYMORPHIC_HANDLER(Name, ...) \ bool Do ## Name(Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data, \ JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); #include "intrinsics_list.h" INTRINSICS_LIST(DECLARE_SIGNATURE_POLYMORPHIC_HANDLER) #undef INTRINSICS_LIST #undef DECLARE_SIGNATURE_POLYMORPHIC_HANDLER // Performs a invoke-polymorphic or invoke-polymorphic-range. template bool DoInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); bool DoInvokeCustom(Thread* self, ShadowFrame& shadow_frame, uint32_t call_site_idx, const InstructionOperands* operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); // Performs a custom invoke (invoke-custom/invoke-custom-range). template bool DoInvokeCustom(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); if (is_range) { RangeInstructionOperands operands(inst->VRegC_3rc(), inst->VRegA_3rc()); return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result); } else { uint32_t args[Instruction::kMaxVarArgRegs]; inst->GetVarArgs(args, inst_data); VarArgsInstructionOperands operands(args, inst->VRegA_35c()); return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result); } } // Handles iget-XXX and sget-XXX instructions. // Returns true on success, otherwise throws an exception and returns false. template bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_); // Handles iget-quick, iget-wide-quick and iget-object-quick instructions. // Returns true on success, otherwise throws an exception and returns false. template bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_); // Handles iput-XXX and sput-XXX instructions. // Returns true on success, otherwise throws an exception and returns false. template bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_); // Handles iput-quick, iput-wide-quick and iput-object-quick instructions. // Returns true on success, otherwise throws an exception and returns false. template bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_); // Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the // java.lang.String class is initialized. static inline ObjPtr ResolveString(Thread* self, ShadowFrame& shadow_frame, dex::StringIndex string_idx) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr java_lang_string_class = GetClassRoot(); if (UNLIKELY(!java_lang_string_class->IsInitialized())) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(java_lang_string_class)); if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) { DCHECK(self->IsExceptionPending()); return nullptr; } } ArtMethod* method = shadow_frame.GetMethod(); ObjPtr string_ptr = Runtime::Current()->GetClassLinker()->ResolveString(string_idx, method); return string_ptr; } // Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { constexpr int32_t kMinInt = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, kMinInt); } else { shadow_frame.SetVReg(result_reg, dividend / divisor); } return true; } // Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { constexpr int32_t kMinInt = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, 0); } else { shadow_frame.SetVReg(result_reg, dividend % divisor); } return true; } // Handles div-long and div-long-2addr instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { const int64_t kMinLong = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, kMinLong); } else { shadow_frame.SetVRegLong(result_reg, dividend / divisor); } return true; } // Handles rem-long and rem-long-2addr instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { const int64_t kMinLong = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, 0); } else { shadow_frame.SetVRegLong(result_reg, dividend % divisor); } return true; } // Handles filled-new-array and filled-new-array-range instructions. // Returns true on success, otherwise throws an exception and returns false. template bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result); // Handles packed-switch instruction. // Returns the branch offset to the next instruction to execute. static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH); const uint16_t* switch_data = reinterpret_cast(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); DCHECK_EQ(switch_data[0], static_cast(Instruction::kPackedSwitchSignature)); uint16_t size = switch_data[1]; if (size == 0) { // Empty packed switch, move forward by 3 (size of PACKED_SWITCH). return 3; } const int32_t* keys = reinterpret_cast(&switch_data[2]); DCHECK_ALIGNED(keys, 4); int32_t first_key = keys[0]; const int32_t* targets = reinterpret_cast(&switch_data[4]); DCHECK_ALIGNED(targets, 4); int32_t index = test_val - first_key; if (index >= 0 && index < size) { return targets[index]; } else { // No corresponding value: move forward by 3 (size of PACKED_SWITCH). return 3; } } // Handles sparse-switch instruction. // Returns the branch offset to the next instruction to execute. static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH); const uint16_t* switch_data = reinterpret_cast(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); DCHECK_EQ(switch_data[0], static_cast(Instruction::kSparseSwitchSignature)); uint16_t size = switch_data[1]; // Return length of SPARSE_SWITCH if size is 0. if (size == 0) { return 3; } const int32_t* keys = reinterpret_cast(&switch_data[2]); DCHECK_ALIGNED(keys, 4); const int32_t* entries = keys + size; DCHECK_ALIGNED(entries, 4); int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) / 2; int32_t foundVal = keys[mid]; if (test_val < foundVal) { hi = mid - 1; } else if (test_val > foundVal) { lo = mid + 1; } else { return entries[mid]; } } // No corresponding value: move forward by 3 (size of SPARSE_SWITCH). return 3; } // We execute any instrumentation events triggered by throwing and/or handing the pending exception // and change the shadow_frames dex_pc to the appropriate exception handler if the current method // has one. If the exception has been handled and the shadow_frame is now pointing to a catch clause // we return true. If the current method is unable to handle the exception we return false. // This function accepts a null Instrumentation* as a way to cause instrumentation events not to be // reported. // TODO We might wish to reconsider how we cause some events to be ignored. bool MoveToExceptionHandler(Thread* self, ShadowFrame& shadow_frame, const instrumentation::Instrumentation* instrumentation) REQUIRES_SHARED(Locks::mutator_lock_); NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) __attribute__((cold)) REQUIRES_SHARED(Locks::mutator_lock_); // Set true if you want TraceExecution invocation before each bytecode execution. constexpr bool kTraceExecutionEnabled = false; static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst, const uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { if (kTraceExecutionEnabled) { #define TRACE_LOG std::cerr std::ostringstream oss; oss << shadow_frame.GetMethod()->PrettyMethod() << android::base::StringPrintf("\n0x%x: ", dex_pc) << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n"; for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) { uint32_t raw_value = shadow_frame.GetVReg(i); ObjPtr ref_value = shadow_frame.GetVRegReference(i); oss << android::base::StringPrintf(" vreg%u=0x%08X", i, raw_value); if (ref_value != nullptr) { if (ref_value->GetClass()->IsStringClass() && !ref_value->AsString()->IsValueNull()) { oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\""; } else { oss << "/" << ref_value->PrettyTypeOf(); } } } TRACE_LOG << oss.str() << "\n"; #undef TRACE_LOG } } static inline bool IsBackwardBranch(int32_t branch_offset) { return branch_offset <= 0; } // The arg_offset is the offset to the first input register in the frame. void ArtInterpreterToCompiledCodeBridge(Thread* self, ArtMethod* caller, ShadowFrame* shadow_frame, uint16_t arg_offset, JValue* result); static inline bool IsStringInit(const DexFile* dex_file, uint32_t method_idx) REQUIRES_SHARED(Locks::mutator_lock_) { const dex::MethodId& method_id = dex_file->GetMethodId(method_idx); const char* class_name = dex_file->StringByTypeIdx(method_id.class_idx_); const char* method_name = dex_file->GetMethodName(method_id); // Instead of calling ResolveMethod() which has suspend point and can trigger // GC, look up the method symbolically. // Compare method's class name and method name against string init. // It's ok since it's not allowed to create your own java/lang/String. // TODO: verify that assumption. if ((strcmp(class_name, "Ljava/lang/String;") == 0) && (strcmp(method_name, "") == 0)) { return true; } return false; } static inline bool IsStringInit(const Instruction* instr, ArtMethod* caller) REQUIRES_SHARED(Locks::mutator_lock_) { if (instr->Opcode() == Instruction::INVOKE_DIRECT || instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) { uint16_t callee_method_idx = (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ? instr->VRegB_3rc() : instr->VRegB_35c(); return IsStringInit(caller->GetDexFile(), callee_method_idx); } return false; } // Set string value created from StringFactory.newStringFromXXX() into all aliases of // StringFactory.newEmptyString(). void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame, uint16_t this_obj_vreg, JValue result); } // namespace interpreter } // namespace art #endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_