/*- * Copyright (c) 2012 Stephen Montgomery-Smith * Copyright (c) 2017 Mahdi Mokhtari * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The algorithm is very close to that in "Implementing the complex arcsine * and arccosine functions using exception handling" by T. E. Hull, Thomas F. * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, * http://dl.acm.org/citation.cfm?id=275324. * * See catrig.c for complete comments. * * XXX comments were removed automatically, and even short ones on the right * of statements were removed (all of them), contrary to normal style. Only * a few comments on the right of declarations remain. */ #include __FBSDID("$FreeBSD: head/lib/msun/src/catrigl.c 336362 2018-07-17 07:42:14Z bde $"); #include #include #include "invtrig.h" #include "math.h" #include "math_private.h" #undef isinf #define isinf(x) (fabsl(x) == INFINITY) #undef isnan #define isnan(x) ((x) != (x)) #define raise_inexact() do { volatile float junk __unused = 1 + tiny; } while(0) #undef signbit #define signbit(x) (__builtin_signbitl(x)) #if LDBL_MAX_EXP != 0x4000 #error "Unsupported long double format" #endif static const long double A_crossover = 10, B_crossover = 0.6417, FOUR_SQRT_MIN = 0x1p-8189L, HALF_MAX = 0x1p16383L, QUARTER_SQRT_MAX = 0x1p8189L, RECIP_EPSILON = 1 / LDBL_EPSILON, SQRT_MIN = 0x1p-8191L; #if LDBL_MANT_DIG == 64 static const union IEEEl2bits um_e = LD80C(0xadf85458a2bb4a9b, 1, 2.71828182845904523536e+0L), um_ln2 = LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309417e-1L); #define m_e um_e.e #define m_ln2 um_ln2.e static const long double /* The next 2 literals for non-i386. Misrounding them on i386 is harmless. */ SQRT_3_EPSILON = 5.70316273435758915310e-10, /* 0x9cc470a0490973e8.0p-94 */ SQRT_6_EPSILON = 8.06549008734932771664e-10; /* 0xddb3d742c265539e.0p-94 */ #elif LDBL_MANT_DIG == 113 static const long double m_e = 2.71828182845904523536028747135266250e0L, /* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */ m_ln2 = 6.93147180559945309417232121458176568e-1L, /* 0x162e42fefa39ef35793c7673007e6.0p-113 */ SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17, /* 0x1bb67ae8584caa73b25742d7078b8.0p-168 */ SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17; /* 0x13988e1409212e7d0321914321a55.0p-167 */ #else #error "Unsupported long double format" #endif static const volatile float tiny = 0x1p-100; static long double complex clog_for_large_values(long double complex z); static inline long double f(long double a, long double b, long double hypot_a_b) { if (b < 0) return ((hypot_a_b - b) / 2); if (b == 0) return (a / 2); return (a * a / (hypot_a_b + b) / 2); } static inline void do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, long double *B, long double *sqrt_A2my2, long double *new_y) { long double R, S, A; long double Am1, Amy; R = hypotl(x, y + 1); S = hypotl(x, y - 1); A = (R + S) / 2; if (A < 1) A = 1; if (A < A_crossover) { if (y == 1 && x < LDBL_EPSILON * LDBL_EPSILON / 128) { *rx = sqrtl(x); } else if (x >= LDBL_EPSILON * fabsl(y - 1)) { Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); *rx = log1pl(Am1 + sqrtl(Am1 * (A + 1))); } else if (y < 1) { *rx = x / sqrtl((1 - y) * (1 + y)); } else { *rx = log1pl((y - 1) + sqrtl((y - 1) * (y + 1))); } } else { *rx = logl(A + sqrtl(A * A - 1)); } *new_y = y; if (y < FOUR_SQRT_MIN) { *B_is_usable = 0; *sqrt_A2my2 = A * (2 / LDBL_EPSILON); *new_y = y * (2 / LDBL_EPSILON); return; } *B = y / A; *B_is_usable = 1; if (*B > B_crossover) { *B_is_usable = 0; if (y == 1 && x < LDBL_EPSILON / 128) { *sqrt_A2my2 = sqrtl(x) * sqrtl((A + y) / 2); } else if (x >= LDBL_EPSILON * fabsl(y - 1)) { Amy = f(x, y + 1, R) + f(x, y - 1, S); *sqrt_A2my2 = sqrtl(Amy * (A + y)); } else if (y > 1) { *sqrt_A2my2 = x * (4 / LDBL_EPSILON / LDBL_EPSILON) * y / sqrtl((y + 1) * (y - 1)); *new_y = y * (4 / LDBL_EPSILON / LDBL_EPSILON); } else { *sqrt_A2my2 = sqrtl((1 - y) * (1 + y)); } } } long double complex casinhl(long double complex z) { long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; int B_is_usable; long double complex w; x = creall(z); y = cimagl(z); ax = fabsl(x); ay = fabsl(y); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXL(x, y + y)); if (isinf(y)) return (CMPLXL(y, x + x)); if (y == 0) return (CMPLXL(x + x, y)); return (CMPLXL(nan_mix(x, y), nan_mix(x, y))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { if (signbit(x) == 0) w = clog_for_large_values(z) + m_ln2; else w = clog_for_large_values(-z) + m_ln2; return (CMPLXL(copysignl(creall(w), x), copysignl(cimagl(w), y))); } if (x == 0 && y == 0) return (z); raise_inexact(); if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) return (z); do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); if (B_is_usable) ry = asinl(B); else ry = atan2l(new_y, sqrt_A2my2); return (CMPLXL(copysignl(rx, x), copysignl(ry, y))); } long double complex casinl(long double complex z) { long double complex w; w = casinhl(CMPLXL(cimagl(z), creall(z))); return (CMPLXL(cimagl(w), creall(w))); } long double complex cacosl(long double complex z) { long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; int sx, sy; int B_is_usable; long double complex w; x = creall(z); y = cimagl(z); sx = signbit(x); sy = signbit(y); ax = fabsl(x); ay = fabsl(y); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXL(y + y, -INFINITY)); if (isinf(y)) return (CMPLXL(x + x, -y)); if (x == 0) return (CMPLXL(pio2_hi + pio2_lo, y + y)); return (CMPLXL(nan_mix(x, y), nan_mix(x, y))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { w = clog_for_large_values(z); rx = fabsl(cimagl(w)); ry = creall(w) + m_ln2; if (sy == 0) ry = -ry; return (CMPLXL(rx, ry)); } if (x == 1 && y == 0) return (CMPLXL(0, -y)); raise_inexact(); if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) return (CMPLXL(pio2_hi - (x - pio2_lo), -y)); do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); if (B_is_usable) { if (sx == 0) rx = acosl(B); else rx = acosl(-B); } else { if (sx == 0) rx = atan2l(sqrt_A2mx2, new_x); else rx = atan2l(sqrt_A2mx2, -new_x); } if (sy == 0) ry = -ry; return (CMPLXL(rx, ry)); } long double complex cacoshl(long double complex z) { long double complex w; long double rx, ry; w = cacosl(z); rx = creall(w); ry = cimagl(w); if (isnan(rx) && isnan(ry)) return (CMPLXL(ry, rx)); if (isnan(rx)) return (CMPLXL(fabsl(ry), rx)); if (isnan(ry)) return (CMPLXL(ry, ry)); return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z)))); } static long double complex clog_for_large_values(long double complex z) { long double x, y; long double ax, ay, t; x = creall(z); y = cimagl(z); ax = fabsl(x); ay = fabsl(y); if (ax < ay) { t = ax; ax = ay; ay = t; } if (ax > HALF_MAX) return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, atan2l(y, x))); if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x))); return (CMPLXL(logl(ax * ax + ay * ay) / 2, atan2l(y, x))); } static inline long double sum_squares(long double x, long double y) { if (y < SQRT_MIN) return (x * x); return (x * x + y * y); } static inline long double real_part_reciprocal(long double x, long double y) { long double scale; uint16_t hx, hy; int16_t ix, iy; GET_LDBL_EXPSIGN(hx, x); ix = hx & 0x7fff; GET_LDBL_EXPSIGN(hy, y); iy = hy & 0x7fff; #define BIAS (LDBL_MAX_EXP - 1) #define CUTOFF (LDBL_MANT_DIG / 2 + 1) if (ix - iy >= CUTOFF || isinf(x)) return (1 / x); if (iy - ix >= CUTOFF) return (x / y / y); if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF) return (x / (x * x + y * y)); scale = 1; SET_LDBL_EXPSIGN(scale, 0x7fff - ix); x *= scale; y *= scale; return (x / (x * x + y * y) * scale); } long double complex catanhl(long double complex z) { long double x, y, ax, ay, rx, ry; x = creall(z); y = cimagl(z); ax = fabsl(x); ay = fabsl(y); if (y == 0 && ax <= 1) return (CMPLXL(atanhl(x), y)); if (x == 0) return (CMPLXL(x, atanl(y))); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXL(copysignl(0, x), y + y)); if (isinf(y)) return (CMPLXL(copysignl(0, x), copysignl(pio2_hi + pio2_lo, y))); return (CMPLXL(nan_mix(x, y), nan_mix(x, y))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) return (CMPLXL(real_part_reciprocal(x, y), copysignl(pio2_hi + pio2_lo, y))); if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { raise_inexact(); return (z); } if (ax == 1 && ay < LDBL_EPSILON) rx = (m_ln2 - logl(ay)) / 2; else rx = log1pl(4 * ax / sum_squares(ax - 1, ay)) / 4; if (ax == 1) ry = atan2l(2, -ay) / 2; else if (ay < LDBL_EPSILON) ry = atan2l(2 * ay, (1 - ax) * (1 + ax)) / 2; else ry = atan2l(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; return (CMPLXL(copysignl(rx, x), copysignl(ry, y))); } long double complex catanl(long double complex z) { long double complex w; w = catanhl(CMPLXL(cimagl(z), creall(z))); return (CMPLXL(cimagl(w), creall(w))); }